Mathematics Part I Chapter 5 Continuity And Differentiability
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part I

    Continuity And Differentiability Here is the CBSE Mathematics Chapter 5 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Continuity And Differentiability Chapter 5 NCERT Solutions for Class 12 Mathematics Continuity And Differentiability Chapter 5 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12034419
    Question 3
    CBSEENMA12034423
    Question 8
    CBSEENMA12034429

    Prove that the identity function on real numbers given by f(x) = x is continuous at every real number.

    Solution

    Here    f(x) = x
    Function f is defined for all real numbers
    Let c be any real number.
    therefore space straight f left parenthesis straight c right parenthesis equals straight c
Also space Lt with straight x rightwards arrow straight c below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below space straight x equals straight c
therefore space Lt with straight x rightwards arrow straight c below space straight f left parenthesis straight x right parenthesis equals space straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at x = c
    But c is any real number.
    ∴  f is continuous at every real number.

    Question 9
    CBSEENMA12034430

    Show that the function defined by g(x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x

    Solution

    g(x) = x – [x]
    Let a be any integer.
    .Lt with straight x rightwards arrow straight a to the power of minus below straight g left parenthesis straight x space right parenthesis space equals Lt with straight x rightwards arrow straight a to the power of minus below space open curly brackets straight x minus left square bracket straight x right square bracket close curly brackets space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x minus space straight a minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a to the power of minus
space space space space space space space space space space space space space space space space space space space equals stack Lt space space with straight x rightwards arrow 0 below space space open curly brackets left parenthesis straight a minus straight h right parenthesis minus left square bracket straight a minus straight h right square bracket close curly brackets equals space Lt with straight h rightwards arrow 0 below space open curly brackets left parenthesis straight a minus straight h right parenthesis minus left parenthesis straight a minus 1 right parenthesis close curly brackets
space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space left parenthesis straight a minus straight h minus straight a plus 1 right parenthesis equals straight a minus 0 minus straight a plus 1 equals 1
Lt with straight x rightwards arrow straight a to the power of plus below space straight g left parenthesis straight x space right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of plus below open curly brackets straight x minus left square bracket straight x right square bracket space close curly brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals straight a plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a to the power of plus right square bracket
space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space space open curly brackets left parenthesis straight a plus straight h right parenthesis minus left square bracket straight a plus straight h right square bracket close curly brackets equals space Lt with straight h rightwards arrow 0 below space open curly brackets left parenthesis straight a plus straight h right parenthesis minus straight a close curly brackets equals space Lt with straight h rightwards arrow 0 below space left parenthesis straight h right parenthesis
space space space space space space space space space space space space space space space space space space space equals 0
therefore space Lt with straight x rightwards arrow straight a to the power of minus below space straight f left parenthesis straight x right parenthesis not equal to space Lt with straight x rightwards arrow straight a to the power of plus below space straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = a
    But a is any integral point.
    ∴ f is discontinuous at all integral points.

    Question 10
    CBSEENMA12034431

    Find all the points of discontinuity of the greatest integer function defined by f(x) = [x], where [x] denotes the greatest integer less than or equal to x.

    Solution

    Let f(x) = [ x ]. Df = R
    Let a be any real number ∈ Df.
    Two cases arise:
    Case I. If a is not an integer, then
    Lt with straight x rightwards arrow straight a below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight a below space left square bracket straight x right square bracket equals left square bracket straight a right square bracket equals straight f left parenthesis straight a right parenthesis
    ⇒ f is continuous at x = a

    Case II. If a ∈ 1, then f(a) = [ a ] = a and
    Lt with straight x rightwards arrow straight a to the power of minus below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of minus below left square bracket straight x right square bracket equals straight a minus 1
Lt with straight x rightwards arrow straight a to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a to the power of plus below space left square bracket straight x right square bracket equals straight a
therefore Lt with straight x rightwards arrow straight a to the power of minus below straight f left parenthesis straight x right parenthesis space not equal to Lt with straight x rightwards arrow straight a to the power of plus below space straight f left parenthesis straight x right parenthesis
    ∴ f is not continuous at x = a, a ∈ I.
    ∴ function is discontinuous at every integral point.

     

    Tips: -

    1. Domain of continuity for the function [x] is R – I.
     2. From the graph of [x], done in earlier class, it is also clear that [x] is discontinuous at integral points.

    Question 11
    CBSEENMA12034433

    Examine the continuity of
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 1 over denominator straight x plus 1 end fraction comma space straight x not equal to negative 1 end cell row cell space space minus 2 space space space space space comma space straight x equals negative 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 1 over denominator straight x plus 1 end fraction comma space straight x not equal to negative 1 end cell row cell space space minus 2 space space space space space comma space straight x equals negative 1 end cell end table close
space space space space space Lt with straight x rightwards arrow negative 1 below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow negative 1 below fraction numerator straight x squared minus 1 over denominator straight x plus 1 end fraction space space equals stack space Lt with straight x rightwards arrow negative 1 below fraction numerator left parenthesis straight x plus 1 right parenthesis left parenthesis straight x minus 1 right parenthesis over denominator straight x plus 1 end fraction equals space Lt with straight x rightwards arrow negative 1 below left parenthesis straight x minus 1 right parenthesis
space space space space space space space space space space space space space space space space space space space space space equals negative 1 minus 1 equals negative 2
Also space straight f left parenthesis negative 1 right parenthesis equals negative 2
therefore Lt with straight x rightwards arrow negative 1 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis negative 1 right parenthesis
    ∴  f(x) is continuous at x = – 1
    Question 12
    CBSEENMA12034434

    Show that the function f given by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x cubed plus 3 comma space if space straight x not equal to 0 end cell row cell 1 comma space space space space space space space space space if space straight x not equal to 0 end cell end table close
    is not continuous at x = 0.

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x cubed plus 3 comma space straight x not equal to 0 end cell row cell 1 space space space space space space space space comma space straight x equals 0 end cell end table close
space space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 below left parenthesis straight x cubed plus 3 right parenthesis equals left parenthesis 0 right parenthesis cubed plus 3 equals 0 plus 3 equals 3
    Also f is defined at x = 0
    and space straight f left parenthesis 0 right parenthesis equals 1
therefore space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals 1
    ∴ f is discontinuous at x = 0.
    Question 13
    CBSEENMA12034435

    find whether f is continuous at x = 1.
    space If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 1 over denominator straight x minus 1 end fraction comma space straight x not equal to 1 end cell row cell 2 space space space space space space space space space space space comma straight x equals 1 end cell end table close

    Solution
    Here space f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 1 over denominator straight x minus 1 end fraction comma space straight x not equal to 1 end cell row cell 2 space space space space space space space space space space space comma straight x equals 1 end cell end table close
therefore Lt with straight x rightwards arrow 1 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 below begin inline style fraction numerator straight x squared minus 1 over denominator straight x minus 1 end fraction end style equals space Lt with straight x rightwards arrow 1 below fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x plus 1 right parenthesis over denominator straight x minus 1 end fraction equals Lt with straight x rightwards arrow 1 below left parenthesis straight x plus 1 right parenthesis equals 1 plus 1
therefore Lt with straight x rightwards arrow 1 below space straight f left parenthesis straight x right parenthesis equals 2
Also space straight f left parenthesis 1 right parenthesis equals 2
therefore space Lt with straight x rightwards arrow 1 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis equals 2 comma space which space is space finite
    ∴  f is continuous at x = 1.
    Question 14
    CBSEENMA12034437

    find whether f is continuous at x = 3
    If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 9 over denominator straight x minus 3 end fraction comma space straight x not equal to 3 end cell row cell space space space space space space 6 space space space space space comma straight x equals 3 end cell end table close

    Solution
    Here space space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 9 over denominator straight x minus 3 end fraction comma space straight x not equal to 3 end cell row cell space space space space space 6 space space space space space space comma straight x equals 3 end cell end table close
Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 3 below fraction numerator straight x squared minus 9 over denominator straight x minus 3 end fraction equals Lt with straight x rightwards arrow 3 below fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x plus 3 right parenthesis over denominator straight x minus 3 end fraction Lt with straight x rightwards arrow 3 below left parenthesis straight x plus 3 right parenthesis
space space space space space space space space space space space space space space space space space equals 3 plus 3 plus equals 6
Also space straight f left parenthesis 3 right parenthesis equals 6
therefore space Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 3 right parenthesis equals 6 comma space which space is space finite
    ∴  f (x) is continuous at x = 3.
    Question 15
    CBSEENMA12034439

    Show that the function is continuous at x = 3.
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 7 straight x plus 12 over denominator straight x minus 3 end fraction comma space straight x space not equal to 3 end cell row cell space space space space space space space space space space minus 1 space space space space space space space space comma space straight x equals 3 end cell end table close

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus 7 straight x plus 12 over denominator straight x minus 3 end fraction comma space straight x space not equal to 3 end cell row cell space space space space space space space space space space minus 1 space space space space space space space space comma space straight x equals 3 end cell end table close
space Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 3 below space fraction numerator straight x squared minus 7 straight x plus 12 over denominator straight x minus 3 end fraction equals space Lt with straight x rightwards arrow 3 below space fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis over denominator straight x minus 3 end fraction equals space Lt with straight x rightwards arrow 3 below space left parenthesis straight x minus 4 right parenthesis equals 3 minus 4 equals negative 1
Also space straight f left parenthesis 3 right parenthesis equals negative 1
therefore space Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 3 right parenthesis equals negative 1 comma space which space is space infinite
    ∴ f(x) is continuous at x = 3.
    Question 16
    CBSEENMA12034441

    Discuss continuity of function at x = 2, where
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator 2 straight x squared 3 straight x minus 2 over denominator straight x minus 2 end fraction comma space straight x not equal to 2 end cell row cell space space space space space space space space space 3 space space space space space space space space space comma space straight x equals 2 end cell end table close

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator 2 straight x squared 3 straight x minus 2 over denominator straight x minus 2 end fraction comma space straight x not equal to 2 end cell row cell space space space space space space space space space 3 space space space space space space space space space comma space straight x equals 2 end cell end table close
space Lt with straight x rightwards arrow 2 below space straight f left parenthesis straight x right parenthesis space equals space Lt with straight x rightwards arrow 2 below space fraction numerator 2 straight x squared minus 3 straight x minus 2 over denominator straight x minus 2 end fraction equals space Lt with straight x rightwards arrow 2 below fraction numerator left parenthesis straight x minus 2 right parenthesis left parenthesis 2 straight x plus 2 right parenthesis over denominator straight x minus 2 end fraction equals space Lt with straight x rightwards arrow 2 below space left parenthesis 2 straight x plus 1 right parenthesis
space space space space space space space space space space space space space space space space space equals 4 plus 1 equals 5
Also space straight f left parenthesis 2 right parenthesis equals 3
therefore space Lt with straight x rightwards arrow 2 below space straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 2 right parenthesis
    ∴  f(x) is discontinuous at x = 2.
    Question 17
    CBSEENMA12034442

    A function f is defined as
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus straight x minus 6 over denominator straight x squared minus 2 straight x minus 3 end fraction comma space space straight x not equal to 3 end cell row cell space space space space space space space space space 5 over 3 space space space space space space space space comma space straight x equals 3 end cell end table close

    Prove that f is discontinuous at x = 3. Can the definition of f at x = 3 be modified so as to make it continuous there?

    Solution
    Here space space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x squared minus straight x minus 6 over denominator straight x squared minus 2 straight x minus 3 end fraction comma space space straight x not equal to 3 end cell row cell space space space space space 5 over 3 space space space space space space space space space space space comma space straight x equals 3 end cell end table close
space Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 3 below fraction numerator straight x squared minus straight x minus 6 over denominator straight x squared minus 2 straight x minus 3 end fraction space equals space Lt with straight x rightwards arrow 3 below space fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x plus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x plus 1 right parenthesis end fraction equals space Lt with straight x rightwards arrow 3 below fraction numerator straight x plus 2 over denominator straight x plus 1 end fraction equals fraction numerator 3 plus 2 over denominator 3 plus 1 end fraction equals 5 over 4
Now space space straight f left parenthesis 3 right parenthesis space equals 5 over 3
therefore space Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 3 right parenthesis
    ⇒ f(x) is discontinuous at x = 3.
    If f is modified as straight f left parenthesis straight x right parenthesis equals 5 over 4, when x = 3, then f will be continuous at x = 3.

    Sponsor Area

    Question 18
    CBSEENMA12034444

    Test the continuity of the function at x = 3, where
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space comma space space straight x not equal to 3 end cell row cell space space space space space space space 0 space space space space space space space space space comma space space straight x equals 3 end cell end table close

    Solution
    We have
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space comma space space straight x not equal to 3 end cell row cell space space space space space space 0 space space space space space space space space space space comma space space space straight x equals 3 end cell end table close
space Lt with straight x rightwards arrow 3 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 3 to the power of minus below fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space space space space space space space space space space space left square bracket Put space straight x equals 3 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 3 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 3 minus straight h minus 3 close vertical bar over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis 3 minus straight h minus 3 right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis negative straight h right parenthesis end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis negative straight h right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator straight h minus 3 end fraction equals fraction numerator 1 over denominator 0 minus 3 end fraction equals negative 1 third
Also space straight f left parenthesis 3 right parenthesis space equals 0
therefore space Lt with straight x rightwards arrow 3 to the power of minus below space straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 3 right parenthesis
    ∴ f(x) is discontinuous at x = 3.
    Question 19
    CBSEENMA12034445


    Is straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open square brackets straight x close square brackets minus 1 over denominator straight x minus 1 end fraction comma space straight x not equal to 1 end cell row cell space space space minus 1 space space space space space space comma space straight x equals 1 end cell end table close continous at x=1 ?

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open square brackets straight x close square brackets minus 1 over denominator straight x minus 1 end fraction comma space straight x not equal to 1 end cell row cell space space space minus 1 space space space space space space comma space straight x equals 1 end cell end table close
space Lt with straight x rightwards arrow 1 to the power of minus below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 1 to the power of minus below space fraction numerator open square brackets straight x close square brackets minus 1 over denominator straight x minus 1 end fraction space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open square brackets 1 minus straight h close square brackets minus 1 over denominator 1 minus straight h minus 1 end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator 0 minus 1 over denominator 0 minus straight h end fraction equals space Lt with straight h rightwards arrow 0 below 1 over straight h comma
    which does not exist
    ∴  f(x) is discontinuous at x = 1.
    Question 20
    CBSEENMA12034447

    Examine the continuity of
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction comma space if space straight x not equal to 0 end cell row cell space space space space 0 space space space comma space if space straight x equals 0 end cell end table close
space space space space space space space space space at space straight x equals 0

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction comma space if space straight x not equal to 0 end cell row cell space space space space 0 space space space comma space if space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 right square bracket space space space space space space space space space
space space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 to the power of minus below fraction numerator 0 plus straight h over denominator open vertical bar 0 plus straight h close vertical bar end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator open vertical bar straight h close vertical bar end fraction equals space Lt with straight h rightwards arrow 0 below space straight h over straight h space equals space Lt with straight h rightwards arrow 0 below space space space 1 equals 1
therefore space Lt with straight x rightwards arrow 0 to the power of minus below space straight f left parenthesis straight x right parenthesis space not equal to space Lt with straight x rightwards arrow 0 to the power of plus below
therefore straight f space is space continous space at space straight x equals 0. space space space space space space space
    Question 21
    CBSEENMA12034451

    Examine the  continuity of 
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus straight a close vertical bar over denominator straight x minus straight a end fraction space space space space space space straight x not equal to straight a end cell row cell space space space space space space space space 1 space space space space space space space space space space space straight x equals straight a end cell end table close space at space space straight x equals straight a

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus straight a close vertical bar over denominator straight x minus straight a end fraction space space space space space space straight x not equal to straight a end cell row cell space space space space space space space space 1 space space space space space space space space space space space straight x equals straight a end cell end table close
space Lt with straight x rightwards arrow straight a to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of minus below fraction numerator open vertical bar straight x minus straight a close vertical bar over denominator straight x minus straight a end fraction space left square bracket Put space straight x equals straight a minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight a minus straight h minus straight a close vertical bar over denominator straight a minus straight h minus straight a end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar over denominator negative straight h end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator negative straight h end fraction equals negative 1
space Lt with straight x rightwards arrow straight a to the power of plus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of plus below fraction numerator open vertical bar straight x minus straight a close vertical bar over denominator straight x minus straight a end fraction space left square bracket Put space straight x equals straight a plus straight h comma space straight h greater than space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight a plus straight h minus straight a close vertical bar over denominator straight a plus straight h minus straight a end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight h close vertical bar over denominator straight h end fraction equals space Lt with straight h rightwards arrow 0 below straight h over straight h equals 1
Also space straight f left parenthesis straight a right parenthesis equals 1
therefore space Lt with straight x rightwards arrow straight a to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of plus below space
    ∴ f  is continuous at x = a.
    Question 22
    CBSEENMA12034452
    Question 23
    CBSEENMA12034453
    Question 24
    CBSEENMA12034454

     Test the continuity of the function f(x) at the origin :
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction comma space space space space straight x not equal to 0 end cell row cell space space space 1 space space space space comma space space space space straight x equals 0 end cell end table close

    Solution

    Solution not provided.

    Question 26
    CBSEENMA12034456

    Prove that the function
    straight f left parenthesis straight x right parenthesis open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar plus 2 straight x squared end fraction comma space straight x not equal to 0 end cell row cell space space space space space space space space space straight k space space space space space space space comma space straight x equals 0 end cell end table close
    remains discontinuous at x = 0, regardless of the choice of k.

    Solution
    Here space straight f left parenthesis straight x right parenthesis open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar plus 2 straight x squared end fraction comma space straight x not equal to 0 end cell row cell space space space space space space space space space straight k space space space space space space space comma space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight x over denominator open vertical bar straight x close vertical bar plus 2 straight x squared end fraction space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 to the power of minus right square bracket
space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 0 minus straight h over denominator open vertical bar 0 minus straight h close vertical bar plus 2 left parenthesis 0 minus straight h right parenthesis squared end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator negative straight h over denominator straight h plus 2 straight h squared end fraction equals Lt with straight h rightwards arrow 0 below minus fraction numerator straight h over denominator 1 plus 2 straight h end fraction equals negative fraction numerator 1 over denominator 1 plus 0 end fraction equals negative 1
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight x over denominator open vertical bar straight x close vertical bar plus 2 straight x squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 0 plus straight h close vertical bar over denominator open vertical bar 0 plus straight h close vertical bar plus 2 left parenthesis 0 plus straight h right parenthesis squared end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator straight h plus 2 straight h squared end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator 1 plus 2 straight h end fraction equals fraction numerator 1 over denominator 1 plus 0 end fraction equals 1
therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis
rightwards double arrow space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis space does space not space exist
    ⇒ f(x) is discontinuous whatever k may be.
    Question 28
    CBSEENMA12034462

    Discuss continuity of the function f given by

    f(x) = | x – 1| + | x – 2 ] at x = 1 and x = 2.

    Solution
    Here space straight f left parenthesis straight x equals open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below open parentheses open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar close parentheses space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 right square bracket
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below open parentheses open vertical bar 1 minus straight h plus 1 close vertical bar plus open vertical bar 1 minus straight h minus 2 close vertical bar close parentheses
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar negative straight h close vertical bar plus open vertical bar negative 1 minus straight h close vertical bar right parenthesis
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals left parenthesis straight h plus 1 plus straight h right parenthesis equals 0 plus 1 equals 1
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 plus straight h minus 1 close vertical bar plus open vertical bar 1 plus straight h minus 2 close vertical bar equals Lt with straight x rightwards arrow 0 below left parenthesis open vertical bar straight h close vertical bar plus open vertical bar left parenthesis 1 minus straight h right parenthesis close vertical bar right parenthesis
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis straight h plus 1 minus straight h right parenthesis equals Lt with straight h rightwards arrow 0 below 1 equals 1
    Also space straight f left parenthesis 1 right parenthesis equals open vertical bar 1 minus 1 close vertical bar plus open vertical bar 1 minus 2 close vertical bar equals 0 plus 1 equals 1
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
therefore straight f space is space continous space at space straight x equals 1.
    ∴ f is continuous at .x = 1
    space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x plus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 2 minus straight h minus 1 close vertical bar plus open vertical bar 2 minus straight h minus 2 close vertical bar right parenthesis equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 minus straight h close vertical bar plus open vertical bar negative straight h close vertical bar right parenthesis
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 1 minus straight h plus straight h right parenthesis equals 1 minus 0 plus 0 equals 1
space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets open vertical bar 2 plus straight h minus 1 close vertical bar plus open vertical bar 2 plus straight h minus 2 close vertical bar close curly brackets equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 plus straight h close vertical bar plus open vertical bar straight h close vertical bar right parenthesis
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 1 plus straight h plus straight h right parenthesis equals 1 plus 0 plus 0 equals 1
    Also space straight f left parenthesis 2 right parenthesis equals open vertical bar 2 minus 1 close vertical bar plus open vertical bar 2 minus 2 close vertical bar equals 1 plus 0 equals 1
therefore Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis
    ∴ f is continuous at x = 2.
    Question 29
    CBSEENMA12034464

    Discuss the continuity or otherwise of the function f(x) defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin 3 straight x over denominator straight x end fraction comma space straight x not equal to 0 end cell row cell space space space space 1 space space space space space space comma space straight x equals 0 end cell end table close space
at space straight x equals 0

    Solution
    We space have space space
space space space space space space space space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space 3 straight x over denominator straight x end fraction comma space straight x not equal to 0 end cell row cell space space space space 1 space space space space space space comma space straight x equals 0 end cell end table close space
space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below fraction numerator sin space 3 straight x over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 below open square brackets 3. fraction numerator sin space 3 straight x over denominator 3 straight x end fraction close square brackets equals 3 Lt with straight x rightwards arrow 0 below fraction numerator sin space 3 straight x over denominator 3 straight x end fraction equals 3 cross times 1 equals 3
But space space straight f left parenthesis 0 right parenthesis equals 1
therefore Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 0 right parenthesis
    ⇒ f is not continuous at x = 0
    Question 31
    CBSEENMA12034467

    Discuss continuity of f(x) at x = 0, if
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator square root of 1 plus straight x minus end root square root of 1 minus straight x end root over denominator sin space straight x end fraction comma space if space space straight x not equal to 0 end cell row cell space space space space space space space space space space space space 1 space space space space space space space space space space space space space space space space space space comma space if space straight x equals 0 end cell end table close

    Solution
    Put space sin to the power of negative 1 space end exponent straight x equals straight theta space or space straight x equals sin space straight theta space so space that space straight theta rightwards arrow 0
space space therefore Lt with straight x rightwards arrow 0 below open square brackets fraction numerator square root of 1 plus straight x end root minus square root of 1 minus straight x end root over denominator sin to the power of negative 1 end exponent end fraction close square brackets equals Lt with straight theta rightwards arrow 0 below open square brackets fraction numerator square root of 1 plus sin space straight theta end root minus square root of 1 minus sin space straight theta end root over denominator straight theta end fraction close square brackets
equals Lt with straight theta rightwards arrow 0 below open square brackets fraction numerator square root of cos squared straight theta over 2 plus sin squared space straight theta over 2 plus 2 sin straight theta over 2 cos straight theta over 2 end root minus square root of cos squared begin display style straight theta over 2 end style plus sin squared begin display style straight theta over 2 end style minus 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style end root over denominator straight theta end fraction close square brackets
equals Lt with straight theta rightwards arrow 0 below open square brackets square root of fraction numerator open parentheses cos straight theta over 2 plus sin straight theta over 2 close parentheses squared minus square root of open parentheses cos straight theta over 2 minus sin straight theta over 2 close parentheses squared end root over denominator straight theta end fraction end root close square brackets
equals Lt with straight theta rightwards arrow 0 below open square brackets fraction numerator open parentheses cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style close parentheses minus open parentheses cos begin display style straight theta over 2 end style minus sin begin display style straight theta over 2 end style close parentheses over denominator straight theta end fraction close square brackets
space space space space space space space space space space space equals Lt with straight theta rightwards arrow 2 below fraction numerator 2 sin begin display style straight theta over 2 end style over denominator straight theta end fraction equals Lt with straight theta over 2 rightwards arrow 0 below open curly brackets fraction numerator sin begin display style straight theta over 2 end style over denominator begin display style straight theta over 2 end style end fraction close curly brackets equals 1
Also space straight f left parenthesis 0 right parenthesis equals 1
therefore space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f is continuous at x = 0.
    Question 32
    CBSEENMA12034469

    Determine if f is defined by
     straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x squared space sin 1 over straight x comma space straight x not equal to 0 end cell row cell space space 0 space space space space space comma space straight x equals 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x squared space s i n 1 over straight x comma space straight x not equal to 0 end cell row cell space space 0 space space space space space comma space straight x equals 0 end cell end table close
space stack Lt space space space with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of minus below open parentheses straight x squared sin 1 half close parentheses space space space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals space Lt with straight x rightwards arrow 0 below open curly brackets left parenthesis 0 minus straight h right parenthesis squared space sin 1 over straight h close curly brackets equals space Lt with straight x rightwards arrow 0 below straight h squared sin 1 over straight h
space space space space space space space space space space space space space space space space space equals 0 space space space space space space space space space space space space space space space space space space space space space open square brackets because space Lt with straight h rightwards arrow 0 below straight h squared equals 0 space and space sin 1 over straight h space is space bounded space in space deleted space nbd space of space 0 close square brackets
space stack space Lt with space space straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of plus below space straight x squared sin 1 over straight x equals space Lt with straight h rightwards arrow 0 below open curly brackets open parentheses 0 plus straight h close parentheses squared space sin fraction numerator 1 over denominator 0 plus straight h end fraction close curly brackets equals space Lt with straight x rightwards arrow 0 below straight h squared space sin 1 over straight h equals 0
Also space straight f left parenthesis 0 right parenthesis
space space Lt with straight x rightwards arrow 0 to the power of minus below space straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals space straight f left parenthesis 0 right parenthesis
    ∴ f(x) is continuous at x = 0
    Question 33
    CBSEENMA12034471

    Determine if f define by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction plus space cos space straight x comma space straight x not equal to 0 end cell row cell space space space space space space space space space space 2 space space space space space comma space straight x equals 0 end cell end table close
at space straight x equals 0

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction plus space cos space straight x comma space straight x not equal to 0 end cell row cell space space space space space space space space space space 2 space space space space space space space space space space space space space space comma space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below open parentheses fraction numerator sin space straight x over denominator straight x end fraction plus space cos space straight x close parentheses equals Lt with straight x rightwards arrow 0 below fraction numerator sin space straight x over denominator straight x end fraction plus Lt with straight x rightwards arrow 0 below c os space straight x equals 1 plus 1 equals 2
Also space straight f left parenthesis 0 right parenthesis equals 2
therefore Lt with straight x rightwards arrow 0 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis equals 2 comma space which space is space finite
therefore space straight f left parenthesis straight x right parenthesis space is space contionus space at space straight x equals 0.
    Question 34
    CBSEENMA12034474

    Determine if f is definend by
    straight f left parenthesis straight x 0 right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell xsin 1 over straight x comma space straight x not equal to 0 end cell row cell space space 0 space space space space comma space straight x equals 0 end cell end table close

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell xsin 1 over straight x comma space straight x not equal to 0 end cell row cell space space 0 space space space space comma space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of minus below straight x space sin 1 over straight x space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below left parenthesis negative straight h right parenthesis sin open parentheses fraction numerator 1 over denominator 0 minus straight h end fraction close parentheses equals space Lt with straight x rightwards arrow 0 below left parenthesis negative straight h right parenthesis sin open parentheses negative 1 over straight h close parentheses
space space space space space space space space equals Lt with straight x rightwards arrow 0 below left parenthesis negative straight h right parenthesis open parentheses negative sin 1 over straight h close parentheses equals Lt with straight x rightwards arrow below space straight h space sin 1 over straight h equals 0
space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because Lt with straight x rightwards arrow 0 below straight h equals 0 space and space sin 1 over straight h space is space bounded space as space open vertical bar sin 1 over straight h close vertical bar less or equal than 1 end cell row cell therefore Lt with straight x rightwards arrow 0 below straight h space sin 1 over straight h equals 0 space as space we space know space that end cell row cell because Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis space straight g left parenthesis straight x right parenthesis equals 0 space if space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals 0 space and space straight g left parenthesis straight x right parenthesis space is space bounded end cell end table close square brackets
    Agian space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 plus below straight x space sin 1 over straight x space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space equals Lt with straight x rightwards arrow 0 below left parenthesis 0 plus straight h right parenthesis. sin open parentheses fraction numerator 1 over denominator 0 plus straight h end fraction close parentheses equals Lt with straight x rightwards arrow 0 below straight h space sin 1 over straight h equals 0 space space left square bracket As space expalained space above right square bracket
Also space straight f left parenthesis 0 right parenthesis equals 0
therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ⇒ f is continuous at x = 0.
    Question 35
    CBSEENMA12034476

    Find all points of continuity of f, where
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction comma space straight x less than 0 end cell row cell space straight x plus 1 space comma space straight x greater or equal than 0 end cell end table close
at space straight x equals 0


    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction comma space straight x less than 0 end cell row cell space straight x plus 1 space comma space straight x greater or equal than 0 end cell end table close
Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin space straight x over denominator straight x end fraction space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below fraction numerator sin left parenthesis 0 minus straight h right parenthesis over denominator 0 minus straight h end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator negative sin space straight h over denominator negative straight h end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator sin space straight h over denominator straight h end fraction equals 1
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis straight x plus 1 right parenthesis space space space space space space space right square bracket Put space straight x equals 0 plus straight h comma space straight h rightwards arrow 0 right square bracket
space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below left parenthesis 0 plus straight h plus 1 right parenthesis equals Lt with straight x rightwards arrow 0 below left parenthesis straight h plus 1 right parenthesis equals 0 plus 1 equals 1

    Also f(0) = value of (x +1) at x = 0
    = 0 + 1 = 1
    therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f (x) is continuous at x = 0.

    Question 36
    CBSEENMA12034477
    Question 37
    CBSEENMA12034479

    If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell open vertical bar straight x close vertical bar sin 1 over straight x comma space if space straight x not equal to 0 end cell row cell space space space space space space space 0 comma space space space space space if space straight x equals 0 end cell end table close
    then discuss continuity of f(x) at x = 0.

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell open vertical bar straight x close vertical bar sin 1 over straight x comma space if space straight x not equal to 0 end cell row cell space space space space space space space 0 comma space space space space space if space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below open vertical bar straight x close vertical bar sin 1 over straight x
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below open vertical bar 0 minus straight h close vertical bar space sin fraction numerator 1 over denominator 0 minus straight h end fraction
space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below straight h space sin 1 over straight h equals 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because Lt with straight x rightwards arrow 0 below straight h equals 0 and space sin 1 over straight h is space bounded space function space as space open vertical bar sin space 1 over straight h close vertical bar less or equal than 1 end cell row cell therefore Lt with straight h rightwards arrow 0 below straight h space sin 1 over straight h equals 0 space as space we space know space that space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis straight g left parenthesis straight x right parenthesis equals 0 end cell row cell if space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals 0 space and space straight g left parenthesis straight x right parenthesis space is space bounded space in space deleted space straight n space straight b space straight d space of space 0. end cell end table close square brackets
    space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below open vertical bar straight x close vertical bar space sin 1 over straight x space left square bracket Putting space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below open vertical bar 0 plus straight h close vertical bar sin fraction numerator 1 over denominator 0 plus straight h end fraction equals Lt with straight h rightwards arrow 0 below straight h space sin 1 over straight h equals 0 space space space space left square bracket As space explained space above right square bracket
Also space straight f left parenthesis 0 right parenthesis equals 0
therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f(x) is continuous at x = 0.
     
    Question 38
    CBSEENMA12034481

    Discuss the continuity at x = 0 of the function

    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell open vertical bar straight x close vertical bar space cos 1 over straight x comma space straight x equals 0 end cell row cell space space space space space space 0 space space space space comma space straight x equals 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell open vertical bar straight x close vertical bar space cos 1 over straight x comma space straight x equals 0 end cell row cell space space space space space space 0 space space space space comma space straight x equals 0 end cell end table close
Lt with straight x rightwards arrow 0 to the power of minus below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below open vertical bar straight x close vertical bar cos 1 over straight x space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space equals Lt with straight x rightwards arrow 0 below open vertical bar 0 minus straight h close vertical bar cos fraction numerator 1 over denominator 0 minus straight h end fraction
space space space space space space space space space equals Lt with straight h rightwards arrow 0 below straight h space cos 1 over straight h equals 0
space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because Lt with straight x rightwards arrow 0 below straight h equals 0 and space cos 1 over straight h is space bounded space function space as space open vertical bar cos space 1 over straight h close vertical bar less or equal than 1 end cell row cell therefore Lt with straight h rightwards arrow 0 below straight h space cos 1 over straight h equals 0 space as space we space know space that space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis straight g left parenthesis straight x right parenthesis equals 0 end cell row cell if space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals 0 space and space straight g left parenthesis straight x right parenthesis space is space bounded space in space deleted space straight n space straight b space straight d space of space 0. end cell end table close square brackets
Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below open vertical bar straight x close vertical bar cos 1 over straight x
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Puttting space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space and space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open vertical bar 0 plus straight h close vertical bar cos space fraction numerator 1 over denominator 0 plus straight h end fraction equals Lt with straight h rightwards arrow 0 below straight h space cos 1 over straight h equals 0 space space left square bracket As space expalined space above right square bracket
Also space straight f left parenthesis 0 right parenthesis equals 0
therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴f (x) is continuous at x = 0.
    Question 39
    CBSEENMA12034489

    Show that the function
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight e to the power of 1 over straight x end exponent minus 1 over denominator straight e to the power of begin display style 1 over straight x plus 1 end style end exponent end fraction comma space straight x not equal to 0 end cell row cell space space space space space space 0 space space space space space space space comma space straight x equals 0 end cell end table close
    is discontinous at x=0.

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight e to the power of 1 over straight x end exponent minus 1 over denominator straight e to the power of begin display style 1 over straight x plus 1 end style end exponent end fraction comma space straight x not equal to 0 end cell row cell space space space space space space 0 space space space space space space space comma space straight x equals 0 end cell end table close
Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight e to the power of 1 over straight x end exponent minus 1 over denominator straight e to the power of 1 over straight x end exponent plus 1 end fraction space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator straight e to the power of begin display style 1 over straight h end style end exponent minus 1 over denominator straight e to the power of 1 over straight h end exponent plus 1 end fraction equals fraction numerator 0 minus 1 over denominator 0 plus 1 end fraction space space space space space space space space space space space space space space space space space space space open square brackets because straight e to the power of negative 1 over straight h rightwards arrow 0 space as space straight h rightwards arrow 0 end exponent close square brackets
space space space space space space space space space space space space space space space equals negative 1
    Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight e to the power of begin display style 1 over straight x end style end exponent minus 1 over denominator straight e to the power of 1 over straight x end exponent plus 1 end fraction space space space space space space space space space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator straight e to the power of begin display style 1 over straight h end style end exponent minus 1 over denominator straight e to the power of 1 over straight h end exponent plus 1 end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator begin display style straight e to the power of begin display style 1 over straight h end style end exponent over straight e to the power of begin display style 1 over straight h end style end exponent end style minus begin display style 1 over straight e to the power of begin display style 1 over straight h end style end exponent end style over denominator straight e to the power of begin display style 1 over straight h end style end exponent over straight e to the power of begin display style 1 over straight h end style end exponent plus 1 over straight e to the power of begin display style 1 over straight h end style end exponent end fraction equals fraction numerator 1 minus straight e to the power of negative begin display style 1 over straight h end style end exponent over denominator 1 plus straight e to the power of negative 1 over straight h end exponent end fraction
space space space space space space space space space space space space space space space space equals fraction numerator 1 minus 0 over denominator 1 plus 0 end fraction space space space space space space space space space space space space space space space space space space space open square brackets because straight e to the power of negative 1 over straight h end exponent rightwards arrow 0 space as space straight h rightwards arrow 0 close square brackets space space
therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis
rightwards double arrow space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis space does space not space exist
    ⇒ f(x) is discontinuous at x = 0.

    Sponsor Area

    Question 40
    CBSEENMA12034491

    Let space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell table row cell 2 straight x end cell end table if space straight x less than 2 end cell row cell table row cell 2 space if space straight x equals 2 end cell row cell straight x squared space if space straight x greater than 2 end cell end table end cell end table close
    Show that 2 is a removable discontinuity of f.

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell table row cell 2 straight x end cell end table if space straight x less than 2 end cell row cell table row cell 2 space if space straight x equals 2 end cell row cell straight x squared space if space straight x greater than 2 end cell end table end cell end table close
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below 2 straight x space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 space si space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of minus right square bracket
space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets 2 left parenthesis 2 minus straight h right parenthesis close curly brackets equals Lt with straight h rightwards arrow 0 below left parenthesis 4 minus 2 straight h right parenthesis equals 4 minus 0 equals 4
space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight x squared space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 plus straight h comma space straight h greater than 0 space si space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of plus right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 2 plus straight h right parenthesis squared equals Lt with straight h rightwards arrow 0 below left parenthesis 4 plus 4 straight h plus straight h squared right parenthesis equals 4 plus 0 plus 0 equals 4
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals 4 space space space space space space space rightwards double arrow space Lt with straight x rightwards arrow 2 below straight f left parenthesis straight x right parenthesis equals 4
But space space space space straight f left parenthesis 2 right parenthesis equals 2 space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space Lt with straight x rightwards arrow 2 below straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 2 right parenthesis
    ∴ f is discontinuous at x = 2 and this discontinuity is removable discontinuity due to the fact that if we take f (2) = 4, f becomes continuous.
    Question 41
    CBSEENMA12034494

    The function straight f left parenthesis straight x right parenthesis equals fraction numerator log left parenthesis 1 plus ax right parenthesis minus log left parenthesis 1 minus bx right parenthesis over denominator straight x end fractionis not defined at x = 0. Find the value of/(x) so that f is continuous at x = 0.

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals fraction numerator log left parenthesis 1 plus ax right parenthesis minus log left parenthesis 1 minus bx right parenthesis over denominator straight x end fraction
space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below fraction numerator log left parenthesis 1 plus ax right parenthesis minus log left parenthesis 1 minus bx right parenthesis over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator log left parenthesis 1 plus ax right parenthesis over denominator straight x end fraction minus bold Lt with bold x bold rightwards arrow bold 0 below fraction numerator bold log bold left parenthesis bold 1 bold minus bold bx bold right parenthesis over denominator bold x end fraction
space space space space space space space space space space space space space equals straight a space Lt with straight x rightwards arrow 0 below 1 over ax log left parenthesis 1 plus ax right parenthesis minus straight b. Lt with straight x rightwards arrow 0 below 1 over bx log left parenthesis 1 minus bx right parenthesis
space space space space space space space space space space space space space equals straight a space Lt with straight x rightwards arrow 0 below log left parenthesis 1 plus ax right parenthesis to the power of 1 over ax end exponent plus straight b. Lt with straight x rightwards arrow 0 below log left parenthesis 1 minus bx right parenthesis to the power of negative 1 over bx end exponent
space space space space space space space space space space space space space equals straight a space log space straight e plus straight b space log space straight e equals straight a plus straight b
    For f(x) to be continuous at x = 0, we have
    straight f left parenthesis 0 right parenthesis equals Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis space space space space space space space straight i. straight e. comma space straight f left parenthesis 0 right parenthesis equals straight a plus straight b
therefore space function space must space be space defined space as space
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator log left parenthesis 1 plus ax right parenthesis minus log left parenthesis 1 minus bx right parenthesis over denominator straight x end fraction comma space straight x not equal to 0 end cell row cell space space space space space space space space space space space space straight a plus straight b comma space space space space space space space space space space space space space space space straight x equals 0 end cell end table close
    Question 42
    CBSEENMA12034497
    Question 43
    CBSEENMA12034500

    Discuss continuity of f(x) at x = 0, if
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 1 over straight x plus fraction numerator log left parenthesis 1 minus straight x right parenthesis over denominator straight x squared end fraction comma space space if space straight x not equal to 0 end cell row cell space space space space space space space space minus 1 half space space space space space space space space space space space space space comma space if space straight x equals 0 end cell end table close

    Solution
    Syntax error from line 1 column 1555 to line 1 column 1658. Unexpected '<mlongdiv '.
    ∴   f is continuous at x = 0.
     
    Question 44
    CBSEENMA12034502

    Discuss continuity of f(x) at x = 0, if
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight e to the power of straight x minus 1 minus straight x over denominator straight x squared end fraction comma space if space straight x not equal to end cell row cell space space space space space space 1 half space space space space space space space space space comma space if space straight x equals 0 end cell end table close

    Solution
    Syntax error from line 1 column 1221 to line 1 column 1324. Unexpected '<mlongdiv '.
    ∴  f is continuous at x = 0.
    Question 45
    CBSEENMA12034503
    Question 46
    CBSEENMA12034506
    Question 48
    CBSEENMA12034512
    Question 49
    CBSEENMA12034513
    Question 52
    CBSEENMA12034516

    Find k so thatstraight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space kx over denominator straight x end fraction space comma space straight x not equal to 0 end cell row cell space 4 plus straight x space space space space space comma space straight x equals 0 end cell end table close

    is continuous at x = 0.

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space kx over denominator straight x end fraction space comma space straight x not equal to 0 end cell row cell space 4 plus straight x space space space space space comma space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below open parentheses fraction numerator sin space kx over denominator kx end fraction cross times straight k close parentheses equals straight k space Lt with straight x rightwards arrow 0 below fraction numerator sin space kx over denominator kx end fraction equals straight k cross times 1 equals straight k
    Also f(0)=Value of (4+x) at x=0
    therefore space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
therefore space space space space space space space straight k equals 4
    Question 53
    CBSEENMA12034517
    Question 54
    CBSEENMA12034518
    Question 57
    CBSEENMA12034523
    Question 60
    CBSEENMA12034529
    Question 62
    CBSEENMA12034535

    Find the value of a and b so that the function f given by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 1 space space space comma space space space space space straight x less or equal than 3 end cell row cell ax plus straight b comma space space space space 3 less than straight x less than 5 end cell row cell 7 space space space comma space space space space straight x greater or equal than 5 end cell end table close
    is continous at x=3 and x=5

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 1 space space space comma space space space space space straight x less or equal than 3 end cell row cell ax plus straight b comma space space space space 3 less than straight x less than 5 end cell row cell 7 space space space comma space space space space straight x greater or equal than 5 end cell end table close
    ∵ f is continuous at x = 3 and x = 5

    ∴ f is right continuous at x = 3 and left continuous at x = 5

    therefore space Lt with straight x rightwards arrow 3 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 3 right parenthesis space space space space space space space space space space space rightwards double arrow space 3 straight a plus straight b equals 1 space space space space space space space.... left parenthesis 1 right parenthesis
space Lt with straight x rightwards arrow 5 to the power of minus below space space space space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 5 right parenthesis space space space space space space space space space space space space rightwards double arrow space 5 straight a plus straight b equals 7 space space space space space space space.... left parenthesis 2 right parenthesis

    Subtracting (2) from (1), we get,
    – 2 a = – 6,    ⇒ a = 3
    Putting a = 3 in (1) we get,
    3 x 3 + b = 1,    ⇒ b = – 8
    ∴ a = 3, b = –8.

    Question 63
    CBSEENMA12034537

    If the function straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell space space space 3 ax plus straight b space space if space straight x greater than 1 end cell row cell space space space space space space 11 space space space space space space space space if space straight x equals 1 end cell row cell space space 5 ax minus 2 straight b space space if space straight x less than 1. end cell end table close
    is continous at x=1, find the values of a and b.

    Solution
    We space have
straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell space space space 3 ax plus straight b space space if space straight x greater than 1 end cell row cell space space space space space space 11 space space space space space space space space if space straight x equals 1 end cell row cell space space 5 ax minus 2 straight b space space if space straight x less than 1. end cell end table close
therefore straight f left parenthesis 1 right parenthesis equals 11
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below left parenthesis 5 ax minus 2 straight b right parenthesis space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below open curly brackets 5 straight a left parenthesis 1 minus straight h right parenthesis minus 2 straight b close curly brackets equals 5 straight a left parenthesis 1 minus 0 right parenthesis minus 2 straight b equals 5 straight a minus 2 straight b
Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below open parentheses 3 ax plus straight b close parentheses space space left square bracket put space straight x equals 1 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of plus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets 3 straight a left parenthesis 1 plus straight h right parenthesis plus straight b close curly brackets equals 3 straight a left parenthesis 1 plus 0 right parenthesis plus straight b equals 3 straight a plus straight b
Since space straight f left parenthesis straight x right parenthesis space is space continous space at space straight x equals 1
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ 5a – 2b = 3 a + b = 11
    ∴5a – 2b = 11    ...(1)
    3a + b =11    ...(2)
    Multiplying (1) by 1 and (2) by 2 , we get,
    5a – 2b = 11
    6a + 2b = 22
    Adding these two equation, we get,
    11 a = 33 ⇒ a = 3
    ∴ from (1), 15 – 2b = 11 ⇒ 2b = 4
    ∴ b = 2
    ∴ we have a = 3, b = 2.
    Question 64
    CBSEENMA12034539

    For what value of k is the following function continuous at x = 2?
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell table row cell 2 straight x plus 1 comma space space space space straight x less than 2 end cell row cell space space space straight k space space space space comma space space space space space space straight x equals 2 end cell end table end cell row cell space 3 straight x minus 1 comma space space space space space straight x greater than 2 end cell end table close

    Solution
    We space have
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell table row cell 2 straight x plus 1 comma space space space space straight x less than 2 end cell row cell space space space straight k space space space space comma space space space space space space straight x equals 2 end cell end table end cell row cell space 3 straight x minus 1 comma space space space space space straight x greater than 2 end cell end table close
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis 2 straight x plus 1 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of minus right square bracket
equals Lt with straight h rightwards arrow 0 below open curly brackets 2 left parenthesis 2 minus straight h right parenthesis plus 1 close curly brackets
equals Lt with straight h rightwards arrow 0 below left parenthesis 4 minus 2 straight h plus 1 right parenthesis equals 4 minus 0 plus 1 equals 5
space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below left parenthesis 3 straight x minus 1 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of plus right square bracket
equals Lt with straight x rightwards arrow 0 below open curly brackets 3 left parenthesis 2 plus straight h right parenthesis minus 1 close curly brackets
equals Lt with straight x rightwards arrow 0 below left parenthesis 6 plus 3 straight h minus 1 right parenthesis equals 6 plus 0 minus 1 equals 5
Since space straight f space is space continous space at space straight x equals 2.
    ∴ 5 = 5 = k ⇒ k = 5.
    Question 65
    CBSEENMA12034540

    Given that
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell fraction numerator 1 minus cos space 4 straight x over denominator straight x squared end fraction space space space space space space space space space space comma space if space straight x less than 0 end cell row cell space space space space space space straight a space space space space space space space space space space space space space space space space space space space space space space space comma space if space straight x equals 0 end cell row cell fraction numerator square root of straight x over denominator square root of 16 plus square root of straight x end root minus 4 end fraction space space comma space if space straight x greater than 0 end cell end table close
    If f(x) is continous at x=0, find the value of a.

    Solution
    We space have
straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell fraction numerator 1 minus cos space 4 straight x over denominator straight x squared end fraction space space space space space space space space space space comma space if space straight x less than 0 end cell row cell space space space space space space straight a space space space space space space space space space space space space space space space space space space space space space space space comma space if space straight x equals 0 end cell row cell fraction numerator square root of straight x over denominator square root of 16 plus square root of straight x end root minus 4 end fraction space space comma space if space straight x greater than 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator 1 minus cos space 4 straight x over denominator straight x squared end fraction space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 1 minus cos left parenthesis negative 4 straight h right parenthesis over denominator left parenthesis negative straight h right parenthesis squared end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator 1 minus cos space 4 straight h over denominator straight h squared end fraction
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 2 sin squared 2 straight h over denominator straight h squared end fraction equals 8 space Lt with straight h rightwards arrow 0 below open parentheses fraction numerator sin space 2 straight h over denominator 2 straight h end fraction close parentheses squared equals 8 left parenthesis 1 right parenthesis squared equals 8
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x over denominator square root of 16 plus square root of straight x end root minus 4 end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x over denominator square root of 16 plus square root of straight x end root minus 4 end fraction cross times fraction numerator square root of 16 plus square root of straight x end root plus 4 over denominator square root of 16 plus square root of straight x end root plus 4 end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x open parentheses square root of 16 plus square root of straight x end root minus 4 close parentheses over denominator left parenthesis 16 plus square root of straight x right parenthesis minus 16 end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x open parentheses square root of 16 plus square root of straight x end root plus 4 close parentheses over denominator square root of straight x end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of plus below open parentheses square root of 16 plus square root of straight x end root minus 4 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of plus below open parentheses square root of 16 plus square root of straight x end root minus 4 close parentheses equals square root of 16 plus 0 end root plus 4 equals 4 plus 4 equals 8

    Also f(0) = a
    Since f(x) is continuous at x = 0
    therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
therefore space space space space space space space space space space space 8 equals 8 equals straight a
rightwards double arrow space space space space space space space space space space straight a equals 8

    Question 66
    CBSEENMA12034542

     Determine the value of a, by c for which the functions
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x plus sin space straight x over denominator straight x end fraction space space space comma space straight x less than 0 end cell row cell space space space space space space space space space space space space space space space space space space space space straight c space space space space space space space space space space space space space space space comma space straight x equals 0 end cell row cell fraction numerator square root of straight x plus bx squared end root minus square root of straight x over denominator bx to the power of begin display style 3 over 2 end style end exponent end fraction space space space space space space space comma space straight x greater than 0 end cell end table close
    is continous at x=0.

    Solution
    We space have
straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x plus sin space straight x over denominator straight x end fraction space space space comma space straight x less than 0 end cell row cell space space space space space space space space space space space space space space space space space space space space straight c space space space space space space space space space space space space space space space comma space straight x equals 0 end cell row cell fraction numerator square root of straight x plus bx squared end root minus square root of straight x over denominator bx to the power of begin display style begin inline style bevelled 3 over 2 end style end style end exponent end fraction space space space space space space space comma space straight x greater than 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x plus sin space straight x over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x over denominator straight x end fraction plus space Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin space straight x over denominator straight x end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x over denominator left parenthesis straight a plus 1 right parenthesis straight x end fraction. left parenthesis straight a plus 1 right parenthesis plus space Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin space straight x over denominator straight x end fraction equals 1. left parenthesis straight a plus 1 right parenthesis plus 1 equals straight a plus 2
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x plus bx squared end root minus square root of straight x over denominator bx to the power of begin display style bevelled 3 over 2 end style end exponent end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator square root of straight x plus bx squared end root minus square root of straight x over denominator bx to the power of bevelled 3 over 2 end exponent end fraction cross times fraction numerator square root of straight x plus bx squared end root plus square root of straight x over denominator square root of straight x plus bx squared end root plus square root of straight x end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator left parenthesis straight x plus bx squared right parenthesis minus straight x over denominator bx to the power of bevelled 3 over 2 end exponent open parentheses square root of straight x plus bx squared end root minus square root of straight x close parentheses end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator bx squared over denominator bx to the power of bevelled 3 over 2 end exponent open parentheses square root of straight x plus bx squared end root minus square root of straight x close parentheses end fraction
space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below fraction numerator bx squared over denominator bx squared open parentheses square root of 1 plus bx end root plus 1 close parentheses end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator 1 over denominator square root of straight x plus bx plus 1 end root end fraction equals fraction numerator 1 over denominator square root of straight x plus 0 end root plus 1 end fraction equals 1 half.
    Also f(0) = c
    Since f is continuous at x = 0
    therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis rightwards double arrow space straight a plus 2 equals 1 half equals straight c space rightwards double arrow space straight a equals negative 3 over 2 comma straight c equals 1 half
    b can be any real number except 0.
     
    Question 67
    CBSEENMA12034543

    Is the function defined by f(x) = | x |, a continuous function ?

    Solution

    f(x) = |x|.Df=R
    Let a be any real number ∈  Df
    Now space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below open vertical bar straight x close vertical bar equals open vertical bar straight a close vertical bar
Also space straight f left parenthesis straight a right parenthesis equals open vertical bar straight a close vertical bar
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis space rightwards double arrow space straight f space is space continous space at space straight x equals 0
    But a is any real number ∈ Df
    ∴ f is continuous function
    ⇒ | x | is continuous at every point of domain.

    Question 68
    CBSEENMA12034544

    Discuss the continuity of the function f given by f(x) = x3 + x 2 –1.

    Solution

    Here    f(x) = x3 + x2 –1
    Function f is defined for all real numbers.
    Let c be any real number
    therefore space straight f left parenthesis straight c right parenthesis equals straight c cubed plus straight c squared minus 1
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x cubed plus straight x squared minus 1 right parenthesis equals straight c cubed plus straight c squared minus 1
therefore space Lt with straight x leftwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at c
    But c is any real number    
    ∴ f  is continuous at every real number
    ∴ f is continuous function.

    Question 69
    CBSEENMA12034545

    Discuss the continuity of the function f defined by
    straight f left parenthesis straight x right parenthesis equals 1 over straight x comma space straight x not equal to 0

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals 1 over straight x comma space straight x not equal to 0
    Function f is defined for all real numbers except 0.
    Let c ≠ 0 be any real number.
    therefore space straight f left parenthesis straight c right parenthesis equals 1 over straight c
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below 1 over straight c equals 1 over straight c
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at c
    But c ≠ 0 is any real number
    ∴ f is continuous at every real number except 0.
    ∴ f is a continuous function at its domain.
    Question 70
    CBSEENMA12034547

    Examine the following functions for continuity :
    f(x)=x-5

    Solution

    Here f(x) = x – 5
    Function f is defined for all real numbers.
    Let c be any real number.
    ∴ f(c) = c – 5
    Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 5 right parenthesis equals straight c minus 5
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at x = c
    But c is any real number.
    ∴ f is continuous at every real number.

    Question 71
    CBSEENMA12034548

    Examine the following functions for continuity :
    straight f left parenthesis straight x right parenthesis equals fraction numerator 1 over denominator straight x minus 5 end fraction

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals fraction numerator 1 over denominator straight x minus 5 end fraction
    For f to be defined,
    x – 5 ≠ 0 i.e. x ≠ 5
    ∴Df = Set of real number except 5 = R - { 5}
    Let c ≠ 5 be any real number.
    Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis minus Lt with straight x rightwards arrow straight c below open parentheses fraction numerator 1 over denominator straight x minus 5 end fraction close parentheses equals fraction numerator 1 over denominator straight c minus 5 end fraction
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at x = c.
    But c ≠ 5 is any real number
    ∴ f is continuous at every real number c ∈ D
    ∴ f is continuous function.
    Question 72
    CBSEENMA12034549

    Examine the following functions for continuity :
    straight f left parenthesis straight x right parenthesis equals fraction numerator straight x squared minus 25 over denominator straight x minus 5 end fraction

    Solution
    straight f left parenthesis straight x right parenthesis equals fraction numerator straight x squared minus 25 over denominator straight x minus 5 end fraction
    For f to be defined,
    x + 5 ≠  0, i.e. x ≠ – 5
    ∴Df = Set of all real numbers except – 5 = R - {- 5}
    Let c≠– 5 be any real number.
    therefore space straight f left parenthesis straight c right parenthesis equals fraction numerator straight c squared minus 25 over denominator straight c plus 25 end fraction equals fraction numerator left parenthesis straight c minus 5 right parenthesis left parenthesis straight c plus 5 right parenthesis over denominator straight c plus 5 end fraction equals straight c minus 5
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator straight x squared minus 25 over denominator straight x plus 5 end fraction equals Lt with straight x rightwards arrow straight c below fraction numerator left parenthesis straight x minus 5 right parenthesis left parenthesis straight x plus 5 right parenthesis over denominator straight x plus 5 end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 5 right parenthesis equals straight c minus 5
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at x = c.
    But c ≠ – 5 is any real number.
    ∴ f is continuous at every real number c ∈ Df.
    ∴ f is continuous function.
    Question 73
    CBSEENMA12034551

    Examine the following functions for continuity :

    f(x) = | x – 5 |

    Solution

    Here f(x) = | x – 5 |
    Function f is defined for all real numbers.
    Let c be any real number.
    therefore space straight f left parenthesis straight c right parenthesis equals open vertical bar straight c minus 5 close vertical bar
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below open vertical bar straight x minus 5 close vertical bar equals open vertical bar straight c minus 5 close vertical bar
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at.x = c.
    But c is any real number
    ∴ f is continuous at every real number.

    Question 74
    CBSEENMA12034552

    Discuss the continuity of sine function

    Solution

    Let f(x) = sin x Df = R
    Let a be any real number ∈ Df

    Now space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below sin space straight x space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals straight a plus straight h space so space taht space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below sin left parenthesis straight a plus straight h right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis sin space straight a space cos space straight h plus space cos space straight a space sin space straight h right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space equals sin space straight a Lt with straight h rightwards arrow 0 below cos space straight h plus cos space straight a space Lt with straight h rightwards arrow 0 below sin space straight h
space space space space space space space space space space space space space space space space space space space space space space space equals sin space straight a.1 plus cos space straight a.0 equals sin space straight a
Also space straight f left parenthesis straight a right parenthesis equals space sin space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis equals sin space straight a
    ∴ f is continuous at x = a
    But a is any real number ∈ Df
    ∴ f is continuous function
    ∴ sin x is continuous at every point of its domain,

    Question 75
    CBSEENMA12034554

    Prove that the function defined by f(x) = tan x is a continuous function

    Solution
    Let f(x) = tan x
    straight D subscript straight f equals straight R space except space od space multiples space of space straight pi over 2.
Let space straight a space be space any space real space number space element of space straight D subscript straight f
space space space space space space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below tan space straight x space left square bracket Put space straight x equals straight a plus straight h space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space tan left parenthesis straight a plus straight h right parenthesis equals Lt with straight h rightwards arrow 0 below fraction numerator sin left parenthesis straight a plus straight h right parenthesis over denominator cos space left parenthesis straight a plus straight h right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator sin space straight a space cos space straight h plus cosa space sin space straight h over denominator cos space acos space straight h minus sin space straight a space sin space straight h end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator sin space straight a.1 plus cos space straight a.0 over denominator cos space straight a.1 minus sin space straight a.0 end fraction equals fraction numerator sin space straight a over denominator cos space straight a end fraction equals tan space straight a
Also space space space space straight f left parenthesis straight a right parenthesis equals tan space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis equals tan space straight a
    ∴ f is continuous at x = a
    But a is any member of Df
    ∴ f is continuous at every point of the domain,
    ∴ tan x is continuous at every point of the domain.
    Question 76
    CBSEENMA12034559

    Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

    Solution

    (i) Let f(x) = cos x. Df = R
    Let a be any real number ∈ Df

    Now space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below cos space straight x space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals straight a plus straight h space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below cos left parenthesis straight a plus straight h right parenthesis equals Lt with straight a rightwards arrow 0 below left parenthesis cos space straight a space cos space straight h minus sin space straight a space sin space straight h right parenthesis
space space space space space space space space space space space space space space space space space space space space space space equals cos space straight a space Lt with straight h rightwards arrow 0 below space cos space straight h minus sin space straight a space Lt with straight h rightwards arrow 0 below sin space straight h
space space space space space space space space space space space space space space space space space space space space space space equals cos space straight a.1 minus sin space straight a.0 equals cos space straight a
Also space space space space straight f left parenthesis straight a right parenthesis equals cos space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis equals cos space straight a
    ∴ f is continuous as x = a
    But a is any real number ∈ Df
    ∴ f is continuous at every point of its domain.
    i.e., cos x is continuous at every point of its domain.
    left parenthesis ii right parenthesis space Let space straight f left parenthesis straight x right parenthesis equals cosec space straight x equals fraction numerator 1 over denominator sin space straight x end fraction
therefore space space straight D subscript straight f equals straight R minus open curly brackets straight x space colon space straight R semicolon sin space straight x equals 0 close curly brackets
space space space space space space space space space space equals straight R minus open curly brackets straight x equals nπ semicolon straight n element of straight I close curly brackets
Let space straight a space be space any space real space number element of straight D subscript straight f.
space space space space space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below fraction numerator 1 over denominator sin space straight x end fraction space space space space space space space left square bracket Put space straight x equals straight a plus straight h space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator sin left parenthesis straight a plus straight h right parenthesis end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator sin space straight a space cos space straight h plus cos space straight a space sin space straight h end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 1 over denominator sin space straight a.1 plus cos space straight a.0 end fraction equals fraction numerator 1 over denominator sin space straight a end fraction
Also space space space space space space space space space space space straight f left parenthesis straight a right parenthesis equals fraction numerator 1 over denominator sin space straight a end fraction
therefore space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis

    ∴ f is continuous at x = a
    But a is any real number ∈ Df
    ∴ f is continuous function at every point of domain,
    ∴ cosec x is continuous at every point of domain.
    left parenthesis iii right parenthesis space Let space straight f left parenthesis straight x right parenthesis equals sec space straight x equals fraction numerator 1 over denominator cos space straight x end fraction
space space space space space space straight D subscript straight f equals end subscript straight R space except space odd space multiples space of space straight pi over 2
Let space straight a space be space any space real space number space element of space space Df
space space space space space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below fraction numerator 1 over denominator cos left parenthesis straight a plus straight h right parenthesis end fraction space space space space space left square bracket put space straight x equals space straight a plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space cos space straight x plus straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator cos left parenthesis straight a plus straight h right parenthesis end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator cos space straight a space cos space straight h minus sin space straight a space sin space straight h end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 1 over denominator cos space straight a.1 minus sin space straight a.0 end fraction equals fraction numerator 1 over denominator cos space straight a end fraction
Also space space space space space space space space space space space straight f left parenthesis straight a right parenthesis equals fraction numerator 1 over denominator cos space straight a end fraction
therefore Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis
    ∴ f is continuous at x = a
    But a is any real number ∈ Df
    ∴ f is continuous at every point of domain,
    ∴ sec x is continuous at every point of domain.
    left parenthesis iv right parenthesis space Let space straight f left parenthesis straight x right parenthesis equals cot space straight x equals fraction numerator cos space straight x over denominator sin space straight x end fraction
space space space space space space space space space space space space straight D subscript straight f equals straight R minus open curly brackets straight x colon straight R semicolon sin space straight x equals 0 close curly brackets
space space space space space space space space space space space space space space space space equals straight R minus open curly brackets straight x equals nπ comma straight n element of straight I close curly brackets
Let space straight a space be space any space real space number space element of straight D subscript straight f
space space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below fraction numerator cos space straight x over denominator sin space straight x end fraction space space space left square bracket Put space straight x equals straight a plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator cos left parenthesis straight a plus straight h right parenthesis over denominator sin left parenthesis straight a plus straight h right parenthesis end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator cos space straight a space cos space straight h minus sin space straight a space sin space straight h over denominator sin space straight a space cos space straight h plus cos space straight a space sin space straight h end fraction
space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator cos space straight a.1 minus sin space straight a.0 over denominator sin space straight a.1 equals cos space straight a.0 end fraction equals fraction numerator cos space straight a over denominator sin space straight a end fraction
Also space space space space space space space space straight f left parenthesis straight a right parenthesis equals fraction numerator cos space straight a over denominator sin space straight a end fraction
therefore space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis
    ∴ f is continuous at x = a.
    But a is any real number ∈ Df.
    ∴ f is continuous at every point of domain,
    ∴ cot x is continuous at every point of domain.

    Question 77
    CBSEENMA12034563

    Discuss the continuity of the following functions :
    (a) f(x) = sin x + cos x 

    Solution
    f(x) = sin x + cos x 
    Df  =  R
    Let a be any real number.
    Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below left parenthesis sin space straight x plus cos space straight x right parenthesis plus sin space straight a plus cos space straight a
Also space straight f left parenthesis straight a right parenthesis equals sin space straight a plus cos space straight a
therefore space straight f left parenthesis straight a right parenthesis equals sin space straight a plus cos space straight a
therefore Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis
therefore space straight f space space is space continuous space at space straight x space equals space straight a
But space straight a space is space any space point space of space straight R. space space
therefore space straight f space is space continuous space function.
    Question 78
    CBSEENMA12034564

    Discuss the continuity of the following functions :
    –f(x) = sin x – cos x

    Solution

    f(x) = sin x – cos x
    Df = R
    Let a be any real number.
    space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below left parenthesis sin space straight x minus cos space straight x right parenthesis equals sin space straight a minus cos space straight a
Also space straight f left parenthesis straight a right parenthesis equals sin space straight a minus cos space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis
therefore space straight f space is space continuous space at space straight x equals straight a space
But space straight a space is space any space point space of space straight R. space space
therefore space straight f space is space continuous space function.

    Question 79
    CBSEENMA12034565

    Discuss the continuity of the following functions :
    f(x) = sin x.cos x

    Solution

    f(x) = sin x cos.x
    Df = R
    Let a be any real number.
    space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below left parenthesis sin space straight x space cos space straight x right parenthesis equals sin space straight a space cos space straight a
Also space straight f left parenthesis straight a right parenthesis equals sin space straight a space cos space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis
therefore space straight f space is space continuous space at space straight x equals straight a
But space straight a space is space any space point space of space straight R. space space
therefore space straight f space is space continuous space function.

    Sponsor Area

    Question 80
    CBSEENMA12034567

    Let f be a function such that f(x + y) =f(x) +f(y), x,y∈ R
    Show that if f is continuous at x = 0, then it is continuous everywhere.

    Solution

    Here f(x + y) = f(x) + f(y) ∀ x, y∈  R    ..(1)
    Let f be continuous at x = 0
    therefore space space space space space space space space space space space space space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis space space space space space space space space space rightwards double arrow space Lt with straight h rightwards arrow 0 below straight f left parenthesis 0 plus straight h right parenthesis equals straight f left parenthesis 0 right parenthesis
rightwards double arrow space Lt with straight h rightwards arrow 0 below left square bracket straight f left parenthesis 0 right parenthesis plus straight f left parenthesis straight h right parenthesis right square bracket equals straight f left parenthesis 0 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket therefore space of space left parenthesis 1 right parenthesis right square bracket
rightwards double arrow space Lt with straight x rightwards arrow 0 below straight f left parenthesis 0 right parenthesis plus Lt with straight x rightwards arrow 0 below straight f left parenthesis straight h right parenthesis equals straight f left parenthesis 0 right parenthesis space space rightwards double arrow space straight f left parenthesis 0 right parenthesis plus Lt with straight h rightwards arrow 0 below straight f left parenthesis straight h right parenthesis equals straight f left parenthesis 0 right parenthesis
rightwards double arrow space Lt with straight h rightwards arrow 0 below straight f left parenthesis straight h right parenthesis equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Let space straight c space be space any space real space number
therefore space Lt with space space straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight h rightwards arrow 0 below straight f left parenthesis straight c plus straight h right parenthesis equals Lt with straight h rightwards arrow 0 below left square bracket straight f left parenthesis straight c right parenthesis plus straight f left parenthesis straight h right parenthesis right square bracket
space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below straight f left parenthesis straight c right parenthesis plus Lt with straight h rightwards arrow 0 below straight f left parenthesis straight h right parenthesis equals straight f left parenthesis straight c right parenthesis plus 0 space space space space space space space space space space left square bracket space therefore space of left parenthesis 2 right parenthesis right square bracket
therefore space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ⇒ f is continuous at x = c
    But c is any real number
    ∴ f is continuous ∀ .x ∈ R.

    Question 81
    CBSEENMA12034568

    If f is continuous and g is a discontinuous function then f + g is discontinuous function.

    Solution

    if possible, let (f + g ) be continuous, and as f is continuous then
    (f + g ) – f is a continuous function (∵  difference of two continuous function is continuous)
    ⇒  g is continuous, which is a contradiction
    Hence (f + g ) is discontinuous.
    Note : If f and g are discontinuous, then f + g ,fg need not be discontinuous.
    For example
    left parenthesis straight i right parenthesis space Let space straight f left parenthesis straight x right parenthesis equals tan space straight x comma space straight g space left parenthesis straight x right parenthesis space equals space cos space straight x comma space are space discontinuous.
    But (fg) (x) = (tan x) (cos x) = sin x, is continuous
    (ii) straight f left parenthesis straight x right parenthesis equals 1 over straight x equals tan space straight x comma space straight g left parenthesis straight x right parenthesis equals cos space straight x comma space are space discontinous.
    but (f + g) (x) = 0, is continuous at x = 0

    Question 82
    CBSEENMA12034572

    Examine the continuity of f , where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell sin space straight x minus cos space straight x comma space space space if space straight x not equal to 0 end cell row cell space space space space space space minus 1 space space space space space space space space space comma space space space if space straight x equals 0 end cell end table close

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell sin space straight x minus cos space straight x comma space space space if space straight x not equal to 0 end cell row cell space space space space space space minus 1 space space space space space space space space space comma space space space if space straight x equals 0 end cell end table close
    Df = R
    Let a be any real number.
    Two cases arise :
    Case I : a ≠ 0
    space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below left parenthesis sin space straight x minus cos space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals straight a plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets sin left parenthesis straight a plus straight h right parenthesis minus cos left parenthesis straight a plus straight h right parenthesis close curly brackets
space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets left parenthesis sin space straight a space cos space straight h plus cos space straight a space cos space straight h right parenthesis minus left parenthesis cos space straight a space cos space straight h minus sin space straight a space sin space straight h right parenthesis close curly brackets
space space space space space space space space space space space space space space space equals open curly brackets left parenthesis sin space straight a.1 plus cos space straight a.0 right parenthesis minus left parenthesis cos space straight a.1 minus sin space straight a.0 right parenthesis close curly brackets equals sin space straight a minus cos space straight a
Also space straight f left parenthesis straight a right parenthesis equals sin space straight a minus cos space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals sin space straight a minus cos space straight a
    ∴ f is continuous at x = a ≠  0.

    Case II : a = 0
    therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis sin space straight x minus cos space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets sin left parenthesis negative straight h right parenthesis minus cos left parenthesis negative straight h right parenthesis close curly brackets equals Lt with straight h rightwards arrow 0 below left parenthesis negative sin space straight h minus cos space straight h right parenthesis
space space space space space space space space space space space space space space space space space space space space equals negative sin space 0 minus cos space 0 equals negative 0 minus 1 equals negative 1
space space space space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis sin space straight x minus space cos space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis sin space straight h minus cos space straight h right parenthesis equals 0 minus 1 equals negative 1
Also space space space space space straight f left parenthesis 0 right parenthesis equals sin space 0 minus cos space 0 equals 0 minus 1
therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f is continuous at x = a = 0
    Thus, f is continuous at all points of its domain.

    Question 83
    CBSEENMA12034574

    Find all points of discontinuity of f where
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction comma space space if space straight x less than 0 end cell row cell space space straight x plus 1 comma space space space if space straight x greater or equal than 0 end cell end table close

    Solution

    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space straight x over denominator straight x end fraction comma space space if space straight x less than 0 end cell row cell space space straight x plus 1 comma space space space if space straight x greater or equal than 0 end cell end table close
    Function f is defined for all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I: c < 0
    space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator sin space straight x over denominator straight x end fraction equals fraction numerator sin space straight c over denominator straight c end fraction
space space space space space space space space straight f left parenthesis straight c right parenthesis equals fraction numerator sin space straight c over denominator straight c end fraction
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
therefore space straight f space is space continous space at space all space points space straight x less than 0.

    Case II:c > 1
    space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x plus 1 right parenthesis equals straight c plus 1
space space space space space space straight f left parenthesis straight c right parenthesis equals straight c plus 1
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
therefore space straight f space is space continous space at space all space points space straight x greater than 0
    Case III: c = 0
    space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator sin space straight x over denominator straight x end fraction space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below fraction numerator sin left parenthesis 0 minus straight h right parenthesis over denominator 0 minus straight h end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator sin left parenthesis negative straight h right parenthesis over denominator negative straight h end fraction
space space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow 0 below fraction numerator negative sin space straight h over denominator negative straight h end fraction equals Lt with straight x rightwards arrow 0 below fraction numerator sin space straight h over denominator straight h end fraction equals 1
therefore space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis straight x plus 1 right parenthesis equals 0 plus 1 equals 1
Also space straight f left parenthesis 0 right parenthesis equals 0 plus 1 equals 1
therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f is continuous at x = 0
    Thus f has no point of discontinuity.

    Question 84
    CBSEENMA12034577

    Let f be defined by

    straight f left parenthesis straight x right parenthesis open curly brackets table attributes columnalign left end attributes row cell space space space space space straight x squared over straight x space space space space space space space space space space space space comma space 0 space less or equal than straight x less or equal than 1 end cell row cell 2 straight x squared minus 3 straight x plus 3 over 2 comma space 1 less than straight x less or equal than 2 end cell end table close
    Show that f is continous at x=1.

    Solution
    Here space straight f left parenthesis straight x right parenthesis open curly brackets table attributes columnalign left end attributes row cell space space space space space straight x squared over straight x space space space space space space space space space space space space comma space 0 space less or equal than straight x less or equal than 1 end cell row cell 2 straight x squared minus 3 straight x plus 3 over 2 comma space 1 less than straight x less or equal than 2 end cell end table close
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 1 to the power of plus below open parentheses straight x squared over 2 close parentheses space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator left parenthesis 1 minus straight h right parenthesis squared over denominator 2 end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator straight h squared minus 2 straight h plus 1 over denominator 2 end fraction equals fraction numerator 0 minus 0 plus 1 over denominator 2 end fraction equals 1 half
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below open parentheses 2 straight x squared minus 3 straight x plus 3 over 2 close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket space Put space straight x equals 1 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets 2 left parenthesis 1 plus straight h right parenthesis squared minus 3 left parenthesis 1 plus straight h right parenthesis plus 3 over 2 close curly brackets
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below open curly brackets 2 straight h squared plus 4 straight h plus 2 minus 3 minus 3 straight h plus 3 over 2 close curly brackets equals 0 plus 0 plus 2 minus 3 minus 0 plus 3 over 2 equals 1 half
space Also space straight f left parenthesis 1 right parenthesis equals Value space of space open parentheses straight x squared over 2 close parentheses space at space straight x equals 1
space space space space space space space space space space space space space space space space space equals 1 half
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ f  is continuous at x = 1.
    Question 85
    CBSEENMA12034580

    Is the function f defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x comma space if space straight x less or equal than 1 end cell row cell 5 comma space if space straight x greater than 1 end cell end table close
    continous at x=0? At x=1? At x=2?

    Solution

    Here straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x comma space if space straight x less or equal than 1 end cell row cell 5 comma space if space straight x greater than 1 end cell end table close
    At x=0
    Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below left parenthesis straight x right parenthesis space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 0 minus straight h right parenthesis
space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis negative straight h right parenthesis equals left parenthesis 0 right parenthesis equals 0
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis straight x right parenthesis space space space left square bracket putx equals 0 plus straight h comma straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of plus right square bracket
space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 0 plus straight h right parenthesis
space space space space space space space space space space space space space equals 0 plus 0 equals 0
therefore Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals 0
therefore Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals 0
Also space straight f left parenthesis 0 right parenthesis equals value space of space straight x space at space straight x equals 0
space space space space space space space space space space space space equals 0
therefore straight f space is space continous space at space straight x equals 0. space space space space
    At x=1
    space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below straight x space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than straight o right square bracket comma space so space that space straight h rightwards arrow 0 space on space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 1 minus straight h right parenthesis equals 1 minus 0 equals 1
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis 5 right parenthesis equals 5
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus 0 end exponent below straight f left parenthesis straight x right parenthesis
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis space does space not space exist
therefore space straight f space is space discontinuous space at space straight x equals 1.

    At x=2
    space space space space space Lt with straight x rightwards arrow 2 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 below left parenthesis 5 right parenthesis equals 5
Also space space space space straight f left parenthesis 2 right parenthesis equals 5
therefore Lt with straight x rightwards arrow 2 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis equals 5
therefore space straight f space is space continous space at space straight x equals 2.
    Question 87
    CBSEENMA12034585

    Which of the following functions are continuous at the indicated points?straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space space 5 straight x minus 4 space space space comma space if space straight x less or equal than 1 end cell row cell 4 straight x squared minus 3 straight x space space comma space if space straight x greater than 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space space 5 straight x minus 4 space space space comma space if space straight x less or equal than 1 end cell row cell 4 straight x squared minus 3 straight x space space comma space if space straight x greater than 1 end cell end table close
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis 5 straight x minus 4 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left curly bracket 5 left parenthesis 1 minus straight h right parenthesis minus 4 right curly bracket equals Lt with straight h rightwards arrow 0 below left parenthesis 1 minus 5 straight h right parenthesis equals 1 minus 0 equals 1
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis 4 straight x squared minus 3 straight x right parenthesis space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left curly bracket 4 left parenthesis 1 plus straight h squared right parenthesis minus 3 left parenthesis 1 plus straight h right parenthesis right curly bracket equals Lt with straight h rightwards arrow 0 below left parenthesis 4 straight h squared plus 8 straight h plus 4 minus 3 minus 3 straight h right parenthesis
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 4 straight h squared plus 5 straight h plus 1 right parenthesis equals 0 plus 0 plus 1 equals 1
Also space space straight f left parenthesis 1 right parenthesis equals Value space of left parenthesis 5 straight x minus 4 right parenthesis space at space straight x equals 1
equals 5 minus 4 equals 1
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ function f(x) is continuous at x = 1.
    Question 88
    CBSEENMA12034587

    Which of the following functions are continuous at the indicated points ?
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space straight x less or equal than 0 end cell row cell 2 straight x plus 1 space space space comma space space space if space straight x greater or equal than 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space straight x less or equal than 0 end cell row cell 2 straight x plus 1 space space space comma space space space if space straight x greater or equal than 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis 2 straight x minus 1 right parenthesis equals Lt with straight h rightwards arrow 0 below left curly bracket 2 left parenthesis 0 minus straight h right parenthesis minus 1 right curly bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 to the power of minus right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis negative 2 straight h minus 1 right parenthesis equals 0 minus 1 equals negative 1
But space straight f left parenthesis 0 right parenthesis equals Value space of space left parenthesis 2 straight x plus 1 right parenthesis space at space straight x equals 0.
equals 2.0 plus 1 equals 1
therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 0 right parenthesis
    ⇒  f(x) is discontinuous at x = 0.
    Question 89
    CBSEENMA12034589

    Which of the following functions are continuous at the indicated points ?
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space straight x less than 0 end cell row cell 2 straight x plus 6 space space space comma space space space if space straight x greater than 1 end cell end table close
at space straight x equals 0

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space straight x less than 0 end cell row cell 2 straight x plus 6 space space space comma space space space if space straight x greater than 1 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis 2 straight x minus 1 right parenthesis equals Lt with straight h rightwards arrow 0 below left curly bracket 2 left parenthesis 0 minus straight h right parenthesis minus 1 right curly bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 0 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt left parenthesis negative 2 straight h minus 1 right parenthesis equals 0 minus 1 equals negative 1
    But f (0) = Value of (2 x + 6) at .x = 0
    = 2 x 0 + 6 = 0 + 6 = 6
    therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 0 right parenthesis
    ∴ f(x) is discontinuous at x = 0.
    Question 90
    CBSEENMA12034590

    Which of the following functions are continuous at the indicated points ?straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space space space straight x less than 2 end cell row cell space space space space space space 3 over 2 space space space space comma space space space if space space space straight x greater or equal than 2 end cell end table close
at space straight x equals 2

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x minus 1 space space space comma space space space if space space space straight x less than 2 end cell row cell space space space space space 3 over 2 space space space comma space space space if space space space straight x greater or equal than 2 end cell end table close
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of asterisk times minus end exponent below left parenthesis 2 straight x minus 1 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left curly bracket 2 left parenthesis 2 minus straight h right parenthesis minus 1 right curly bracket equals Lt with straight h rightwards arrow 0 below left parenthesis 4 minus 2 straight h minus 1 right parenthesis
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 3 minus 2 straight h right parenthesis
space space space space space space space space space space space space space space space space space equals 3 minus 0 equals 3
Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below fraction numerator 3 straight x over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket put space straight x equals 2 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets 3 over 2 left parenthesis 2 plus straight h right parenthesis close curly brackets equals 3 over 2 left parenthesis 2 plus 0 right parenthesis equals 3
Also space straight f left parenthesis 2 right parenthesis equals 3 over 2 left parenthesis 2 right parenthesis equals 3
therefore space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis
    ∴ f(x) is continuous at x = 2
    Question 91
    CBSEENMA12034592

    Discuss the continuity of the function f given by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 plus straight x space comma space if space straight x not equal to 0 end cell row cell space space space space space 2 space space comma space if space straight x equals 0 end cell end table close
at space straight x equals 0

    Solution
    We space have space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 plus straight x space comma space if space straight x not equal to 0 end cell row cell space space space space space 2 space space comma space if space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis 2 plus straight x right parenthesis equals 2
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 2 plus straight x right parenthesis equals 2
Also space straight f left parenthesis 0 right parenthesis equals 2
therefore space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f is continuous at x = 0.
    Question 92
    CBSEENMA12034594
    Question 93
    CBSEENMA12034595
    Question 94
    CBSEENMA12034597
    Question 95
    CBSEENMA12034599
    Question 97
    CBSEENMA12034601

    For what value of λ is the function defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight lambda open parentheses straight x squared minus 2 straight x close parentheses comma space if space straight x less or equal than 0 end cell row cell 4 straight x plus 1 comma space space space space space space space if space straight x greater than 0 end cell end table close
    continous at x=0? What about continuity at x=1?

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight lambda open parentheses straight x squared minus 2 straight x close parentheses comma space if space straight x less or equal than 0 end cell row cell 4 straight x plus 1 comma space space space space space space space if space straight x greater than 0 end cell end table close
At space straight x equals 0
space space space space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below straight lambda open parentheses straight x squared minus 2 straight x close parentheses equals straight lambda left parenthesis 0 minus 0 right parenthesis equals 0
space space space space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 4 straight x plus 1 right parenthesis equals 4 left parenthesis 0 right parenthesis plus 1 equals 0 plus 1 equals 1
therefore Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis
    At x=1
    space space space space space space Lt with straight x rightwards arrow 1 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 below left parenthesis 4 straight x plus 1 right parenthesis equals 4 plus 1 equals 5
Also space space space space straight f left parenthesis 1 right parenthesis equals 4 plus 1 equals 5
therefore space Lt with straight x rightwards arrow 1 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ f is continuous at x = 1 whatever value of λ be.
    Question 105
    CBSEENMA12034617

    Discuss the continuity of the function f defined by

    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x plus 2 comma space if space straight x less or equal than 1 end cell row cell straight x minus 2 comma space if space straight x greater than 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x plus 2 comma space if space straight x less or equal than 1 end cell row cell straight x minus 2 comma space if space straight x greater than 1 end cell end table close
    The function f is defined at all points of the real line.
    Let c be any real number    
    Case I: lf c < 1, then f(c) = c + 2.
    therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x plus 2 right parenthesis equals straight c plus 2
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all real numbers less than 1.

    Case II: If c > 1, then f(c) = c – 2.
    therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 2 right parenthesis equals straight c minus 2 equals straight f left parenthesis straight c right parenthesis
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴f is continuous at all points x > 1.
    Case III : If c = 1, then
    <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/98/62/04434da5848e25812395fa2c81cd.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/98/62/04434da5848e25812395fa2c81cd.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>
    ∴ f is not continuous at x = 1
    ∴ x = 1 is the only point of discontinuity of f.
    ∴ f is not a continuous function.

    Question 106
    CBSEENMA12034618

    Find all the points of discontinuity of the function f defined by

    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell straight x plus 2 comma space if space straight x less than 1 end cell row cell space space space space 0 comma space space space if space straight x equals 1 end cell row cell straight x minus 2 comma space if space straight x greater than 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell straight x plus 2 comma space if space straight x less than 1 end cell row cell space space space space 0 comma space space space if space straight x equals 1 end cell row cell straight x minus 2 comma space if space straight x greater than 1 end cell end table close
    Function f is defined for ail points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I : c < 1
    space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x plus 2 right parenthesis equals straight c plus 2
space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c plus 2
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points.x < 1.
    Case II : c > 1
    space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 2 right parenthesis equals straight c minus 2
space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c minus 2
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 1.
    Case III : c = 1
    space space space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below left parenthesis straight x plus 2 right parenthesis equals 1 plus 2 equals 3
space space space space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis straight x minus 2 right parenthesis equals 1 minus 2 equals negative 1
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is not continuous at x = 1
    ∴ x = 1 is the only point of discontinuity of f
    Question 107
    CBSEENMA12034619

    Discuss the continuity of the function defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x plus 2 comma space space space space space if space straight x less than 0 end cell row cell negative straight x plus 2 comma space if space straight x greater than 0 end cell end table close

    Solution

    Function f is defined for all real numbers except 0. Therefore domain of f is D1 ∪ D2 where
    D1 = {.x∈R : r < 0 }, D2 = {x ∈  R : x > 0}
    Now two cases arise :
    Case 1: Let c ∈ D1. In this case f(x) = x + 2.
    therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x plus 2 right parenthesis equals straight c plus 2
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c plus 2
therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f (x) is continuous at x = c
    But c is any point of D1.
    ∴ f is continuous in D1.
    Case II : Let c ∈ D2. In this case f(x) = –x + 2.
    therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis negative straight x plus 2 right parenthesis equals negative straight c plus 2
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals negative straight c plus 2
therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f(x) is continuous at x = c.
    But c is any point of D2.
    ∴ f is continuous in D2.
    Now f is continuous at all points in the domain of f. f
    ∴ f is continuous.

    Question 108
    CBSEENMA12034620

    Discuss the continuity of the function f given by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space space straight x comma space if space straight x greater or equal than 0 end cell row cell straight x squared comma space if space straight x less than 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space space straight x comma space if space straight x greater or equal than 0 end cell row cell straight x squared comma space if space straight x less than 0 end cell end table close
    Function f is defined for all real numbers.
    Now domain of f is divided into three disjoint subsets
    D1 = {.x ∈  R : x < 0}, D2 = { 0}, D3 = [x ∈  R : x > 0} of the real line.
    Now three cases arise :
    Case I : Let c ∈  D1 In this case f(x)=x2
    therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight c below space straight x squared equals straight c squared
Also space space space space space straight f left parenthesis straight c right parenthesis equals straight c squared
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    Case II : Let c ∈ D3. In this case f(x)=x
    therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight x equals straight c
Also space space space space space straight f left parenthesis straight c right parenthesis equals straight c
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight c right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at x = c.
    But c is any point of D3.
    ∴ f is continuous in D3.
    Case III : We discuss continuity of f at x=0where f(x)=x2
    Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below straight x squared equals left parenthesis 0 right parenthesis squared equals 0
    Now f is defined at x = 0
    and    f(0) = 0
    therefore space Lt with straight x rightwards arrow 0 below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis equals 0
    ∴ f is continuous at x = 0.
    From three cases, it is clear that f is continuous at every point of domain and so f  is continuous function.
    Question 109
    CBSEENMA12034621

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x plus 3 comma space if space straight x less or equal than 2 end cell row cell 2 straight x minus 3 comma space if space straight x greater than 2 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell 2 straight x plus 3 comma space if space straight x less or equal than 2 end cell row cell 2 straight x minus 3 comma space if space straight x greater than 2 end cell end table close
    Function f is defined for all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I: c < 2
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight c below left parenthesis 2 straight x plus 3 right parenthesis equals 2 straight c plus 3
Also space space space space space straight f left parenthesis straight c right parenthesis equals 2 straight c plus 3
    ∴ f is continuous at all points .x < 2.

    Case II : c > 2
    space space space space space space space space space stack space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow straight c below left parenthesis 2 straight x minus 3 right parenthesis equals 2 straight c minus 3
Also space space space space space space space space space straight f left parenthesis straight c right parenthesis equals 2 straight c minus 3
therefore space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 2.

    Case III : x = 2
    space space space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis 2 straight x plus 3 right parenthesis equals 4 plus 3 equals 7
space space space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below left parenthesis 2 straight x minus 3 right parenthesis equals 4 minus 3 equals 1
therefore Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is not continuous at x = 2
    ∴ x = 2 is the only point of discontinuity of f.

    Question 110
    CBSEENMA12034623

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell open vertical bar straight x close vertical bar plus 3 comma space if space straight x less or equal than negative 3 end cell row cell negative 2 straight x comma if space minus 3 less than straight x greater than 3 end cell row cell 6 straight x plus 2 space space comma space if space straight x greater or equal than 3 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell open vertical bar straight x close vertical bar plus 3 comma space if space straight x less or equal than negative 3 end cell row cell negative 2 straight x comma if space minus 3 less than straight x greater than 3 end cell row cell 6 straight x plus 2 space space comma space if space straight x greater or equal than 3 end cell end table close
    Function f is defined for all points of the real line.
    Let c be any real number.
    Five cases arise :    
    Case I: c < –3

    space space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis open vertical bar straight x close vertical bar plus 3 right parenthesis equals open vertical bar straight c close vertical bar plus 3
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals open vertical bar straight c close vertical bar plus 3
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all point x < – 3
    Case II: c = –3

    Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of minus below left parenthesis open vertical bar straight x close vertical bar plus 3 right parenthesis equals open vertical bar negative 3 close vertical bar plus 3 equals 3 plus 3 equals 6
Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below left parenthesis negative 2 straight x right parenthesis equals 6
Also space straight f left parenthesis straight c right parenthesis equals straight f left parenthesis negative 3 right parenthesis equals open vertical bar negative 3 close vertical bar plus 3 equals 3 plus 3 plus equals 6
therefore space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis equals 6
    ∴ f  is continuous at x = – 3
    Case III: – 3 < c < 3
    f(x) = – 2 x is a continuous function as it is a polynomial.
    Case IV : c = 3

    space space space space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of minus below left parenthesis negative 2 straight x right parenthesis equals negative 6
space space space space space Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below left parenthesis 6 straight x plus 2 right parenthesis equals 18 plus 2 equals 20
therefore space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 3.
    Case V ; c > 3

    space space space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis 6 straight x plus 2 right parenthesis equals 6 straight c plus 2
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals 6 straight c plus 2
therefore space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 3.

    Question 111
    CBSEENMA12034624

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction comma space space space space if space straight x not equal to 0 end cell row cell 0 comma space space space space space space space space space if space straight x equals 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction comma space space space space if space straight x not equal to 0 end cell row cell 0 comma space space space space space space space space space if space straight x equals 0 end cell end table close
    Function f is defined for all points of the real line.
    Let c be any real number.
    Three cases arise ;
    Case I ; c < 0
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction equals Lt with straight x rightwards arrow straight c below open parentheses fraction numerator negative straight x over denominator straight x end fraction close parentheses equals Lt with straight x rightwards arrow straight c below left parenthesis negative 1 right parenthesis equals negative 1
Also space space space space space straight f left parenthesis straight c right parenthesis equals fraction numerator open vertical bar straight c close vertical bar over denominator straight c end fraction equals negative straight c over straight c equals negative 1
therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 0.
    Case II : c > 0
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction equals Lt with straight x rightwards arrow straight c below open parentheses straight x over straight x close parentheses equals Lt with straight x rightwards arrow straight c below left parenthesis 1 right parenthesis equals 1
Also space space space space space straight f left parenthesis straight c right parenthesis equals fraction numerator open vertical bar straight c close vertical bar over denominator straight c end fraction equals straight c over straight c equals 1
therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f continuous at all points x > 0
    Case III; c = 0
    space space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 to the power of minus below open parentheses fraction numerator negative straight x over denominator straight x end fraction close parentheses equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis negative 1 right parenthesis equals negative 1
space space space Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below open parentheses straight x over straight x close parentheses equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 1 right parenthesis equals 1
therefore Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 0.
    Question 112
    CBSEENMA12034626

    Find all points of discontinuity of f, where f is defined by

    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction comma space if space straight x less than 0 end cell row cell space minus 1 comma space space if space straight x greater or equal than 0 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction comma space if space straight x less than 0 end cell row cell space minus 1 comma space space if space straight x greater or equal than 0 end cell end table close
    Function f is defined for all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I: c < 0
    space space space space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction equals Lt with straight x rightwards arrow straight c below open parentheses fraction numerator straight x over denominator negative straight x end fraction close parentheses equals Lt with straight x rightwards arrow straight c below left parenthesis negative 1 right parenthesis equals negative 1
Also space space space space space space space space straight f left parenthesis straight c right parenthesis equals fraction numerator straight c over denominator open vertical bar straight c close vertical bar end fraction equals fraction numerator straight c over denominator negative straight c end fraction equals negative 1
therefore space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 0.
    Case II; c > 0
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction equals Lt with straight x rightwards arrow straight c below open parentheses straight x over straight x close parentheses equals Lt with straight x rightwards arrow straight c below left parenthesis 1 right parenthesis equals 1
Also space space space space space straight f left parenthesis straight c right parenthesis equals fraction numerator straight c over denominator open vertical bar straight c close vertical bar end fraction equals straight c over straight c equals 1
therefore space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 0.
    Case III; c = 0
    space space space space space space space space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction equals Lt with straight x rightwards arrow 0 to the power of minus below open parentheses fraction numerator straight x over denominator negative straight x end fraction close parentheses equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis negative 1 right parenthesis equals negative 1
space space space space space space space space space Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below open parentheses straight x over straight x close parentheses equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 1 right parenthesis equals 1
therefore space space space space space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 0.
    Question 113
    CBSEENMA12034628

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space straight x plus 1 comma space if space straight x greater or equal than 1 end cell row cell straight x squared plus 1 comma space if space straight x less than 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell space straight x plus 1 comma space if space straight x greater or equal than 1 end cell row cell straight x squared plus 1 comma space if space straight x less than 1 end cell end table close
    Function f is defined at all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I ; c < 1
    space space space space space Lt with space space space straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x squared plus 1 right parenthesis equals straight c squared plus 1
space space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c squared plus 1
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 1.
    Case II : c > 1
    space space space space space Lt with space space space straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x plus 1 right parenthesis equals straight c plus 1
space space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c plus 1
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 1.
    Case III ; c = 1
    space space space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below left parenthesis straight x squared plus 1 right parenthesis equals 1 plus 1 equals 2
space space space space space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis straight x plus 1 right parenthesis equals 1 plus 1 equals 2
space space space space space space space space space space space space space space straight f left parenthesis 1 right parenthesis equals 1 plus 1 equals 2
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ f is continuous at x = 1
    ∴ f is continuous at all points of domain.
    Question 114
    CBSEENMA12034629

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x cubed minus 3 comma space if space straight x less or equal than 2 end cell row cell straight x squared plus 1 comma space if space straight x greater than 2 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x cubed minus 3 comma space if space straight x less or equal than 2 end cell row cell straight x squared plus 1 comma space if space straight x greater than 2 end cell end table close
    Function f is defined at all points of the real line.
    Let c be any real number.
    Three cases arise ;
    Case I ; c < 2
    space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x cubed minus 3 right parenthesis equals straight c cubed minus 3
Also space space space straight f left parenthesis straight c right parenthesis equals straight c cubed minus 3
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 2.
    Case II : c > 2
    space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x squared plus 1 right parenthesis equals straight c squared plus 1
Also space space space straight f left parenthesis straight c right parenthesis equals straight c squared plus 1
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 2
    CaseIII ; c = 2
    Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis straight x cubed minus 3 right parenthesis equals 8 minus 3 equals 5
Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below left parenthesis straight x squared plus 1 right parenthesis equals 4 plus 1 equals 5
Also space straight f left parenthesis 2 right parenthesis equals left parenthesis 2 right parenthesis cubed minus 3 equals 8 minus 3 equals 5
therefore space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis
    ∴ f is continuous at x = 2.
    Question 115
    CBSEENMA12034630

    Find all points of discontinuity of f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x to the power of 10 minus 1 comma space space if space straight x less or equal than 1 end cell row cell straight x squared comma space space space space space space space space space space space if space straight x greater than 1 end cell end table close

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x to the power of 10 minus 1 comma space space if space straight x less or equal than 1 end cell row cell straight x squared comma space space space space space space space space space space space if space straight x greater than 1 end cell end table close
    Function/is defined at all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I : c < 1
    Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis straight x to the power of 10 minus 1 right parenthesis equals straight c to the power of 10 minus 1
space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c to the power of 10 minus 1
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 1
    Case II : c > 1
    Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight x squared equals straight c squared
space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c squared
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 1.
    Case III : c = 1
    space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below left parenthesis straight x to the power of 10 minus 1 right parenthesis equals 1 to the power of 10 minus 1 equals 1 minus 1 equals 0
space space space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight x squared equals left parenthesis 1 right parenthesis squared equals 1
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 1
    Question 116
    CBSEENMA12034633

    Is the function defined bystraight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x plus 5 comma space if space straight x less or equal than 1 end cell row cell straight x minus 5 comma space if space straight x greater than 1 end cell end table close
    a continuous function?

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x plus 5 comma space if space straight x less or equal than 1 end cell row cell straight x minus 5 comma space if space straight x greater than 1 end cell end table close
    Function f  is defined at all points of the real line.
    Let c be any real number.
    Three cases arise :
    Case I ; c < 1
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x plus 5 right parenthesis equals straight c plus 5
space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c plus 5
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x < 1.
    Case II: c > 1
    space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x minus 5 right parenthesis equals straight c minus 5
space space space space space space space space space space space space space straight f left parenthesis straight c right parenthesis equals straight c minus 5
therefore space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
    ∴ f is continuous at all points x > 1.
    Case III: c = 1
    space space space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x plus 5 right parenthesis equals 1 plus 5 equals 6
space space space space space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x minus 5 right parenthesis equals 1 minus 5 equals negative 4
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 1.
    Question 117
    CBSEENMA12034634

    Discuss the continuity of the function f, where/is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 3 comma space space if space 0 less or equal than straight x less or equal than 1 space space end cell row cell 4 comma space space if space 1 less than straight x less than 3 end cell row cell 5 comma space if space 3 less or equal than straight x less or equal than 1 space end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 3 comma space space if space 0 less or equal than straight x less or equal than 1 end cell row cell 4 comma space space if space 1 less than straight x less than 3 end cell row cell 5 comma space if space 3 less or equal than straight x less or equal than 10 end cell end table close
    Function f is defined at all points of the domain.
    In the interval 0 < x < 1, we have f(x) = 3, which is constant and so it is continuous.
    At space straight x equals 1
space space space space space space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below left parenthesis negative 3 right parenthesis equals 3
space space space space space space space space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis 4 right parenthesis equals 4
therefore space space space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 1.
    In the interval 1 < x < 3, we have f(x) = 4, which is constant and so it is continuous.
    At space straight x equals 3
space space space space space space space space Lt with straight x rightwards arrow 3 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 3 to the power of minus below left parenthesis 4 right parenthesis equals 4
space space space space space space space space Lt with straight x rightwards arrow 3 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 3 to the power of plus below left parenthesis 5 right parenthesis equals 5
therefore space space space space Lt with straight x rightwards arrow 3 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 3 to the power of plus below straight f left parenthesis straight x right parenthesis
    ∴ f is discontinuous at x = 3.
    In the interval 3 < x < 10, we have f(x) = 5, which is constant and so it is continuous.
    Question 118
    CBSEENMA12034636

    Discuss the continuity of the function f, where f is defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 2 straight x comma end cell row cell 0 comma end cell row cell 4 straight x comma end cell end table close table row cell if space straight x less than 0 space space space space space space end cell row cell if space 0 less or equal than straight x less or equal than 1 end cell row cell if space straight x greater than 1 space space space space space space end cell end table

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 2 straight x comma end cell row cell 0 comma end cell row cell 4 straight x comma end cell end table close table row cell if space straight x less than 0 space space space space space space space end cell row cell if space 0 less or equal than straight x less or equal than 1 end cell row cell if space straight x greater than 1 space space space space space space space end cell end table
    Function f is defined at all points of the real line.
    When x < 0, we have f(x) = 2 x, which being a linear polynomial. is continuous.
    At space straight x equals 0
space space space space space space space space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of minus below left parenthesis 2 straight x right parenthesis equals 0
space space space space space space space space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 0 right parenthesis equals 0
Also space space space space space space space space space straight f left parenthesis 0 right parenthesis equals 0
therefore space space space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 0 right parenthesis
    ∴ f is discontinuous at x = 1
    When x > 1, we have f(x) = 4 x, which being a linear polynomial is continuous.
    Question 119
    CBSEENMA12034637

    Discuss the continuity of the function f , where fis defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell negative 2 comma space space space space if space straight x less or equal than negative 1 end cell row cell 2 straight x comma space space if minus 1 less than straight x less or equal than 1 end cell row cell 2 space space space space space if space straight x greater than 1 end cell end table close

    Solution

    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell negative 2 comma space space space space if space straight x less or equal than negative 1 end cell row cell 2 straight x comma space space if minus 1 less than straight x less or equal than 1 end cell row cell 2 space space space space space if space straight x greater than 1 end cell end table close
    Function f is defined at all points of the real line.
    When x < – 1, we have f(x) = – 2; which is constant and so it is continuous.
    At space straight x equals negative 1
space space space space space space space space Lt with straight x rightwards arrow negative 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of minus below left parenthesis negative 2 right parenthesis equals negative 2
space space space space space space space space Lt with straight x rightwards arrow negative 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of plus below left parenthesis 2 straight x right parenthesis equals 2 left parenthesis negative 1 right parenthesis equals negative 2
Also space space space space space space space space straight f left parenthesis negative 1 right parenthesis equals negative 2
therefore space stack space space space space space space space space space space Lt with straight x rightwards arrow negative 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis negative 1 right parenthesis

    ∴ f is continuous at x = – 1
    In the interval –1 < x < 1, we have f(x) = 2 x, which being a linear polynomial, is continuous.
    At space straight x equals negative 1
space space space space space space space space Lt with straight x rightwards arrow negative 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of minus below left parenthesis 2 straight x right parenthesis equals 2 left parenthesis 1 right parenthesis equals 2
space space space space space space space space Lt with straight x rightwards arrow negative 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of plus below left parenthesis 2 right parenthesis equals 2
Also space space space space space space space space straight f left parenthesis 1 right parenthesis equals 2 left parenthesis 1 right parenthesis equals 2
therefore space stack space space space space space space space space space space Lt space with straight x rightwards arrow negative 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow negative 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
    ∴ f is continuous at x = 1
    When x > 1, we have f (x) = 2. which is constant and so it is continuous.

    Sponsor Area

    Question 120
    CBSEENMA12034639

    Show that the function of given by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x comma space space space space if space straight x greater or equal than 1 end cell row cell straight x squared comma space if space straight x less than 1 end cell end table close

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x comma space space space space if space straight x greater or equal than 1 end cell row cell straight x squared comma space if space straight x less than 1 end cell end table close
    Df = R. Let a be any real number. Three cases axis :
    Case I: a > 1
    In this case, all nearby points of a are also .> 1
    Lt with straight x rightwards arrow straight a below equals Lt with straight x rightwards arrow straight a below straight x equals straight a equals straight f left parenthesis straight a right parenthesis
    ⇒ f is continuous for all a > 1
    Case II : a < 1
    In this case, all nearby points of a are also < 1
    Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below straight x squared equals straight a squared equals straight f left parenthesis straight a right parenthesis
    ⇒ f is continuous for all a < 1.
    Case III : a = 1
    ∴ nearby points can be either <1 or > 1.
    space space space space space Lt with straight x rightwards arrow straight a to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below straight x squared
space space space space Lt with straight x rightwards arrow straight a to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight x equals 1
Also space straight f left parenthesis 1 right parenthesis equals 1
therefore Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis equals 1
    ⇒  f is continuous at x = 1
    ∴ f is continuous at every point of its domain.
    Question 121
    CBSEENMA12034641

    Find the values of a and b such that the function defined by
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 5 comma end cell row cell ax plus straight b comma end cell row cell 21 comma end cell end table close table row cell if space straight x less or equal than 2 space space space space space space space space space space end cell row cell if space 2 less than straight x less than 10 end cell row cell if space straight x greater or equal than 10 space space space space space space space space end cell end table
    is a continous function.

    Solution
    straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell 5 comma end cell row cell ax plus straight b comma end cell row cell 21 comma end cell end table close table row cell if space straight x less or equal than 2 space space space space space space space space space space end cell row cell if space 2 less than straight x less than 10 end cell row cell if space straight x greater or equal than 10 space space space space space space space space end cell end table
    ∴ f is continuous function
    ∴ f is continuous at x = 2 and x = 10
    ∴ f is right continuous at x = 2 and left continuous at .x = 10.
    therefore space space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis space rightwards double arrow space 2 straight a plus straight b equals 5 space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space Lt with straight x rightwards arrow 10 to the power of minus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 10 right parenthesis space rightwards double arrow space 10 straight a plus straight b equals 21 space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Subtracting (1) from (2), we get,
    8 a = 16 or a = 2
    ∴ from (1), 4 + 6 = 5⇒  b = 1
    ∴ we have a = 2, b = 1
    Question 122
    CBSEENMA12034642

    Show that the function defined by f(x) = sin (x2 ) is a continuous function.

    Solution

    Here f(x) = sin (x2)
    Let  g(x) =sinx and h(x) = x2
    ∴(g o h) (x) = g (h(x)) = g(x2 ) = sin x2
    Now f(x) = (g o h)(x) and g, h are both continuous functions.
    ∴ f is continuous function.

    Question 123
    CBSEENMA12034643

    Show that the function defined by f(x) =  cos(x2) is a continuous function.

    Solution

    Here f(x)=cos(x2)
    Let  g(x)= cosx and h(x)=x2
    ∴ (g o h)(x)=g(h(x))=g(x2) =cos x2
    Now f(x)=(g o h)(x) and g.h are both continuous functions
    ∴ f is continuous function.

    Question 124
    CBSEENMA12034644

    Examine that sin | x | is a continuous function.

    Solution

    Let f(x) =| x |, g (x) =sin x
    Df = R, Rf =[ 0, ∞ )
    Dg =R, Rg=[–1,1]
    ∵  Rf. C Dg
    ∵ g o f is defined
    and ( g o f) (x) =g(f(x)) =g(| x |)=sin| x |
    Now f and g are both continuous for every x ∈  R.
    ∴ g o f i.e., sin | x | is continuous for every x ∈ R.

    Question 125
    CBSEENMA12034646

    Show that the function defined by f(x) = | cos x | is a continuous function.

    Solution

    Here  f (x) = | cos x |
    Let  g(x) = | x | and h(x) = cos x
    ∴ (g o h) (x) = g (h(x)) = g(cos x) = | cos x |
    Now f(x) = (g o h)(x) and g,h are both continuous functions.
    ∴ f is continuous function.

    Question 126
    CBSEENMA12034647

    Show that the function f defined by f(x) = |1–x+|x||, where x is any real number, is a continuous function.

    Solution

    Here    f(x) = |1–x+|x||    
    Let g(x)=1–x+|x| and h(x) = |x|
    ∴ (h o g)(x) = h (g (x)) = h(1–x+|x|) = |1–x+|x||
    Now polynomial function 1 – x is a continuous function.
    Also |x| is a continuous function
    We know that sum of two continuous function is a continuous function.
    ∴ 1–x+|x| is a continuous function.
    Now (h o g)(x) = |1–x+|x || is the composite of two continuous functions h and g.
    ∴ f(x) = |1–x+|x|| is a continuous function.

    Question 127
    CBSEENMA12034648

    Find all the points of discontinuity of f defined by
    f(x) =|x|–|x+1|.

    Solution

    Here    f(x) =|x|–|x+1|
    Let    g(x) = |x| and h(x) = x+1
    ∴ (g o h)(x) = g(h(x)) = g(x+1) = |x+1|
    Now g and h are both continuous functions
    ∴ (g o h) is a continuous function.
    ∴ |x+1| is continuous function
    Also | x | is continuous function.
    Now difference of two continuous functions is a continuous function.
    ∴ f(x) = |x|–|x+1| is continuous.

    Question 128
    CBSEENMA12034653
    Question 130
    CBSEENMA12034655
    Question 133
    CBSEENMA12034660

    Prove space that space straight f left parenthesis straight x right parenthesis equals open vertical bar straight x minus 3 close vertical bar space has space no space derivative space at space straight x equals 3.

    Solution
    Here f(x) = |x - 3|
    straight L. straight H. straight D equals Lt with straight x rightwards arrow 3 to the power of minus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 3 right parenthesis over denominator straight x minus 3 end fraction equals Lt with straight x rightwards arrow 3 to the power of minus below fraction numerator open vertical bar straight x minus 3 close vertical bar minus 0 over denominator straight x minus 3 end fraction space space space space space space left square bracket because space straight f left parenthesis 3 right parenthesis equals open vertical bar 3 minus 3 close vertical bar equals open vertical bar 0 close vertical bar equals 0 right square bracket
space space space space space space space space space space space equals Lt with straight x rightwards arrow 3 to the power of minus below fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x minus 3 end fraction space space space space space space space space space space left square bracket Put space straight x equals 3 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 3 to the power of minus right square bracket
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 3 minus straight h minus 3 close vertical bar over denominator 3 minus straight h minus 3 end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar over denominator negative straight h end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator negative straight h end fraction equals negative 1
straight R. straight H. straight D equals Lt with straight x rightwards arrow 3 to the power of plus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 3 right parenthesis over denominator straight x minus 3 end fraction equals Lt with straight x rightwards arrow 3 to the power of plus below fraction numerator open vertical bar straight x minus 3 close vertical bar minus 0 over denominator straight x minus 3 end fraction
space space space space space space space space space space space equals Lt with straight x rightwards arrow 3 to the power of plus below fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x minus 3 end fraction space space space space space space space space space left square bracket Put space straight x equals 3 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 3 to the power of plus right square bracket
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 3 plus straight h minus 3 close vertical bar over denominator 3 plus straight h minus 3 end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight h close vertical bar over denominator straight h end fraction equals Lt with straight h rightwards arrow 0 below straight h over straight h equals 1
therefore straight L. straight H. straight D not equal to straight R. straight H. straight D
therefore space straight f left parenthesis straight x right parenthesis equals open vertical bar straight x minus 3 close vertical bar space is space not space derivable space at space straight x equals 3
    Question 134
    CBSEENMA12034661

    If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x space sin 1 over straight x comma space space space straight x not equal to 0 end cell row cell 0 space space space space space space space space space comma space space space straight x equals 0 end cell end table close
the space show space that space straight f space is space not space differentiable space at space straight x equals 0.

    Solution
    Here space If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x space sin 1 over straight x comma space space space straight x not equal to 0 end cell row cell 0 space space space space space space space space space comma space space space straight x equals 0 end cell end table close
straight R. straight H. straight D equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 0 right parenthesis over denominator straight x minus 0 end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight x space sin begin display style 1 over straight x end style minus 0 over denominator straight x end fraction equals Lt with straight x rightwards arrow 0 to the power of plus below sin 1 over straight x comma space which space does space not space exist
therefore space straight f space is space not space differentiable space at space straight x equals 0
    Question 135
    CBSEENMA12034663

    Syntax error from line 1 column 169 to line 1 column 176.

    Solution
    (i) Let f(x) = [x], 0 < x < 3.
    Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below open square brackets straight x close square brackets space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open square brackets 1 minus straight h close square brackets equals Lt with straight h rightwards arrow 0 below left parenthesis 0 right parenthesis equals 0
Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below open square brackets straight x close square brackets space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of plus right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open square brackets 1 plus straight h close square brackets equals Lt with straight h rightwards arrow 0 below left parenthesis 1 right parenthesis equals 1
therefore space space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis
rightwards double arrow space straight f space is space not space continous space at space straight x equals 1
rightwards double arrow space straight f space is space not space differentiable space at space straight x equals 1.
    (ii) Let f(x) = [x], 0 < x < 3.
    Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below open square brackets straight x close square brackets space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open square brackets 2 minus straight h close square brackets equals Lt with straight h rightwards arrow 0 below left parenthesis 1 right parenthesis equals 1
Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below open square brackets straight x close square brackets space space space space left square bracket Put space straight x equals 2 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 2 to the power of plus right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open square brackets 2 plus straight h close square brackets equals Lt with straight h rightwards arrow 0 below left parenthesis 2 right parenthesis equals 2
therefore space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis
therefore space straight f space is space not space continous space at space straight x equals 2.
rightwards double arrow space straight f space is space not space differentiable space at space straight x equals 2.
    Question 136
    CBSEENMA12034666
    Question 137
    CBSEENMA12034667
    Question 139
    CBSEENMA12034670
    Question 140
    CBSEENMA12034671
    Question 141
    CBSEENMA12034672
    Question 142
    CBSEENMA12034673
    Question 143
    CBSEENMA12034676

    Write an example of a function which is everywhere continuous but not differentiable at exactly 3 points.

    Solution

    Consider the function f given by
    f(x) = |x - 1| + |x - 2| + |x - 3|
    This function is continuous everywhere
    Differentiability at x = 1
    straight L. straight H. straight D equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 1 right parenthesis over denominator straight x minus 1 end fraction
space space space space space space space space space space equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x plus 2 close vertical bar plus open vertical bar straight x minus 3 close vertical bar minus open vertical bar 1 minus 1 close vertical bar minus open vertical bar 1 minus 2 close vertical bar minus open vertical bar 1 minus 3 close vertical bar over denominator straight x minus 1 end fraction
space space space space space space space space space space equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x plus 2 close vertical bar plus open vertical bar straight x minus 3 close vertical bar minus 3 over denominator straight x minus 1 end fraction
space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 1 minus straight h minus 1 close vertical bar plus open vertical bar 1 minus straight h minus 2 close vertical bar plus open vertical bar 1 minus straight h minus 3 close vertical bar over denominator 1 minus straight h minus 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar plus open vertical bar negative 1 minus straight h close vertical bar plus open vertical bar negative 2 minus straight h close vertical bar minus 3 over denominator negative 2 end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator straight h plus 1 plus straight h plus 2 plus straight h minus 3 over denominator negative 2 end fraction
space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator 3 space straight h over denominator negative straight h end fraction equals negative 3
straight R. straight H. straight D equals Lt with straight x rightwards arrow 1 to the power of plus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 1 right parenthesis over denominator straight x minus 1 end fraction equals Lt with straight x rightwards arrow 1 to the power of plus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar plus open vertical bar straight x minus 3 close vertical bar minus 3 over denominator straight x minus 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of plus right square bracket
space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 1 plus straight h minus 1 close vertical bar plus open vertical bar 1 plus straight h minus 2 close vertical bar plus open vertical bar 1 plus straight h minus 3 close vertical bar minus 3 over denominator 1 plus straight h minus 1 end fraction
space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight h close vertical bar plus open vertical bar negative left parenthesis 1 minus straight h right parenthesis close vertical bar plus open vertical bar negative left parenthesis 2 minus straight h right parenthesis close vertical bar minus 3 over denominator straight h end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator straight h plus 1 minus straight h plus 2 minus straight h minus 3 over denominator straight h end fraction
space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator negative space straight h over denominator straight h end fraction equals negative 1
therefore space straight L. straight H. straight D not equal to straight R. straight H. straight D
therefore space function space straight f space is space not space derivable space at space straight x equals 1.
space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space
    Similarly f is not derivable at x = 2, 3. Also f is differentiable at any other point.
    Hence the result.

    Question 144
    CBSEENMA12034677

    Does there exist a function which is continuous everywhere but not differentiable at exactly two points ? Justify your answer.

    Solution

    Consider the function f given by
    f(x) = |x - 1| + |x - 2|
    This function is continuous everywhere
    Differentiability at x = 1
    straight L. straight H. straight D equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 1 right parenthesis over denominator straight x minus 1 end fraction equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar minus open vertical bar 1 minus 1 close vertical bar minus 1 minus 2 over denominator straight x minus 1 end fraction
space space space space space space space space space space space equals Lt with straight x rightwards arrow 1 to the power of minus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar minus 1 over denominator straight x minus 1 end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 1 minus straight h minus 1 close vertical bar plus open vertical bar 1 minus straight h minus 2 close vertical bar minus 1 over denominator 1 minus straight h minus 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of minus right square bracket
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar plus open vertical bar negative 1 minus straight h close vertical bar minus 1 over denominator negative straight h end fraction Lt with straight h rightwards arrow 0 below fraction numerator straight h plus 1 plus straight h minus 1 over denominator negative straight h end fraction equals Lt with straight h rightwards arrow 0 below fraction numerator 2 space straight h over denominator negative straight h end fraction equals negative 2
straight R. straight H. straight D equals Lt with straight x rightwards arrow 1 to the power of plus below fraction numerator straight f left parenthesis straight x right parenthesis minus straight f left parenthesis 1 right parenthesis over denominator straight x minus 1 end fraction equals Lt with straight x rightwards arrow 1 to the power of plus below fraction numerator open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar minus 1 over denominator straight x minus 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 1 to the power of plus right square bracket
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 1 plus straight h minus 1 close vertical bar plus open vertical bar 1 plus straight h minus 2 close vertical bar minus 1 over denominator 1 plus straight h minus 1 end fraction Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar straight h close vertical bar plus open vertical bar negative left parenthesis 1 minus straight h right parenthesis close vertical bar minus 1 over denominator straight h end fraction
space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator straight h plus 1 plus straight h minus 1 over denominator straight h end fraction equals Lt with straight h rightwards arrow 0 below 0 over straight h equals 0
therefore space straight L. straight H. straight D not equal to straight R. straight H. straight D
therefore space function space straight f space is space not space dervable space at space straight x equals 1.
    Similarly f is not derivable at x = 2. Also f is differentiable at any other point.
    Hence the result.

    Question 145
    CBSEENMA12034678

    Write an example of a function which is continuous everywhere but fails to be differentiable at exactly five points.

    Solution

    Let function f be defined by
    f(x) = |x - 1| + |x - 2| + |x - 3| + |x - 4| + |x - 5|
    This function is continuous everywhere.
    Also it is differentiable everywhere except at x = 1, 2, 3, 4, 5.
    Hence the result.

    Question 146
    CBSEENMA12034679

    Use Chain rule to find the derivative of (3x2 + 2)2.

    Solution
    Let y = f(x) = {3x2 + 2)2 = u2 where u = 3x2 + 2
    therefore space dy over du equals 2 space straight u comma space du over dx equals 6 space straight x
By space chain space rule comma
space space space space space dy over dx equals dy over du du over dx equals left parenthesis 2 space straight u right parenthesis left parenthesis 6 space straight x right parenthesis equals 12 space straight x space straight u
therefore space space dy over dx equals 12 space straight x left parenthesis 3 space straight x squared plus 2 right parenthesis
    Question 147
    CBSEENMA12034681
    Question 149
    CBSEENMA12034683
    Question 150
    CBSEENMA12034685
    Question 151
    CBSEENMA12034686
    Question 152
    CBSEENMA12034687
    Question 153
    CBSEENMA12034691
    Question 154
    CBSEENMA12034692
    Question 155
    CBSEENMA12034693
    Question 156
    CBSEENMA12034694
    Question 157
    CBSEENMA12034696

    Differentiatesquare root of 15 straight x squared minus straight x plus 1 end root straight w. straight r. straight t space straight x

    Solution
    Let space space space space space space straight y equals square root of 15 straight x squared minus straight x plus 1 end root equals left parenthesis 15 straight x squared minus straight x plus 1 right parenthesis to the power of 1 half end exponent
therefore space dy over dx equals 1 half left parenthesis 15 straight x squared minus straight x plus 1 right parenthesis to the power of negative 1 half end exponent straight d over dx left parenthesis 15 straight x squared minus straight x plus 1 right parenthesis
space space space space space space space space space space space space space equals fraction numerator 1 over denominator 2 left parenthesis 15 straight x squared minus straight x plus 1 right parenthesis to the power of 1 half end exponent end fraction. left parenthesis 30 straight x minus 1 right parenthesis equals fraction numerator 30 straight x minus 1 over denominator 2 square root of left parenthesis 15 straight x squared minus straight x plus 1 right parenthesis end root end fraction
    Question 158
    CBSEENMA12034698

    Differentiate space square root of 3 straight x plus 2 end root plus fraction numerator 1 over denominator square root of 2 straight x squared plus 4 end root end fraction straight w. straight r. straight t space space straight x.

    Solution
    Let space straight y equals square root of 3 straight x plus 2 end root plus fraction numerator 1 over denominator square root of 2 straight x squared plus 4 end root end fraction equals left parenthesis 3 straight x plus 2 right parenthesis to the power of 1 half end exponent plus left parenthesis 2 straight x squared plus 4 right parenthesis to the power of negative 1 half end exponent
therefore space dy over dx equals 1 half left parenthesis 3 straight x plus 2 right parenthesis to the power of negative 1 half end exponent. straight d over dx left parenthesis 3 straight x plus 2 right parenthesis plus open parentheses negative begin inline style 1 half end style close parentheses left parenthesis 2 straight x squared plus 4 right parenthesis to the power of negative 3 over 2 end exponent. straight d over dx left parenthesis 2 straight x squared plus 4 right parenthesis
space space space space space space space space space space space space space equals fraction numerator 1 over denominator 2 square root of 3 straight x plus 2 end root end fraction. left parenthesis 3 right parenthesis minus fraction numerator 1 over denominator 2 left parenthesis 2 straight x squared plus 4 right parenthesis bevelled 3 over 2 end fraction. left parenthesis 4 straight x right parenthesis
therefore space dy over dx equals fraction numerator 3 over denominator 2 square root of 3 straight x plus 2 end root end fraction minus fraction numerator 2 straight x over denominator left parenthesis 2 straight x squared plus 4 right parenthesis bevelled 3 over 2 end fraction
    Question 159
    CBSEENMA12034701

    Differentiatesquare root of fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction end rootW.r.t x.

    Solution
    Let space straight y equals square root of fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction end root equals open parentheses fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction close parentheses to the power of 1 half end exponent
dy over dx equals 1 half open parentheses fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction close parentheses to the power of negative 1 half end exponent straight d over dx open parentheses fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction close parentheses equals 1 half open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses to the power of 1 half end exponent open square brackets fraction numerator left parenthesis straight x plus 1 right parenthesis begin display style straight d over dx end style left parenthesis straight x minus 1 right parenthesis minus left parenthesis straight x minus 1 right parenthesis begin display style straight d over dx end style left parenthesis straight x plus 1 right parenthesis over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction close square brackets
space space space space space space space space equals 1 half open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses to the power of 1 half end exponent open square brackets fraction numerator left parenthesis straight x plus 1 right parenthesis.1 minus left parenthesis straight x minus 1 right parenthesis.1 over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction close square brackets equals 1 half fraction numerator left parenthesis straight x plus 1 right parenthesis to the power of begin display style 1 half end style end exponent over denominator left parenthesis straight x minus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction open square brackets fraction numerator straight x plus 1 minus straight x plus 1 over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction close square brackets
space space space space space space space space equals 1 half fraction numerator left parenthesis straight x plus 1 right parenthesis to the power of begin display style 1 half end style end exponent over denominator left parenthesis straight x minus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction fraction numerator 2 over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction equals fraction numerator 1 over denominator left parenthesis straight x minus 1 right parenthesis to the power of 1 half end exponent. left parenthesis straight x plus 1 right parenthesis to the power of 3 over 2 end exponent end fraction
    Question 160
    CBSEENMA12034703
    Question 161
    CBSEENMA12034704
    Question 162
    CBSEENMA12034705
    Question 163
    CBSEENMA12034706
    Question 164
    CBSEENMA12034707
    Question 165
    CBSEENMA12034709
    Question 166
    CBSEENMA12034711

    Find f'(x) where f(x)=square root of fraction numerator 1 minus straight x over denominator 2 plus straight x end fraction end root

    Solution
    straight f left parenthesis straight x right parenthesis equals square root of fraction numerator 1 minus straight x over denominator 2 plus straight x end fraction end root equals open parentheses fraction numerator 1 minus straight x over denominator 2 plus straight x end fraction close parentheses to the power of 1 half end exponent
Differentiating space straight w. straight r. straight t space straight x comma space we space get
straight f apostrophe left parenthesis straight x right parenthesis equals 1 half open parentheses fraction numerator 1 minus straight x over denominator 2 plus straight x end fraction close parentheses to the power of negative 1 half end exponent straight d over dx open parentheses fraction numerator 1 minus straight x over denominator 2 plus straight x end fraction close parentheses
space space space space space space space space equals 1 half open parentheses fraction numerator 2 plus straight x over denominator 1 minus straight x end fraction close parentheses to the power of 1 half end exponent open square brackets fraction numerator left parenthesis 2 plus straight x right parenthesis begin display style straight d over dx end style left parenthesis 1 minus straight x right parenthesis minus left parenthesis 1 minus straight x right parenthesis begin display style straight d over dx end style left parenthesis 2 plus straight x right parenthesis over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction close square brackets
space space space space space space space space equals 1 half fraction numerator left parenthesis 2 plus straight x right parenthesis to the power of bevelled 1 half end exponent over denominator left parenthesis 1 minus straight x right parenthesis to the power of bevelled 1 half end exponent end fraction open square brackets fraction numerator left parenthesis 2 plus straight x right parenthesis left parenthesis negative 1 right parenthesis minus left parenthesis 1 minus straight x right parenthesis left parenthesis 1 right parenthesis over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction close square brackets equals 1 half fraction numerator left parenthesis 2 plus straight x right parenthesis to the power of bevelled 1 half end exponent over denominator left parenthesis 1 minus straight x right parenthesis to the power of bevelled 1 half end exponent end fraction open square brackets fraction numerator negative 2 minus straight x minus 1 plus straight x over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction close square brackets
space space space space space space space space equals 1 half fraction numerator left parenthesis 2 plus straight x right parenthesis to the power of begin display style 1 half end style end exponent over denominator left parenthesis 1 minus straight x right parenthesis to the power of begin display style 1 half end style end exponent end fraction cross times fraction numerator negative 3 over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction equals negative fraction numerator 3 over denominator 2 left parenthesis 1 minus straight x right parenthesis to the power of begin display style 1 half end style end exponent left parenthesis 2 plus straight x right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    Question 167
    CBSEENMA12034712

    Differentiate square root of 3 straight x squared plus 2 straight x end root w.r.t x.

    Solution
    Let space space space space space space straight y equals space fraction numerator 3 straight x squared plus 2 straight x over denominator square root of 3 straight x squared plus 2 straight x end root end fraction
therefore space dy over dx equals fraction numerator square root of 3 straight x squared plus 2 straight x end root begin display style straight d over dx end style left parenthesis 3 straight x plus 1 right parenthesis minus left parenthesis 3 straight x plus 1 right parenthesis begin display style straight d over dx end style open parentheses square root of 3 straight x squared plus 2 straight x end root close parentheses over denominator 3 straight x squared plus 2 straight x end fraction
equals fraction numerator square root of 3 straight x squared plus 2 straight x end root space 3 minus left parenthesis 3 straight x plus 1 right parenthesis begin display style fraction numerator 6 straight x plus 2 over denominator 2 square root of 3 straight x squared plus 2 straight x end root end fraction end style over denominator 3 straight x squared plus 2 straight x end fraction equals fraction numerator 9 straight x squared plus 6 straight x minus 9 straight x squared minus 6 straight x minus 1 over denominator left parenthesis 3 straight x squared plus 2 straight x right parenthesis to the power of bevelled 3 over 2 end exponent end fraction equals negative fraction numerator 1 over denominator left parenthesis 3 straight x squared plus 2 straight x right parenthesis to the power of bevelled 3 over 2 end exponent end fraction
    Question 168
    CBSEENMA12034714

    Differentiatefraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction w.r.t x.

    Solution
    Let space straight y equals fraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction equals fraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction cross times fraction numerator straight x minus square root of 1 plus straight x squared end root over denominator straight x minus square root of 1 plus straight x squared end root end fraction equals fraction numerator straight x minus square root of 1 plus straight x squared end root over denominator straight x squared minus left parenthesis 1 plus straight x squared right parenthesis end fraction
space space space space space space space space equals fraction numerator straight x plus square root of 1 plus straight x squared end root over denominator negative 1 end fraction equals negative straight x plus square root of 1 plus straight x squared end root
therefore space dy over dx equals negative 1 plus fraction numerator 2 straight x over denominator 2 square root of 1 plus straight x squared end root end fraction equals negative 1 plus fraction numerator straight x over denominator square root of 1 plus straight x squared end root end fraction
    Question 169
    CBSEENMA12034715

    If space straight y equals open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n comma space prove space that space dy over dn equals fraction numerator ny over denominator square root of straight x squared plus straight a squared end root end fraction.

    Solution
    Here space straight y equals open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space space space space space space space space
Differentiating space both space sides space straight w. straight r. straight t. space straight x space we space get comma
dy over dx equals straight n open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n minus 1 end exponent. straight d over dx open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses
space space space space space space space space equals straight n open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n minus 1 end exponent. open parentheses 1 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus straight a squared end root end fraction close parentheses
space space space space space space space space equals straight n open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n minus 1 end exponent. open parentheses 1 plus fraction numerator straight x over denominator square root of straight x squared plus straight a squared end root end fraction close parentheses
space space space space space space space space equals straight n open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n minus 1 end exponent. open parentheses fraction numerator square root of straight x squared plus straight a squared end root plus straight x over denominator square root of straight x squared plus straight a squared end root end fraction close parentheses equals fraction numerator straight n open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses to the power of straight n space over denominator square root of straight x squared plus straight a squared end root end fraction
therefore dy over dx equals fraction numerator ny over denominator square root of straight x squared plus straight a squared end root end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space 1 right square bracket
    Question 170
    CBSEENMA12034717
    Question 171
    CBSEENMA12034718

    Differentiate straight e to the power of log open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses end exponent w.r.t x.

    Solution
    Let space straight y equals straight e to the power of log open parentheses straight x plus square root of straight x squared plus straight a squared end root close parentheses end exponent
therefore space straight y equals straight x plus square root of straight x squared plus straight a squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight e to the power of log space straight x end exponent equals straight x right square bracket
therefore space dy over dx equals 1 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus straight a squared end root end fraction equals 1 plus fraction numerator straight x over denominator square root of straight x squared plus straight a squared end root end fraction
    Question 172
    CBSEENMA12034720

    Differentiatefraction numerator square root of straight a plus straight x end root minus square root of straight a minus straight x end root over denominator square root of bold a bold plus bold x end root plus square root of bold a bold minus bold x end root end fraction w.r.t x.

    Solution
    Let space straight y equals fraction numerator square root of straight a plus straight x end root minus square root of straight a minus straight x end root over denominator square root of bold a bold plus bold x end root plus square root of bold a bold minus bold x end root end fraction equals fraction numerator square root of straight a plus straight x end root minus square root of straight a minus straight x end root over denominator square root of bold a bold plus bold x end root plus square root of bold a bold minus bold x end root end fraction cross times fraction numerator square root of straight a plus straight x end root minus square root of straight a minus straight x end root over denominator square root of bold a bold plus bold x end root minus square root of bold a bold minus bold x end root end fraction
equals fraction numerator left parenthesis straight a plus straight x right parenthesis plus left parenthesis straight a minus straight x right parenthesis minus 2 square root of straight a plus straight x end root square root of straight a minus straight x end root over denominator left parenthesis straight a plus straight x right parenthesis minus left parenthesis straight a minus straight x right parenthesis end fraction equals fraction numerator 2 straight a minus 2 square root of straight a squared minus straight x squared end root over denominator 2 straight x end fraction equals fraction numerator straight a minus square root of straight a squared minus straight x squared end root over denominator straight x end fraction
therefore space dy over dx equals fraction numerator straight x begin display style straight d over dx end style open parentheses straight a minus square root of straight a squared minus straight x squared end root close parentheses minus open parentheses straight a minus square root of straight a squared minus straight x squared end root close parentheses begin display style straight d over dx end style left parenthesis straight x right parenthesis over denominator straight x squared end fraction
equals fraction numerator straight x open parentheses 0 minus begin display style fraction numerator negative 2 straight x over denominator 2 square root of straight a squared minus straight x squared end root end fraction end style close parentheses minus open parentheses straight a minus square root of straight a squared minus straight x squared end root close parentheses.1 over denominator straight x squared end fraction equals fraction numerator begin display style fraction numerator straight x squared over denominator square root of straight a squared minus straight x squared end root end fraction end style minus straight a plus square root of straight a squared minus straight x squared end root over denominator straight x squared end fraction
equals fraction numerator straight x squared minus straight a square root of straight a squared minus straight x squared end root plus straight a squared minus straight x squared over denominator straight x squared square root of straight a squared minus straight x squared end root end fraction equals fraction numerator straight a squared minus straight a square root of straight a squared minus straight x squared end root over denominator straight x squared square root of straight a squared minus straight x squared end root end fraction
    Question 173
    CBSEENMA12034723

    Differentiate square root of a italic plus square root of a italic plus square root of a italic plus x to the power of italic 2 end root end root end root w.r.t x

    Solution
    Let space straight y equals square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root equals open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets to the power of begin inline style 1 half end style end exponent
therefore space dy over dx equals 1 half open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets to the power of negative 1 half end exponent straight d over dx open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times straight d over dx open parentheses straight a plus square root of straight a plus straight x squared end root close parentheses to the power of begin inline style 1 half end style end exponent
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times 1 half open parentheses straight a plus square root of straight a plus straight x squared end root close parentheses to the power of begin inline style negative 1 half end style end exponent. straight d over dx left parenthesis straight a plus straight x squared right parenthesis to the power of begin inline style 1 half end style end exponent
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x squared end root end root end fraction cross times 1 half left parenthesis straight a plus straight x squared right parenthesis to the power of begin inline style negative 1 half end style end exponent straight d over dx left parenthesis straight a plus straight x squared right parenthesis
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x squared end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus straight x squared end root end fraction cross times 2 straight x
equals fraction numerator 1 over denominator 4 square root of straight a plus straight x squared end root square root of straight a plus square root of straight a plus straight x squared end root end root square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction
    Question 174
    CBSEENMA12034724

    If space straight y equals square root of straight a plus square root of straight a plus straight x end root end root comma space find space dy over dx.

    Solution
    Let space space straight y equals square root of straight a plus square root of straight a plus straight x end root end root
therefore space dy over dx equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x end root end root end fraction. straight d over dx open parentheses straight a plus square root of straight a plus straight x end root close parentheses
space space space space space space space space space space space space space equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x end root end root end fraction cross times open parentheses 0 plus fraction numerator 1 over denominator 2 square root of straight a plus straight x end root end fraction close parentheses equals fraction numerator 1 over denominator 4 square root of straight a plus square root of straight a plus straight x end root end root. square root of straight a plus straight x end root end fraction
    Question 175
    CBSEENMA12034725

    If space straight y equals square root of 4 plus square root of 4 plus square root of 4 plus straight x squared end root end root end root comma space find space dy over dx.

    Solution

    Solution not provided

    Question 176
    CBSEENMA12034727
    Question 177
    CBSEENMA12034729

    Differentiate log open parentheses fraction numerator straight x squared plus straight x plus 1 over denominator straight x squared minus straight x plus 1 end fraction close parentheses

    Solution
    Let space straight y equals log open parentheses fraction numerator straight x squared plus straight x plus 1 over denominator straight x squared minus straight x plus 1 end fraction close parentheses
therefore space straight y equals log left parenthesis straight x squared plus straight x plus 1 right parenthesis minus log left parenthesis straight x squared minus straight x plus 1 right parenthesis
dy over dx equals fraction numerator 1 over denominator straight x squared plus straight x plus 1 end fraction cross times straight d over dx left parenthesis straight x squared plus straight x plus 1 right parenthesis minus fraction numerator 1 over denominator straight x squared minus straight x plus 1 end fraction cross times straight d over dx left parenthesis straight x squared minus straight x plus 1 right parenthesis
space space space space space space space space equals fraction numerator 1 over denominator straight x squared plus straight x plus 1 end fraction cross times left parenthesis 2 straight x plus 1 right parenthesis equals negative fraction numerator 1 over denominator straight x squared minus straight x plus 1 end fraction cross times left parenthesis 2 straight x minus 1 right parenthesis
space space space space space space space space equals fraction numerator 2 straight x plus 1 over denominator straight x squared plus straight x plus 1 end fraction minus fraction numerator 2 straight x minus 1 over denominator straight x squared minus straight x plus 1 end fraction
    Question 178
    CBSEENMA12034731

    Differentiate log open parentheses straight x plus square root of straight a squared plus straight x squared end root close parentheses w.r.t x.

    Solution
    Let space straight y equals log open parentheses straight x plus square root of straight a squared plus straight x squared end root close parentheses
dy over dx equals fraction numerator 1 over denominator straight x plus square root of straight a squared plus straight x squared end root end fraction cross times straight d over dx open square brackets straight x plus left parenthesis straight a squared plus straight x squared right parenthesis to the power of begin inline style 1 half end style end exponent close square brackets
equals fraction numerator 1 over denominator straight x plus square root of straight a squared plus straight x squared end root end fraction cross times open square brackets 1 plus 1 half left parenthesis straight a squared plus straight x squared right parenthesis to the power of negative begin inline style 1 half end style end exponent straight d over dx left parenthesis straight a squared plus straight x squared right parenthesis close square brackets
equals fraction numerator 1 over denominator straight x plus square root of straight a squared plus straight x squared end root end fraction cross times open square brackets 1 plus fraction numerator 1 over denominator 2 square root of straight a squared plus straight x squared end root end fraction.2 straight x close square brackets
equals fraction numerator 1 over denominator straight x plus square root of straight a squared plus straight x squared end root end fraction cross times open square brackets 1 plus fraction numerator 1 over denominator square root of straight a squared plus straight x squared end root end fraction close square brackets
equals fraction numerator 1 over denominator straight x plus square root of straight a squared plus straight x squared end root end fraction cross times open square brackets fraction numerator square root of straight a squared plus straight x squared end root plus straight x over denominator square root of straight a squared plus straight x squared end root end fraction close square brackets equals fraction numerator 1 over denominator square root of straight a squared plus straight x squared end root end fraction
    Question 179
    CBSEENMA12034733
    Question 180
    CBSEENMA12034734
    Question 181
    CBSEENMA12034737
    Question 182
    CBSEENMA12034739
    Question 183
    CBSEENMA12034740
    Question 184
    CBSEENMA12034741
    Question 185
    CBSEENMA12034742
    Question 186
    CBSEENMA12034743
    Question 187
    CBSEENMA12034744
    Question 188
    CBSEENMA12034745
    Question 189
    CBSEENMA12034746

    Differentiate : 5 to the power of square root of straight x squared plus 1 end root end exponent plus open parentheses square root of straight x squared plus 1 end root close parentheses to the power of 5w.r.t x.

    Solution
    Let space straight y equals 5 to the power of square root of straight x squared plus 1 end root end exponent plus open parentheses square root of straight x squared plus 1 end root close parentheses to the power of 5 equals 5 to the power of square root of straight x squared plus 1 end root end exponent plus left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 5 over 2 end style end exponent
therefore space dy over dx equals 5 to the power of square root of straight x squared plus 1 end root end exponent. log space 5. straight d over dx left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 1 half end style end exponent plus 5 over 2 left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 3 over 2 end style end exponent. straight d over dx left parenthesis straight x squared plus 1 right parenthesis
space space space space space space space space space space space space space equals 5 to the power of square root of straight x squared plus 1 end root end exponent. log space 5.1 half left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style negative 1 half end style end exponent.2 straight x plus 5 over 2 left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 3 over 2 end style end exponent.2 straight x
space space space space space space space space space space space space space equals fraction numerator 5 to the power of square root of straight x squared plus 1 end root end exponent. log space 5 over denominator square root of straight x squared plus 1 end root end fraction plus 5 straight x left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 3 over 2 end style end exponent.
    Question 190
    CBSEENMA12034748

    Differentiate : straight x square root of straight x squared plus 1 end root plus log open parentheses square root of straight x squared plus 1 end root close parentheses w.r.t x.

    Solution
    Let space straight y equals straight x square root of straight x squared plus 1 end root plus log open parentheses square root of straight x squared plus 1 end root close parentheses
dy over dx equals straight x straight d over dx left parenthesis straight x squared plus 1 right parenthesis to the power of begin inline style 1 half end style end exponent plus square root of straight x squared plus 1 end root straight d over dx left parenthesis straight x right parenthesis plus fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction cross times straight d over dx open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses
space space space space space space space space equals straight x.1 half left parenthesis straight x squared plus 1 right parenthesis to the power of negative begin inline style 1 half end style end exponent.2 straight x plus square root of straight x squared plus 1 end root.1 plus fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction cross times open square brackets 1 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction close square brackets
space space space space space space space space equals fraction numerator straight x squared over denominator square root of straight x squared plus 1 end root end fraction plus fraction numerator square root of straight x squared plus 1 end root over denominator 1 end fraction plus fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction cross times fraction numerator square root of straight x squared plus 1 end root plus straight x over denominator square root of straight x squared plus 1 end root end fraction
space space space space space space space space equals fraction numerator straight x squared over denominator square root of straight x squared plus 1 end root end fraction plus fraction numerator square root of straight x squared plus 1 end root over denominator 1 end fraction plus fraction numerator 1 over denominator square root of straight x squared plus 1 end root end fraction equals fraction numerator straight x squared plus straight x squared plus 1 plus 1 over denominator square root of straight x squared plus 1 end root end fraction equals fraction numerator 2 left parenthesis straight x squared plus 1 right parenthesis over denominator square root of straight x squared plus 1 end root end fraction equals 2 square root of straight x squared plus 1 end root.
    Question 191
    CBSEENMA12034750

    If space straight y equals square root of straight x squared plus 1 end root minus log open parentheses 1 over straight x plus square root of 1 plus 1 over straight x squared end root close parentheses comma space find space dy over dx.

    Solution
    Here space straight y equals square root of straight x squared plus 1 end root minus log open parentheses 1 over straight x plus square root of 1 plus 1 over straight x squared end root close parentheses
therefore space straight y equals square root of straight x squared plus 1 end root minus log open parentheses 1 over straight x plus square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root close parentheses
or space straight y equals square root of straight x squared plus 1 end root minus log open parentheses fraction numerator 1 plus square root of straight x squared plus 1 end root over denominator straight x end fraction close parentheses
therefore straight y equals square root of straight x squared plus 1 end root minus log open parentheses 1 plus square root of straight x squared plus 1 end root close parentheses plus log space straight x
therefore space dy over dx equals fraction numerator 1 over denominator 2 square root of straight x squared plus 1 end root end fraction. straight d over dx left parenthesis straight x squared plus 1 right parenthesis minus fraction numerator 1 over denominator 1 plus square root of straight x squared plus 1 end root end fraction. straight d over dx open parentheses 1 plus square root of straight x squared plus 1 end root close parentheses plus 1 over straight x
space space space space space space space space space space space space space equals fraction numerator 1 over denominator 2 square root of straight x squared plus 1 end root end fraction.2 straight x minus fraction numerator 1 over denominator 1 plus square root of straight x squared plus 1 end root end fraction. open parentheses 0 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction close parentheses plus 1 over straight x
space space space space space space space space space space space space space equals fraction numerator straight x over denominator square root of straight x squared plus 1 end root end fraction minus fraction numerator straight x over denominator square root of straight x squared plus 1 end root open parentheses 1 plus square root of straight x squared plus 1 end root close parentheses end fraction plus 1 over straight x
equals fraction numerator straight x over denominator square root of straight x squared plus 1 end root end fraction open square brackets 1 minus fraction numerator 1 over denominator 1 plus square root of straight x squared plus 1 end root end fraction close square brackets plus 1 over straight x equals fraction numerator straight x over denominator square root of straight x squared plus 1 end root end fraction open square brackets fraction numerator 1 plus square root of straight x squared plus 1 end root minus 1 over denominator 1 plus square root of straight x squared plus 1 end root end fraction close square brackets plus 1 over straight x
equals fraction numerator straight x over denominator square root of straight x squared plus 1 end root end fraction cross times fraction numerator square root of straight x squared plus 1 end root over denominator 1 plus square root of straight x squared plus 1 end root end fraction plus 1 over straight x equals fraction numerator straight x over denominator 1 plus square root of straight x squared plus 1 end root end fraction plus 1 over straight x
    Question 192
    CBSEENMA12034752

    If space straight y equals fraction numerator straight e to the power of straight x minus straight e to the power of negative straight x end exponent over denominator straight e to the power of straight x plus straight e to the power of negative straight x end exponent end fraction comma space prove space that space dy over dx equals 1 minus straight y squared.

    Solution
    straight y equals fraction numerator straight e to the power of straight x minus straight e to the power of negative straight x end exponent over denominator straight e to the power of straight x plus straight e to the power of negative straight x end exponent end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space dy over dx equals fraction numerator left parenthesis bold e to the power of bold x bold plus bold e to the power of bold minus bold x end exponent right parenthesis begin display style straight d over dx end style left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis minus left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis begin display style straight d over dx end style left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis over denominator left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator left parenthesis bold e to the power of bold x bold plus bold e to the power of bold minus bold x end exponent right parenthesis left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis plus left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis over denominator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared minus left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis squared over denominator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared end fraction equals fraction numerator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared over denominator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared end fraction minus fraction numerator left parenthesis straight e to the power of straight x minus straight e to the power of negative straight x end exponent right parenthesis squared over denominator left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis squared end fraction
therefore space dy over dx equals 1 minus straight y squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket space space space space space space space space space
    Question 193
    CBSEENMA12034753

    If space straight y equals fraction numerator 3 minus straight u over denominator 2 plus straight u end fraction comma straight u equals fraction numerator 4 straight x over denominator 1 minus straight x squared end fraction space find space dy over dx

    Solution
    Here space straight y equals fraction numerator 3 minus straight u over denominator 2 plus straight u end fraction
therefore space dy over dx equals fraction numerator left parenthesis 2 plus straight u right parenthesis begin display style straight d over du end style left parenthesis 3 minus straight u right parenthesis minus left parenthesis 3 minus straight u right parenthesis begin display style straight d over du end style left parenthesis 2 plus straight u right parenthesis over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction equals fraction numerator left parenthesis 2 plus straight u right parenthesis left parenthesis negative 1 right parenthesis minus left parenthesis 3 minus straight u right parenthesis.1 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction
space space space space space space space space space space space space equals fraction numerator 2 minus straight u minus 3 plus straight u over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction
therefore space dy over dx equals negative fraction numerator 5 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also space straight u equals fraction numerator 4 straight x over denominator 1 minus straight x squared end fraction equals 4 open square brackets fraction numerator straight x over denominator 1 minus straight x squared end fraction close square brackets
therefore space du over dx equals 4 open curly brackets fraction numerator left parenthesis 1 minus straight x squared right parenthesis begin display style straight d over dx end style left parenthesis straight x right parenthesis minus straight x. begin display style straight d over dx end style left parenthesis 1 minus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close curly brackets
space space space space space space space space space space space space space equals 4 open square brackets fraction numerator left parenthesis 1 minus straight x squared right parenthesis.1 minus straight x. left parenthesis negative 2 straight x right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close square brackets equals 4 open square brackets fraction numerator 1 minus straight x squared plus 2 straight x squared over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close square brackets
therefore space du over dx equals fraction numerator 4 left parenthesis 1 minus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space dy over dx equals dy over du. du over dx equals negative fraction numerator 5 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction. fraction numerator 4 left parenthesis 1 plus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis right square bracket
space space space space space space space space space space space space space space space space space equals fraction numerator negative 5 left parenthesis 1 minus straight x squared right parenthesis squared over denominator 4 left parenthesis 1 plus 2 straight x minus straight x squared right parenthesis squared end fraction. fraction numerator 4 left parenthesis 1 plus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction equals negative fraction numerator 5 left parenthesis 1 minus straight x squared right parenthesis squared over denominator left parenthesis 1 plus 2 straight x minus straight x squared right parenthesis squared end fraction
    Question 194
    CBSEENMA12034754

    Find space dy over dx space when space straight y equals straight v to the power of 4 over 4 space and space straight v equals 2 over 3 straight x cubed plus 7

    Solution
    Here space straight y equals straight v to the power of 4 over 4 comma straight v equals 2 over 3 straight x cubed plus 7 equals 1 third left parenthesis 2 straight x cubed plus 21 right parenthesis
therefore space space space space space space straight y equals 1 fourth open square brackets 1 third left parenthesis 2 straight x cubed plus 21 right parenthesis close square brackets to the power of 4 equals 1 over 324 left parenthesis 2 straight x cubed plus 21 right parenthesis to the power of 4
therefore space dy over dx equals 1 over 324.4 left parenthesis 2 straight x cubed plus 21 right parenthesis cubed. straight d over dx left parenthesis 2 straight x cubed plus 21 right parenthesis
space space space space space space space space space space space space space equals 1 over 81 left parenthesis 2 straight x cubed plus 21 right parenthesis. left parenthesis 6 straight x squared plus 0 right parenthesis
space space space space space space space space space space space space space equals fraction numerator 2 straight x squared left parenthesis 2 straight x cubed plus 21 right parenthesis cubed over denominator 27 end fraction
    Question 195
    CBSEENMA12034755
    Question 196
    CBSEENMA12034757

    If space straight y equals open vertical bar table row cell straight f left parenthesis straight x right parenthesis end cell cell straight g left parenthesis straight x right parenthesis end cell cell straight h left parenthesis straight x right parenthesis end cell row straight l straight m straight n row straight a straight b straight c end table close vertical bar comma space prove space that space dy over dx equals open vertical bar table row cell straight f apostrophe left parenthesis straight x right parenthesis end cell cell straight g apostrophe left parenthesis straight x right parenthesis end cell cell straight h apostrophe left parenthesis straight x right parenthesis end cell row straight l straight m straight n row straight a straight b straight c end table close vertical bar

    Solution
    space straight y equals open vertical bar table row cell straight f left parenthesis straight x right parenthesis end cell cell straight g left parenthesis straight x right parenthesis end cell cell straight h left parenthesis straight x right parenthesis end cell row straight l straight m straight n row straight a straight b straight c end table close vertical bar equals straight f left parenthesis straight x right parenthesis open vertical bar table row straight m straight n row straight n straight c end table close vertical bar minus straight g left parenthesis straight x right parenthesis open vertical bar table row straight l straight n row straight a straight c end table close vertical bar plus straight h left parenthesis straight x right parenthesis open vertical bar table row straight l straight m row straight a straight b end table close vertical bar
therefore space straight y equals left parenthesis cm minus bn right parenthesis straight f left parenthesis straight x right parenthesis minus left parenthesis cl minus an right parenthesis straight g left parenthesis straight x right parenthesis plus left parenthesis bl minus am right parenthesis straight h left parenthesis straight x right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma space we space get comma
dy over dx equals left parenthesis cm minus bn right parenthesis straight f apostrophe left parenthesis straight x right parenthesis minus left parenthesis cl minus an right parenthesis straight g apostrophe left parenthesis straight x right parenthesis plus left parenthesis bl minus am right parenthesis straight h apostrophe left parenthesis straight x right parenthesis
space space space space space space space space equals open vertical bar table row straight m straight n row straight b straight c end table close vertical bar straight f apostrophe left parenthesis straight x right parenthesis minus open vertical bar table row straight l straight n row straight a straight c end table close vertical bar straight g apostrophe left parenthesis straight x right parenthesis plus open vertical bar table row straight l straight m row straight a straight b end table close vertical bar straight h apostrophe left parenthesis straight x right parenthesis
therefore space dy over dx equals open vertical bar table row cell straight f apostrophe left parenthesis straight x right parenthesis end cell cell straight g apostrophe left parenthesis straight x right parenthesis end cell cell straight h apostrophe left parenthesis straight x right parenthesis end cell row straight l straight m straight n row straight a straight b straight c end table close vertical bar
    Question 197
    CBSEENMA12034758

    Find space dy over dx space when space straight x equals straight a space straight t squared comma space straight y equals 2 at.

    Solution
    Here space straight x equals at squared space space space space space rightwards double arrow dx over dt equals 2 at
Also space straight y equals 2 at space space space space space rightwards double arrow dy over dt equals 2 straight a
Now space dy over dt equals fraction numerator dy over dt over denominator dx over dt end fraction fraction numerator 2 straight a over denominator 2 at end fraction equals 1 over straight t
    Question 198
    CBSEENMA12034759

    Find space dy over dx space when space straight x equals ct comma space straight y equals straight c over straight t

    Solution
    Here space straight x equals ct space space space space space space space space space space space rightwards double arrow dx over dt equals straight c
Also space straight y equals straight c over straight t equals ct to the power of 1 space space space space space space space space space rightwards double arrow dy over dt equals negative ct to the power of negative 2 end exponent equals negative straight c over straight t squared
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator negative straight c over straight t squared over denominator straight c end fraction equals negative 1 over straight t squared
    Question 199
    CBSEENMA12034761

    If space straight y equals straight t squared plus straight t cubed space and space straight x equals straight t minus straight t to the power of 4 comma space find space dy over dx

    Solution
    Here space straight y equals straight t squared plus straight t cubed comma space straight x equals straight t minus straight t to the power of 4
therefore space dy over dt equals 2 straight t plus 3 straight t squared comma space dx over dt equals 1 minus 4 straight t cubed
space space space space space space dy over dx equals fraction numerator dy over dt over denominator dx over dt end fraction equals fraction numerator 2 straight t plus 3 straight t squared over denominator 1 minus 4 straight t cubed end fraction
    Question 200
    CBSEENMA12034762

    Find space dy over dx space where space straight x equals 2 at squared comma space straight y equals at to the power of 4

    Solution
    Here space straight y equals straight t squared plus straight t cubed comma space straight x equals straight t minus straight t to the power of 4
therefore space dy over dt equals 2 straight t plus 3 straight t squared comma space dx over dt equals 1 minus 4 straight t cubed
space space space space space space dy over dx equals fraction numerator dy over dt over denominator dx over dt end fraction equals fraction numerator 2 straight t plus 3 straight t squared over denominator 1 minus 4 straight t cubed end fraction
    Question 201
    CBSEENMA12034764

    Find space dy over dx space where space straight x equals 4 straight t comma space straight y equals 4 over straight t

    Solution
    straight x equals 2 at squared comma space straight y equals at to the power of 4
therefore space dx over dt equals 4 at comma space dy over dt equals 4 at cubed
Now space dy over dx equals fraction numerator dx over dt over denominator dy over dt end fraction equals fraction numerator 4 at over denominator 4 at cubed end fraction equals straight t squared
    Question 202
    CBSEENMA12034765

    If space straight x equals straight a open parentheses fraction numerator 1 plus straight t squared over denominator 1 minus straight t squared end fraction close parentheses space and space straight y equals fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction comma space find space dy over dx.

    Solution
    Here space space straight x equals straight a open parentheses fraction numerator 1 plus straight t squared over denominator 1 minus straight t squared end fraction close parentheses space
therefore space dx over dt equals straight a open square brackets fraction numerator left parenthesis 1 minus straight t squared right parenthesis. begin display style straight d over dt end style left parenthesis 1 plus straight t squared right parenthesis minus left parenthesis 1 plus straight t squared right parenthesis. begin display style straight d over dt end style left parenthesis 1 minus straight t squared right parenthesis over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction close square brackets
space space space space space space space space space space space space space equals straight a open square brackets fraction numerator left parenthesis 1 minus straight t squared right parenthesis. left parenthesis 2 straight t right parenthesis minus left parenthesis 1 plus straight t squared right parenthesis. left parenthesis negative 2 straight t right parenthesis over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction close square brackets equals straight a open square brackets fraction numerator 2 straight t minus 2 straight t cubed plus 2 straight t plus 2 straight t cubed over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction close square brackets equals fraction numerator 4 at over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction
space space space space space space space space space space space straight y equals fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction
therefore space dy over dt equals fraction numerator left parenthesis 1 minus straight t squared right parenthesis. begin display style straight d over dt end style left parenthesis 2 straight t right parenthesis minus left parenthesis 2 straight t right parenthesis. begin display style fraction numerator straight d over denominator dt left parenthesis 1 minus straight t squared right parenthesis end fraction end style over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator left parenthesis 1 minus straight t squared right parenthesis.2 minus left parenthesis 2 straight t right parenthesis. begin display style left parenthesis negative 2 straight t right parenthesis end style over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction equals fraction numerator 2 minus 2 straight t squared plus 4 straight t squared over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction equals fraction numerator 2 plus 2 straight t squared over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction equals fraction numerator 2 left parenthesis 1 minus straight t squared right parenthesis over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator 2 left parenthesis 1 minus straight t squared right parenthesis over denominator left parenthesis 1 minus straight t squared right parenthesis squared end fraction cross times fraction numerator left parenthesis 1 minus straight t squared right parenthesis squared over denominator 4 at end fraction
therefore space space space space space dy over dt equals fraction numerator 1 plus straight t squared over denominator 2 at end fraction
    Question 203
    CBSEENMA12034767

    If space straight x equals fraction numerator 1 minus straight t squared over denominator 1 plus straight t squared end fraction comma space straight y equals fraction numerator 2 straight t over denominator 1 plus straight t squared end fraction comma space prove space that space dy over dx plus straight x over straight y equals 0.

    Solution
    Here space space straight x equals fraction numerator 1 minus straight t squared over denominator 1 plus straight t squared end fraction
therefore space dx over dt equals fraction numerator left parenthesis 1 plus straight t squared right parenthesis begin display style straight d over dt end style left parenthesis 1 minus straight t squared right parenthesis minus left parenthesis 1 minus straight t squared right parenthesis begin display style straight d over dt end style left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis end fraction
space space space space space space space space space space space space space equals fraction numerator left parenthesis 1 plus straight t squared right parenthesis left parenthesis negative 2 straight t right parenthesis minus left parenthesis 1 minus straight t squared right parenthesis left parenthesis 2 straight t right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction equals fraction numerator negative 2 straight t minus 2 straight t cubed minus 2 straight t plus 2 straight t cubed over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
therefore space dx over dt equals negative fraction numerator 4 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
Now space space straight y equals fraction numerator 2 straight t over denominator 1 plus straight t squared end fraction
therefore space dy over dt equals fraction numerator left parenthesis 1 plus straight t squared right parenthesis.2 minus 2 straight t.2 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction equals fraction numerator 2 plus 2 straight t squared minus 4 straight t squared over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction equals fraction numerator 2 minus 2 straight t squared over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
therefore space dy over dx equals fraction numerator 2 left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
therefore space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator 2 left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction cross times fraction numerator left parenthesis 1 plus straight t squared right parenthesis squared over denominator negative 4 straight t squared end fraction equals negative fraction numerator 1 minus straight t squared over denominator 2 straight t end fraction
straight L. straight H. straight S equals dy over dx plus straight x over straight y
space space space space space space space space space space space equals negative fraction numerator 1 minus straight t squared over denominator 2 straight t end fraction plus fraction numerator 1 minus straight t squared over denominator 1 plus straight t squared end fraction cross times fraction numerator 1 plus straight t squared over denominator 2 straight t end fraction equals negative fraction numerator 1 minus straight t squared over denominator 2 straight t end fraction plus fraction numerator 1 plus straight t squared over denominator 2 straight t end fraction equals 0 equals straight R. straight H. straight S
    Question 204
    CBSEENMA12034768

    Find space dy over dx space where space straight x equals fraction numerator straight a left parenthesis 1 minus straight t squared right parenthesis over denominator 1 minus straight t squared end fraction comma space straight y space equals fraction numerator 2 bt over denominator 1 minus straight t squared end fraction

    Solution
    Here space space straight x equals fraction numerator straight a left parenthesis 1 minus straight t squared right parenthesis over denominator 1 minus straight t squared end fraction equals straight a open square brackets fraction numerator 1 minus straight t squared over denominator 1 plus straight t squared end fraction close square brackets
dx over dt equals straight a open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis begin display style straight d over dt end style left parenthesis 1 minus straight t squared right parenthesis minus left parenthesis 1 minus straight t squared right parenthesis. begin display style straight d over dt end style left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
space space space space space space space space equals straight a open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis left parenthesis negative 2 straight t right parenthesis minus left parenthesis 1 minus straight t squared right parenthesis left parenthesis 2 straight t right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets equals straight a open square brackets fraction numerator negative 2 straight t minus 2 straight t cubed minus 2 straight t plus 2 straight t cubed over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
space space space space space space space space equals straight a open square brackets fraction numerator negative 4 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
therefore dx over dt equals negative fraction numerator 4 at over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also space straight y space equals fraction numerator 2 bt over denominator 1 minus straight t squared end fraction equals 2 straight b open square brackets fraction numerator straight t over denominator 1 plus straight t squared end fraction close square brackets
dy over dt equals 2 straight b open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis begin display style straight d over dt end style left parenthesis straight t right parenthesis minus straight t begin display style straight d over dt end style left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets equals 2 straight b open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis.1 minus straight t space.2 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
therefore space dy over dt equals fraction numerator 2 straight b left parenthesis 1 minus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator 2 straight b left parenthesis 1 minus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction cross times fraction numerator left parenthesis 1 plus straight t squared right parenthesis squared over denominator negative 4 at end fraction equals negative fraction numerator straight b left parenthesis 1 minus straight t squared right parenthesis over denominator 2 at end fraction.
    Question 205
    CBSEENMA12034769

    Here space straight x equals straight e to the power of straight t. space log space straight t
therefore space dx over dt equals straight e to the power of straight t. straight d over dt left parenthesis log space straight t right parenthesis plus log space straight t. straight d over dt left parenthesis straight e to the power of straight t right parenthesis equals straight e to the power of straight t.1 over straight t plus log space straight t. straight e to the power of straight t equals straight e to the power of straight t open parentheses 1 over straight t plus log space straight t close parentheses
therefore dx over dt equals straight e to the power of straight t open parentheses fraction numerator 1 plus straight t space log space straight t over denominator straight t end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also space straight y equals straight t. space log space straight t
therefore space dy over dt equals straight t. straight d over dt left parenthesis log space straight t right parenthesis plus log space straight t space straight d over dt left parenthesis straight t right parenthesis equals straight t.1 over straight t plus log space straight t.1
therefore space dy over dt equals 1. space log space straight t space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator straight t left parenthesis 1. space log space straight t right parenthesis over denominator straight e to the power of straight t left parenthesis 1 plus straight t space log space straight t right parenthesis end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis comma left parenthesis 2 right parenthesis right square bracket

    Solution
    Question 206
    CBSEENMA12034772

    Find space dy over dx when space straight x equals fraction numerator 3 at over denominator 1 plus straight t cubed end fraction comma space straight y equals fraction numerator 3 at squared over denominator 1 plus straight t cubed end fraction

    Solution
    space straight x equals fraction numerator 3 at over denominator 1 plus straight t cubed end fraction comma space straight y equals fraction numerator 3 at squared over denominator 1 plus straight t cubed end fraction
therefore space dx over dt equals fraction numerator left parenthesis 1 plus straight t cubed right parenthesis begin display style straight d over dt end style left parenthesis 3 at right parenthesis minus 3 at begin display style straight d over dt end style left parenthesis 1 plus straight t cubed right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator left parenthesis 1 plus straight t cubed right parenthesis.3 straight a minus 3 at. space 3 straight t squared over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction equals fraction numerator 3 straight a left parenthesis 1 minus 2 straight t cubed right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction
and space dy over dt equals fraction numerator left parenthesis 1 plus straight t cubed right parenthesis begin display style straight d over dt end style left parenthesis 3 at squared right parenthesis minus 3 at squared begin display style straight d over dt end style left parenthesis 1 plus straight t cubed right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction
space space space space space space space space space space space space space space space space equals fraction numerator left parenthesis 1 plus straight t cubed right parenthesis.6 at minus 3 at squared. space 3 straight t squared right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction equals fraction numerator 3 at left parenthesis 2 minus straight t cubed right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction
therefore space dy over dt equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator 3 at left parenthesis 2 minus straight t cubed right parenthesis over denominator left parenthesis 1 plus straight t cubed right parenthesis squared end fraction cross times fraction numerator left parenthesis 1 plus straight t cubed right parenthesis squared over denominator 3 straight a left parenthesis 1 minus 2 straight t cubed right parenthesis end fraction equals fraction numerator straight t left parenthesis 2 minus straight t cubed right parenthesis over denominator 1 minus 2 straight t cubed end fraction
    Question 207
    CBSEENMA12034773

    If space space straight x equals fraction numerator 3 at over denominator 1 plus straight t squared end fraction comma space straight y equals fraction numerator 3 at squared over denominator 1 plus straight t squared end fraction comma space then space find space dy over dt space at space straight t equals 2

    Solution
    straight x equals fraction numerator 3 at over denominator 1 plus straight t squared end fraction comma space straight y equals fraction numerator 3 at squared over denominator 1 plus straight t squared end fraction
therefore space dx over dt equals 3 straight a straight d over dt open square brackets fraction numerator straight t over denominator 1 plus straight t squared end fraction close square brackets equals 3 straight a open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis.1 minus straight t. space 2 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets equals 3 straight a open square brackets fraction numerator 1 plus straight t squared minus 2 straight t squared over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
therefore space dx over dt equals fraction numerator 3 straight a left parenthesis 1 plus straight t squared right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
Also space dy over dt equals 3 straight a straight d over dt open square brackets fraction numerator straight t squared over denominator 1 plus straight t squared end fraction close square brackets equals 3 straight a open square brackets fraction numerator left parenthesis 1 plus straight t squared right parenthesis.2 straight t minus straight t squared.2 straight t over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets
space space space space space space space space space space space space space space space space space equals 3 straight a open square brackets fraction numerator 2 straight t plus 2 straight t cubed minus 2 straight t cubed over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction close square brackets equals fraction numerator 3 straight a left parenthesis 2 straight t right parenthesis over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
therefore space dy over dt equals fraction numerator 6 at over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction
Now space dy over dt equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator 6 at over denominator left parenthesis 1 plus straight t squared right parenthesis squared end fraction cross times fraction numerator left parenthesis 1 plus straight t squared right parenthesis squared over denominator 3 straight a left parenthesis 1 plus straight t squared right parenthesis end fraction
therefore space dy over dt equals fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction
At space straight t equals 2 comma space dy over dx equals fraction numerator 2 cross times 2 over denominator 1 minus 4 end fraction equals fraction numerator 4 over denominator negative 3 end fraction equals negative 4 over 3.
    Question 208
    CBSEENMA12034774

    If space straight x equals fraction numerator 1 plus log space straight t over denominator straight t squared end fraction comma space straight y equals fraction numerator 3 plus 2 space log space straight t over denominator straight t end fraction comma space straight t greater than 0 comma space prove space that space straight y dy over dx minus 2 straight x open parentheses dy over dx close parentheses squared equals 1

    Solution
    Here space straight x equals fraction numerator 1 plus log space straight t over denominator straight t squared end fraction comma space straight y equals fraction numerator 3 plus 2 space log space straight t over denominator straight t end fraction
therefore space dx over dt equals fraction numerator left parenthesis straight t squared right parenthesis. begin display style straight d over dt end style left parenthesis 1 plus log space straight t right parenthesis minus left parenthesis 1 plus log space straight t right parenthesis. begin display style straight d over dt end style left parenthesis straight t squared right parenthesis over denominator left parenthesis straight t squared right parenthesis squared end fraction
equals fraction numerator straight t squared. begin display style 1 over straight t end style minus left parenthesis 1 plus log space straight t right parenthesis.2 straight t over denominator straight t to the power of 4 end fraction equals fraction numerator 1 minus 2 minus 2 space lg space straight t over denominator straight t cubed end fraction equals fraction numerator negative 1 minus 2 space log space straight t over denominator straight t cubed end fraction
therefore space dx over dt equals negative fraction numerator 1 plus 2 space log space straight t over denominator straight t cubed end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also space dy over dt equals fraction numerator straight t. begin display style straight d over dt end style left parenthesis 3 plus 2 space log space straight t right parenthesis minus left parenthesis 3 plus 2 space log space straight t right parenthesis. begin display style straight d over dt end style left parenthesis straight t right parenthesis over denominator straight t squared end fraction
space space space space space space space space space space space space space space space space space equals fraction numerator straight t. begin display style 2 over straight t end style minus left parenthesis 3 plus 2 space log space straight t right parenthesis.1 over denominator straight t squared end fraction equals fraction numerator 2 minus 3 minus 2 space log space straight t over denominator straight t squared end fraction equals fraction numerator negative 1 minus 2 space log space straight t over denominator straight t squared end fraction
therefore space dy over dt equals negative fraction numerator 1 plus 2 space log space straight t over denominator straight t squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals open parentheses negative fraction numerator 1 plus 2 space log space straight t over denominator straight t squared end fraction space close parentheses cross times open parentheses negative fraction numerator straight t cubed over denominator 1 plus 2 space log space straight t end fraction close parentheses space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis comma left parenthesis 2 right parenthesis right square bracket
therefore space dy over dx equals straight t space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
straight L. straight H. straight S equals straight y dy over dx minus 2 straight x open parentheses dy over dx close parentheses squared
space space space space space space space space space space space equals open parentheses fraction numerator 3 plus 2 space log over denominator straight t end fraction close parentheses left parenthesis straight t right parenthesis minus 2 open parentheses fraction numerator 1 plus space log space straight t over denominator straight t squared end fraction close parentheses left parenthesis straight t squared right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 3 right parenthesis right square bracket
space space space space space space space space space space space equals left parenthesis 3 plus 2 space log space straight t right parenthesis minus 2 left parenthesis 1 plus log space straight t right parenthesis equals 3 plus 2 log space straight t minus 2 minus 2 space log
space space space space space space space space space space space equals 1 equals straight R. straight H. straight S.
    Question 209
    CBSEENMA12034775

    For space straight a space positive space constant space straight a space find space dy over dx comma space where space straight y equals straight a to the power of straight t plus 1 over straight t end exponent comma space and space straight x equals open parentheses straight t plus 1 over straight t close parentheses to the power of straight a.

    Solution
    space space space space space space space space space space space space space space space straight x equals open parentheses straight t plus 1 over straight t close parentheses to the power of straight a comma space straight y equals straight a to the power of straight t plus 1 over straight t end exponent
therefore space space space space space dx over dt equals straight a open parentheses straight t plus 1 over straight t close parentheses to the power of straight a minus 1 end exponent. straight d over dx open parentheses straight t plus 1 over straight t close parentheses
therefore space space space space space dx over dt equals space straight a open parentheses straight t plus 1 over straight t close parentheses to the power of straight a minus 1 end exponent. open parentheses straight t minus 1 over straight t squared close parentheses equals straight a open parentheses straight t plus 1 over straight t close parentheses to the power of straight a minus 1 end exponent. open parentheses fraction numerator straight t squared minus 1 over denominator straight t squared end fraction close parentheses
Also space dy over dt equals straight a to the power of straight t plus 1 over straight t end exponent log space straight a. straight d over dt open parentheses straight t plus 1 over straight t close parentheses equals straight a to the power of straight t plus 1 over straight t end exponent log space straight a. open parentheses 1 minus 1 over straight t squared close parentheses
therefore space dy over dt equals straight a to the power of straight t plus 1 over straight t end exponent open parentheses fraction numerator straight t squared minus 1 over denominator straight t squared end fraction close parentheses log space straight a
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator straight a to the power of straight t plus 1 over straight t end exponent open parentheses fraction numerator straight t squared minus 1 over denominator straight t squared end fraction close parentheses log space straight a over denominator straight a open parentheses straight t plus 1 over straight t close parentheses to the power of straight a minus 1 end exponent open parentheses fraction numerator straight t squared minus 1 over denominator straight t squared end fraction close parentheses
end fraction
therefore space space space space space dy over dx equals fraction numerator straight a to the power of straight t plus 1 over straight t end exponent space log space straight a over denominator straight a open parentheses straight t plus 1 over straight t close parentheses to the power of straight a minus 1 end exponent end fraction.
    Question 210
    CBSEENMA12034776
    Question 211
    CBSEENMA12034778
    Question 212
    CBSEENMA12034779

    Differentiate space log space straight x space straight w. straight r. straight t space 1 over straight x

    Solution
    Let space space space space straight y equals log space straight x comma space straight u equals 1 over straight x equals straight x to the power of negative 1 end exponent
therefore space space space space space dy over dx equals 1 over straight x comma space du over dx equals negative 1 over straight x squared
Now space dy over du equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator begin display style 1 over straight x end style over denominator negative 1 over straight x squared end fraction equals negative 1 over straight x cross times straight x squared over 1 equals negative straight x.
    Question 213
    CBSEENMA12034780

    Differentiate space straight x squared space straight w. straight r. straight t space straight x cubed

    Solution
    Let space straight y equals straight x cubed comma space straight u equals straight x cubed
therefore space space space space space dy over dx equals 2 straight x comma space du over dx equals 3 straight x squared
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 straight x over denominator 3 straight x squared end fraction equals fraction numerator 2 over denominator 3 straight x end fraction
    Question 214
    CBSEENMA12034781
    Question 215
    CBSEENMA12034783

    Find space dy over dx space if space straight x to the power of 6 plus straight y to the power of 6 plus 6 straight x squared straight y squared equals 16.

    Solution
    We space have
space space space space space space space space space space space space space space space space space space straight x to the power of 6 plus straight y to the power of 6 plus 6 straight x squared straight y squared equals 16
Differentiating space both space sides space straight w. straight r. straight t space straight x comma space we space get comma
space space space space space space space space space space space space space space space space space space space 6 straight x to the power of 5 plus 6 straight y to the power of 5 dy over dx plus 6 open parentheses straight x squared.2 straight y dy over dx plus straight y squared.2 straight x close parentheses equals 0
therefore space space space straight x to the power of 5 plus straight y to the power of 5 dy over dx plus 2 straight x squared straight y dy over dx plus 2 xy squared equals 0
therefore space space left parenthesis straight y to the power of 5 plus 2 straight x squared straight y right parenthesis dy over dx equals negative left parenthesis straight x to the power of 5 plus 2 xy squared right parenthesis
therefore space space dy over dx equals negative fraction numerator straight x left parenthesis straight x to the power of 4 plus 2 straight y squared right parenthesis over denominator straight y left parenthesis straight y to the power of 4 plus 2 straight x squared right parenthesis end fraction
    Question 216
    CBSEENMA12034786
    Question 218
    CBSEENMA12034788

    Find space dy over dx space where space straight x squared over straight a squared plus straight y squared over straight b squared equals 2003

    Solution
    Here space straight x squared over straight a squared plus straight y squared over straight b squared equals 2003
Differentiating space both space sides space straight w. straight r. straight t. space space comma we space get comma
space space space fraction numerator 2 straight x over denominator straight a squared end fraction plus fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx equals 0
or space space space space space fraction numerator 2 by over denominator straight b squared end fraction dy over dx equals negative fraction numerator 2 straight x over denominator straight a squared end fraction
therefore space space space space dy over dx equals negative straight b squared over straight a squared straight x over straight y
    Question 219
    CBSEENMA12034789

    Solution
    Question 220
    CBSEENMA12034791

    Find space dy over straight d space where space straight x squared plus straight y squared equals 30 straight x space straight y

    Solution
    Here space straight x squared plus straight y squared equals 30 straight x space straight y
Differentiating space both space sides space straight w. straight r. straight t space space straight x comma space we space get comma
space space space space space space space space 3 straight x squared plus 2 straight y dy over dx equals 30 straight x dy over dx plus 30 straight y.1
therefore left parenthesis 2 straight y minus 30 straight x right parenthesis dy over dx equals 30 straight y minus 3 straight x squared
therefore space space space space space space space space space space space space space dy over dx equals fraction numerator 3 left parenthesis 10 straight y minus straight x squared right parenthesis over denominator 2 left parenthesis straight y minus 15 straight x right parenthesis end fraction
    Question 221
    CBSEENMA12034792

    Find space dy over dx space where space xy equals 100 left parenthesis straight x plus straight y right parenthesis

    Solution
    Here space space space space space space space space straight x space straight y equals 100 left parenthesis straight x plus straight y right parenthesis
Differentiating space both space sides space straight w. straight r. straight t space. straight x space comma space we space get comma
space space space space space space space space space space space straight x dy over dx plus straight y.1 equals 100 open parentheses 1 plus dy over dx close parentheses
therefore space space space space space space space space space space straight x dy over dx plus straight y equals 100 plus 100 dy over dx
therefore space space left parenthesis straight x minus 100 right parenthesis dy over dx equals 100 minus straight y
therefore space space space space space space space space space space space space space space space space space space dy over dx equals fraction numerator 100 minus straight y over denominator straight x minus 100 end fraction
    Question 222
    CBSEENMA12034793

    Find space dy over dx comma space where space straight y left parenthesis straight y plus 1 right parenthesis equals straight x left parenthesis straight x plus 1 right parenthesis left parenthesis straight x plus 2 right parenthesis

    Solution
    Here space straight y left parenthesis straight y plus 1 right parenthesis equals straight x left parenthesis straight x plus 1 right parenthesis left parenthesis straight x plus 2 right parenthesis
therefore space straight y squared plus straight y equals straight x cubed plus 3 straight x squared plus 2 straight x
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma space we space get comma
space space space space space 2 straight y dy over dx plus dy over dx equals 3 straight x squared plus 6 straight x plus 2
therefore space space space space left parenthesis 2 straight y plus 1 right parenthesis dy over dx equals 3 straight x squared plus 6 straight x plus 2
therefore space space space space space space space space space space space space space space space space space space dy over dx equals fraction numerator 3 straight x squared plus 6 straight x plus 2 over denominator 2 straight y plus 1 right parenthesis end fraction
    Question 223
    CBSEENMA12034794

    Find space dy over dx space where space left parenthesis straight x squared minus straight y squared right parenthesis squared equals 4 xy

    Solution
    Here space left parenthesis straight x squared minus straight y squared right parenthesis squared equals 4 xy
Differentiating space both space sides space straight w. straight r. straight t space straight x comma space we space get comma
space space 2 left parenthesis straight x squared minus straight y squared right parenthesis open parentheses 2 straight x minus 2 straight y dy over dx close parentheses equals 4 straight x dy over dx plus 4 straight y.1
therefore space 4 straight x left parenthesis straight x squared minus straight y squared right parenthesis minus 4 straight y left parenthesis straight x squared minus straight y squared right parenthesis dy over dx equals 4 straight x dy over dx plus 4 straight y
therefore space left square bracket straight x plus straight y left parenthesis straight x squared minus straight y squared right parenthesis right square bracket dy over dx equals straight x left parenthesis straight x squared minus straight y squared right parenthesis minus straight y
therefore space dy over dx equals fraction numerator straight x left parenthesis straight x squared minus straight y squared right parenthesis minus straight y over denominator straight x plus straight y left parenthesis straight x squared minus straight y squared right parenthesis end fraction
    Question 224
    CBSEENMA12034795

    Find space dy over dx where space square root of straight x plus square root of straight y equals 20

    Solution
    Here space square root of straight x plus square root of straight y equals 20
Differntiating space both space sides space straight w. straight r. tx comma space we space get comma
fraction numerator 1 over denominator 2 square root of straight x end fraction plus fraction numerator 1 over denominator 2 square root of straight y end fraction dy over dx equals 0
or space space space space space space space space space space space space space fraction numerator 1 over denominator 2 square root of straight y end fraction dy over dx equals negative fraction numerator 1 over denominator 2 square root of straight x end fraction
therefore space space space space space space space space space space space space space space space space space space space space space space space space space dy over dx equals negative fraction numerator square root of straight x over denominator square root of straight y end fraction
    Question 225
    CBSEENMA12034797

    Find space dy over dx where space space space ax squared plus 2 hxy plus by squared plus 2 gx plus 2 fy plus straight c equals 0

    Solution
    Here space space ax squared plus 2 hxy plus by squared plus 2 gx plus 2 fy plus straight c equals 0
Differentiatinfg space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space 2 ax plus 2 straight h open parentheses straight x dy over dx plus straight y.1 close parentheses plus 2 by dy over dx plus 2 straight g.1 plus 2 straight f plus 0 equals 0
therefore space ax plus hx dy over dx plus hy plus by dy over dx plus straight g plus straight f dy over dx equals 0
therefore space left parenthesis hx plus by plus straight f right parenthesis dy over dx equals negative left parenthesis ax plus hy plus straight g right parenthesis
rightwards double arrow space dy over dx equals negative fraction numerator ax plus hy plus straight g over denominator hx plus by plus straight f end fraction
    Question 226
    CBSEENMA12034798

    Find space dy over dx space where space xy squared minus straight x squared straight y equals 4

    Solution
    Here space xy squared minus straight x squared space straight y equals 4 space space
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
straight x open parentheses 2 straight y dy over dx close parentheses plus straight y squared.1 minus straight x squared dy over dx minus straight y left parenthesis 2 straight x right parenthesis equals 0
therefore space 2 xy dy over dx plus straight y squared minus straight x squared dy over dx minus 2 xy equals 0
left parenthesis 2 xy minus straight x squared right parenthesis dy over dx equals 2 xy minus straight y squared
therefore space space space space space space space space space space space space space dy over dx equals fraction numerator 2 xy minus straight y squared over denominator 2 xy minus straight x squared end fraction
    Question 227
    CBSEENMA12034799

    Find space dy over dx space where space xy space log space left parenthesis straight x plus straight y right parenthesis equals 1

    Solution
    Here space space xy space log space left parenthesis straight x plus straight y right parenthesis equals 1
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
xy dy over dx left square bracket log left parenthesis straight x plus straight y right parenthesis right square bracket plus straight x space log space left parenthesis straight x plus straight y right parenthesis. straight d over dx left parenthesis straight y right parenthesis plus straight y space log space left parenthesis straight x plus straight y right parenthesis straight d over dx left parenthesis straight x right parenthesis equals 0
therefore xy fraction numerator 1 plus begin display style dy over dx end style over denominator straight x plus straight y end fraction plus straight x space log space left parenthesis straight x plus straight y right parenthesis. dy over dx plus straight y space log space left parenthesis straight x plus straight y right parenthesis.1 equals 0
therefore xy plus xy dy over dx plus straight x left parenthesis straight x plus straight y right parenthesis space log left parenthesis straight x plus straight y right parenthesis dy over dx plus straight y left parenthesis straight x plus straight y right parenthesis log left parenthesis straight x plus straight y right parenthesis equals 0
therefore left square bracket xy plus straight x left parenthesis straight x plus straight y right parenthesis log left parenthesis straight x plus straight y right parenthesis right square bracket dy over dx equals negative left square bracket xy plus straight y left parenthesis straight x plus straight y right parenthesis log left parenthesis straight x plus straight y right parenthesis right square bracket
therefore dy over dx equals negative fraction numerator xy plus straight y left parenthesis straight x plus straight y right parenthesis log left parenthesis straight x plus straight y right parenthesis over denominator xy plus straight x left parenthesis straight x plus straight y right parenthesis log left parenthesis straight x plus straight y right parenthesis end fraction
    Question 228
    CBSEENMA12034801

    Find space dy over dx where space space xy plus xe to the power of negative straight y end exponent plus ye to the power of straight x equals straight x squared

    Solution
    Here space xy plus xe to the power of negative straight y end exponent plus ye to the power of straight x equals straight x squared
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space straight x dy over dx plus straight y.1 plus xe to the power of negative straight y end exponent open parentheses negative dy over dx close parentheses plus straight e to the power of negative straight y end exponent.1 plus ye to the power of straight x plus straight e to the power of straight x dy over dx equals 2 straight x
therefore space open square brackets straight x minus xe to the power of negative straight y end exponent plus straight e to the power of straight x close square brackets dy over dx equals 2 straight x minus straight y minus straight e to the power of negative straight y end exponent minus ye to the power of straight x
therefore space dy over dx equals fraction numerator 2 straight x minus straight y minus straight e to the power of negative straight y end exponent minus ye to the power of straight x over denominator straight x minus xe to the power of negative straight y end exponent plus straight e to the power of straight x end fraction
    Question 229
    CBSEENMA12034802

    Find space dy over dx when space xy plus xe to the power of negative straight y end exponent plus ye to the power of straight x equals straight x squared

    Solution
    Here space xy plus xe to the power of negative straight y end exponent plus ye to the power of straight x equals straight x squared
DIfferentiating space both space sides space straight w. straight r. straight t. straight x comma space
straight x dy over dx plus straight y.1 plus xe to the power of negative straight y end exponent open parentheses negative dy over dx close parentheses plus straight e to the power of negative straight y end exponent.1 plus straight y. straight e to the power of straight x plus straight e to the power of straight x. dy over dx equals 2 straight x
therefore left parenthesis straight x minus xe to the power of negative straight y end exponent plus straight e to the power of straight x right parenthesis dy over dx equals 2 straight x minus straight y minus straight e to the power of negative straight y end exponent minus ye to the power of straight x
rightwards double arrow space dy over dx equals fraction numerator 2 straight x minus straight y minus straight e to the power of negative straight y end exponent minus ye to the power of straight x over denominator straight x minus xe to the power of negative straight y end exponent plus straight e to the power of straight x end fraction
    Question 230
    CBSEENMA12034803

    Find space dy over dx space when space ax squared plus 2 hx space plus by squared plus 2 gx plus 2 fy plus straight c equals 0

    Solution
    Here space space ax squared plus 2 hx space plus by squared plus 2 gx plus 2 fy plus straight c equals 0
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma we space ger comma
2 ax plus 2 straight h open parentheses straight x dy over dx plus straight y.1 close parentheses plus 2 by dy over dx plus 2 straight g.1 plus 2 straight f plus 0 equals 0
therefore ax plus hx dy over dx plus hy plus by dy over dx plus straight g plus straight f dy over dx equals 0
therefore left parenthesis hc plus by plus straight f right parenthesis dy over dx equals negative left parenthesis ax plus hy plus straight g right parenthesis space space rightwards double arrow dy over dx equals negative fraction numerator ax plus hy plus straight g over denominator hc plus by plus straight f end fraction.
    Question 231
    CBSEENMA12034804

    If space straight y equals square root of straight x plus square root of straight x plus square root of straight x plus......... infinity end root end root end root comma show space that space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals 1

    Solution
    Since space straight y equals square root of straight x plus square root of straight x plus square root of straight x plus......... infinity end root end root end root
therefore space straight y equals square root of straight x plus straight y end root
rightwards double arrow space straight y squared equals straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma
space space space space space space space space space space space space space space 2 straight y dy over dx equals 1 plus dy over dx
rightwards double arrow left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals 1
    Question 232
    CBSEENMA12034805

    If space straight y equals square root of log space straight x plus square root of log space straight x plus square root of log space straight x plus........ infinity end root end root end root comma space prove space that space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals 1 over straight x

    Solution
    because space straight y equals square root of log space straight x plus square root of log space straight x plus square root of log space straight x plus........ infinity end root end root end root
therefore space straight y equals square root of log space straight x plus straight y end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight y squared equals log space straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get
2 straight y dy over dx equals 1 over straight x plus dy over dx space space space rightwards double arrow left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals 1 over straight x.
    Question 233
    CBSEENMA12034807

    If space straight y square root of straight x squared plus 1 end root equals log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses comma space show space that space left parenthesis straight x squared plus 1 right parenthesis dy over dx plus xy minus 1 equals 0

    Solution
    Here space straight y square root of straight x squared plus 1 end root equals log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
straight y. fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction plus square root of straight x squared plus 1 end root dy over dx equals fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction cross times open square brackets 1 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight d over dx left square bracket space left curly bracket space straight f left parenthesis straight x right parenthesis space right curly bracket to the power of straight n space right square bracket equals straight n left curly bracket space left square bracket space straight f left parenthesis straight x right parenthesis space right square bracket space right curly bracket to the power of straight n minus 1 end exponent space straight f apostrophe left parenthesis straight x right parenthesis close square brackets
therefore fraction numerator xy over denominator square root of straight x squared plus 1 end root end fraction plus square root of straight x squared plus 1 end root dy over dx equals fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction cross times fraction numerator square root of straight x squared plus 1 end root plus 1 over denominator square root of straight x squared plus 1 end root end fraction
therefore fraction numerator xy over denominator square root of straight x squared plus 1 end root end fraction plus square root of straight x squared plus 1 end root dy over dx equals fraction numerator 1 over denominator square root of straight x squared plus 1 end root end fraction comma
Multiplying space both space sides space by space square root of straight x squared plus 1 end root comma
space space space space xy plus left parenthesis straight x squared plus 1 right parenthesis dy over dx equals 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space or space left parenthesis straight x squared plus 1 right parenthesis dy over dx plus xy minus 1 equals 0
    Question 234
    CBSEENMA12034808

    If space straight e to the power of straight x plus straight e to the power of straight y equals straight e to the power of straight x plus straight y comma end exponent prove space that space dy over dx equals negative fraction numerator straight e to the power of straight x left parenthesis straight e to the power of straight y minus 1 right parenthesis over denominator straight e to the power of straight y left parenthesis straight e to the power of straight y minus 1 right parenthesis end fraction

    Solution
    Here space straight e to the power of straight x plus straight e to the power of straight y equals straight e to the power of straight x plus straight y end exponent
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma space we space get comma
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold e to the power of bold x bold plus bold e to the power of bold y bold dy over bold dx bold equals bold e to the power of bold x bold plus bold y end exponent open parentheses bold 1 bold plus bold dy over bold dx close parentheses
bold therefore bold space bold space bold space bold space bold space bold space bold space bold e to the power of bold x bold plus bold e to the power of bold y bold dy over bold dx bold equals bold e to the power of bold x bold plus bold y end exponent bold plus bold e to the power of bold x bold plus bold y end exponent bold dy to the power of bold 1 over bold dx
bold therefore bold space bold left parenthesis bold e to the power of bold x bold minus bold e to the power of bold x bold plus bold y end exponent bold right parenthesis bold dy over bold dx bold equals bold e to the power of bold x bold plus bold y end exponent bold minus bold e to the power of bold x
bold therefore bold space bold left parenthesis bold e to the power of bold y bold minus bold e to the power of bold x bold. bold e to the power of bold x bold right parenthesis bold dy over bold dx bold equals bold e to the power of bold x bold. bold e to the power of bold y bold minus bold e to the power of bold x
bold therefore bold space bold space bold space bold e to the power of bold y bold left parenthesis bold 1 bold minus bold e to the power of bold x bold right parenthesis bold dy over bold dx bold equals bold e to the power of bold x bold left parenthesis bold e to the power of bold y bold minus bold 1 bold right parenthesis
bold therefore bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold dy over bold dx bold equals fraction numerator bold e to the power of bold x bold left parenthesis bold e to the power of bold y bold minus bold 1 bold right parenthesis over denominator bold e to the power of bold y bold left parenthesis bold 1 bold minus bold e to the power of bold x bold right parenthesis end fraction
bold therefore bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold dy over bold dx bold equals bold minus fraction numerator bold e to the power of bold x bold left parenthesis bold e to the power of bold y bold minus bold 1 bold right parenthesis over denominator bold e to the power of bold y bold left parenthesis bold e to the power of bold x bold minus bold 1 bold right parenthesis end fraction
    Question 235
    CBSEENMA12034811

    If space straight y equals straight x plus fraction numerator 1 over denominator straight x plus begin display style fraction numerator 1 over denominator straight x plus... end fraction end style end fraction comma space prove space that space dy over dx equals fraction numerator straight y over denominator 2 straight y minus straight x end fraction.

    Solution
    Here space straight y equals straight x plus fraction numerator 1 over denominator straight x plus begin display style fraction numerator 1 over denominator straight x plus... end fraction end style end fraction
therefore space space space space space space straight y equals straight x plus 1 over straight y
therefore space space space space straight y squared equals straight x space straight y plus 1
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma space we space get comma
2 straight y dy over dx equals straight x dy over dx plus straight y.1 plus 0
therefore space left parenthesis 2 straight y minus straight x right parenthesis dy over dx equals straight y
therefore space dy over dx equals fraction numerator straight y over denominator 2 straight y minus straight x end fraction
    Question 236
    CBSEENMA12034813

    If space straight x square root of 1 plus straight y end root plus straight y square root of 1 plus straight x end root equals 0 comma space show space that space dy over dx equals negative left parenthesis 1 plus straight x right parenthesis to the power of negative 2 end exponent

    Solution
    because space straight x square root of 1 plus straight y end root plus straight y square root of 1 plus straight x end root equals 0 space space space space rightwards double arrow space space straight x square root of 1 plus straight y end root equals negative straight y square root of 1 plus straight x end root
rightwards double arrow space straight x squared left parenthesis 1 plus straight y right parenthesis equals straight y squared left parenthesis 1 plus straight x right parenthesis space space space space space space space space space space rightwards double arrow space space straight x squared plus straight x squared straight y equals straight y squared plus straight y squared straight x
rightwards double arrow space left parenthesis straight x squared minus straight y squared right parenthesis plus left parenthesis straight x squared straight y minus xy squared right parenthesis equals 0 space rightwards double arrow space left parenthesis straight x minus straight y right parenthesis left parenthesis straight x plus straight y right parenthesis plus xy left parenthesis straight x minus straight y right parenthesis equals 0
rightwards double arrow space straight x plus straight y plus xy equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight y not equal to straight x right square bracket
rightwards double arrow space straight y plus xy equals negative straight x space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight y left parenthesis 1 plus straight x right parenthesis equals negative straight x
rightwards double arrow space straight y equals negative fraction numerator straight x over denominator 1 plus straight x end fraction
therefore space dy over dx equals negative open square brackets fraction numerator left parenthesis 1 plus straight x right parenthesis 1 minus straight x.1 over denominator left parenthesis 1 plus straight x right parenthesis squared end fraction close square brackets equals negative fraction numerator 1 over denominator left parenthesis 1 plus straight x right parenthesis squared end fraction equals negative left parenthesis 1 plus straight x right parenthesis to the power of negative 2 end exponent
    Question 237
    CBSEENMA12034817

    If space space ax squared plus 2 hxy plus by squared space equals space 1 comma space verify space that space dy over dx cross times dx over dy equals 1

    Solution
    We space have space ax squared plus 2 hxy plus by squared equals 1... left parenthesis 1 right parenthesis
Differentiating space both space sides space of space left parenthesis 1 right parenthesis comma space straight w. straight r. straight t. straight x space regarding space straight y space as space straight a space function space of space straight x. space we space get comma
2 ax plus 2 straight h open parentheses straight x. dy over dx plus straight y.1 close parentheses plus straight b.2 straight y dy over dx equals 0
or space ax plus hx dy over dx plus hy plus by dy over dx equals 0
or space dy over dx equals negative fraction numerator ax plus hy over denominator hx plus by end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.. left parenthesis 2 right parenthesis space
    Again Differentiating both sides of (1), w.r.t. y regarding x as a function of y, we get,
    space space space space space 2 straight a. straight x dx over dy plus 2 straight h open parentheses straight x.1 plus straight y dx over dy close parentheses plus 2 by equals 0
or space ax plus dx over dy plus hx plus hy dx over dy plus by equals 0
therefore space dx over dy left square bracket ax plus hy right square bracket equals negative left parenthesis hx plus by right parenthesis space or space dy over dx equals negative fraction numerator hx plus bx over denominator ax plus hy end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
Multiplying space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx cross times dx over dy equals negative fraction numerator ax plus hy over denominator hx plus hy end fraction cross times negative fraction numerator hx plus bx over denominator ax plus hy end fraction equals 1
    Question 238
    CBSEENMA12034818

    Differentiate xx w.r.t.x.

    Solution
    space space space space space Let space straight y equals straight x to the power of straight x
therefore space log space straight y equals log space straight x to the power of straight x
therefore space log space straight y equals straight x space log space straight x
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma
space space space space space 1 over straight y dy over dx equals straight x. straight d over dx left parenthesis log space straight x right parenthesis plus log space straight x. straight d over dx left parenthesis straight x right parenthesis
therefore space 1 over straight y dy over dx equals straight x.1 over straight x plus log space straight x.1 space space space space rightwards double arrow dy over dx equals straight y left square bracket 1 plus log space straight x right square bracket
therefore fraction numerator dy over denominator space space space space space space dx end fraction equals straight x to the power of straight x left square bracket 1 plus log space straight x right square bracket.
    Question 239
    CBSEENMA12034819

    Differentiate (ax)x w.r.t.x.

    Solution
    Let space straight y equals left parenthesis straight x to the power of straight x right parenthesis to the power of straight x equals straight x to the power of straight x squared end exponent
therefore space log space straight y equals log space straight x to the power of straight x squared end exponent space rightwards double arrow log space straight y equals straight x squared. log space straight x
Diff. space straight w. straight r. straight t. space straight x. space 1 over straight y dy over dx equals straight x squared 1 over straight x plus left parenthesis log space straight x right parenthesis.2 straight x
therefore space dy over dx equals straight y left square bracket straight x plus 2 straight x space log space straight x right square bracket equals straight x squared left square bracket straight x plus 2 space straight x space log space straight x right square bracket.
    Question 240
    CBSEENMA12034820
    Question 241
    CBSEENMA12034821
    Question 242
    CBSEENMA12034823
    Question 243
    CBSEENMA12034824
    Question 244
    CBSEENMA12034826
    Question 245
    CBSEENMA12034827
    Question 246
    CBSEENMA12034828
    Question 247
    CBSEENMA12034830

    If xy = ex - y, prove that dy over dx equals fraction numerator log space straight x over denominator left parenthesis 1 plus log space straight x right parenthesis squared end fraction

    Solution
    straight x to the power of straight y equals straight e to the power of straight x minus straight y end exponent end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space log space straight x to the power of straight y equals log space straight e to the power of straight x minus straight y end exponent
therefore space straight y space log space straight x equals straight x minus straight y space space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight y plus straight y space log space straight x equals straight x
therefore space straight y left parenthesis 1 plus log space straight x right parenthesis equals straight x space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight y equals fraction numerator straight x over denominator 1 plus log space straight x end fraction
Differentiate space both space sides space straight w. straight r. straight t. straight x comma
dy over dx equals fraction numerator left parenthesis 1 plus log space straight x right parenthesis.1 minus straight x. begin display style 1 over straight x end style over denominator left parenthesis 1 plus log space straight x right parenthesis squared end fraction equals fraction numerator 1 plus log space straight x minus 1 over denominator left parenthesis 1 plus log space straight x right parenthesis squared end fraction equals fraction numerator log space straight x over denominator left parenthesis 1 plus log space straight x right parenthesis squared end fraction
    Question 248
    CBSEENMA12034831

    If space straight y equals straight x to the power of straight x to the power of straight x........ infinity end exponent end exponent space prove space that space straight x dy over dx equals fraction numerator straight y squared over denominator 1 minus straight y space log space straight x end fraction

    Solution
    because space straight y equals straight x to the power of straight x to the power of straight x........ infinity end exponent end exponent
therefore space straight y equals straight x space space space space space space space space space space space rightwards double arrow space space log space straight y equals log space straight x to the power of straight x space space space space space rightwards double arrow space space space log space straight y equals straight y space log space straight x
Differentiate space both space sides space straight w. straight r. straight t. straight x comma
1 over straight y dy over dx equals straight y.1 over straight x plus log space straight x. dy over dx
therefore space open parentheses 1 over straight y minus log space straight x close parentheses dy over dx equals straight y over straight x space space space space space space rightwards double arrow space open parentheses fraction numerator 1 minus straight y space log space straight x over denominator straight y end fraction close parentheses dy over dx equals straight y over straight x
rightwards double arrow space dy over dx equals fraction numerator straight y squared over denominator straight x left parenthesis 1 minus straight y space log space straight x right parenthesis end fraction space space space space space space space rightwards double arrow space straight x dy over dx equals fraction numerator straight y squared over denominator 1 minus straight y space log space straight x end fraction space
    Question 249
    CBSEENMA12034832

    If space straight y equals straight e to the power of straight x plus straight e to the power of straight x plus straight e to the power of straight x plus........ infinity end exponent end exponent comma space show space that space dy over dx equals fraction numerator straight y over denominator 1 minus straight y end fraction.

    Solution
    because space straight y equals straight e to the power of straight x plus straight e to the power of straight x plus straight e to the power of straight x plus........ infinity end exponent end exponent
therefore space straight y equals straight e to the power of straight x plus straight y end exponent
rightwards double arrow space log space straight y equals log space straight e to the power of straight x plus straight y end exponent space space space space space space space space space space space rightwards double arrow space log space straight y equals left parenthesis straight x plus straight y right parenthesis log space straight e
rightwards double arrow space log space straight y equals straight x plus straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space log space straight e equals 1 right square bracket
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma
space 1 over straight y dy over dx equals 1 plus dy over dx space rightwards double arrow space open parentheses 1 over straight y minus 1 close parentheses dy over dx equals 1 space space space rightwards double arrow open parentheses fraction numerator 1 minus straight y over denominator straight y end fraction close parentheses dy over dx equals 1
rightwards double arrow space space dy over dx equals fraction numerator straight y over denominator 1 minus straight y end fraction
    Question 250
    CBSEENMA12034833

    If space straight y equals straight a to the power of straight a to the power of straight a to the power of straight a........... infinity end exponent end exponent end exponent comma prove space that space dy over dx equals fraction numerator straight y squared log space straight y over denominator straight x left parenthesis 1 minus straight y space log space straight x. log space straight y right parenthesis end fraction

    Solution
    Here space straight y equals straight a to the power of straight a to the power of straight a to the power of straight a........... infinity end exponent end exponent end exponent
therefore space straight y equals straight a to the power of left parenthesis straight a to the power of straight x right parenthesis end exponent
therefore space log space straight y equals log space straight a to the power of left parenthesis straight x to the power of straight x right parenthesis end exponent space space space space space space space space rightwards double arrow space log space straight y equals straight x to the power of straight y log space straight a
therefore space log left parenthesis log space straight y right parenthesis equals log left parenthesis straight x to the power of straight y log space straight a right parenthesis space rightwards double arrow space log left parenthesis log space straight y right parenthesis equals log space straight x to the power of straight y plus log left parenthesis log space straight a right parenthesis
therefore space log left parenthesis log space straight y right parenthesis equals straight y space log space straight x plus log left parenthesis log space straight a right parenthesis
differentiating space straight w. straight r. straight t. space straight x comma space we space get comma
space space space space fraction numerator 1 over denominator log space straight y end fraction.1 over straight y dy over dx equals straight y.1 over straight x plus log space straight a. dy over dx plus 0
therefore space open parentheses fraction numerator 1 over denominator straight y space log space straight y end fraction minus log space straight x close parentheses dy over dx equals straight y over straight x
therefore space open parentheses fraction numerator 1 minus straight y space log space xlog space straight y over denominator straight y space log space straight y end fraction close parentheses dy over dx equals straight y over straight x
therefore space dy over dx equals fraction numerator straight y squared log space straight y over denominator straight x left parenthesis 1 minus straight y space log space straight y space log space straight x right parenthesis end fraction
    Question 251
    CBSEENMA12034837

    If space straight x to the power of straight y equals straight y to the power of straight x comma space prove space that space dy over dx equals fraction numerator begin display style straight y over straight x end style minus log space straight y over denominator begin display style straight x over straight y end style minus log space straight x end fraction

    Solution
    space straight x to the power of straight y equals straight y to the power of straight x
rightwards double arrow space log space straight x to the power of straight y equals log space straight y to the power of straight x space space space space space space space rightwards double arrow space straight y space log space straight x equals straight x. log space straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma
straight y.1 over straight x plus log space straight x dy over dx equals straight x.1 over straight y. dy over dx plus log space straight y.1
therefore space open parentheses log space straight x minus straight x over straight y close parentheses dy over dx equals log space straight y minus straight y over straight x space space space rightwards double arrow open parentheses straight x over straight y minus log space straight x close parentheses dy over dx equals straight y over straight x minus log space straight y
dy over dx equals fraction numerator begin display style straight y over straight x minus log space straight y end style over denominator begin display style straight x over straight y minus log space straight x end style end fraction
    Question 252
    CBSEENMA12034839

    If space straight y equals straight x to the power of straight y comma space prove space that space dy over dx equals fraction numerator straight y squared over denominator straight x left parenthesis 1 minus straight y space log space straight x right parenthesis end fraction.

    Solution
    Here space space space space space straight y equals straight x to the power of straight y
therefore space log space straight y equals log space straight x to the power of straight y space space space space space space space space space rightwards double arrow space log space straight y equals straight y space log space straight x
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
1 over straight y dy over dx equals straight y.1 over straight x plus log space straight x. dy over dx
therefore space open parentheses 1 over straight y minus log space straight x close parentheses dy over dx equals straight y over straight x space space space space rightwards double arrow space open parentheses fraction numerator 1 minus straight y space log space straight x over denominator straight y end fraction close parentheses dy over dx equals straight y over straight x
therefore space space space space space space space space space space space space space dy over dx equals fraction numerator straight y squared over denominator straight x left parenthesis 1 minus straight y space log space straight x right parenthesis end fraction.
    Question 253
    CBSEENMA12034840

    Find space dy over dx when space xy equals straight e to the power of straight x minus straight y end exponent.

    Solution
    Here space space space space space space space space space space space space space xy equals straight e to the power of straight x minus straight y end exponent
therefore space space space space space space space space space log space left parenthesis xy right parenthesis equals log space straight e to the power of straight x minus straight y end exponent
therefore space log space straight x plus log space straight y equals left parenthesis straight x minus straight y right parenthesis log space straight e
therefore space log space straight x plus log space straight y equals straight x minus straight y
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space 1 over straight x plus 1 over straight y dy over dx equals 1 minus dy over dx
therefore space open parentheses 1 over straight y plus 1 close parentheses dy over dx equals 1 minus 1 over straight x space space space space space space space space space space rightwards double arrow fraction numerator 1 plus straight y over denominator straight y end fraction dy over dx equals fraction numerator straight x minus 1 over denominator straight x end fraction
therefore space space space space space space space space space space space space space space space space space dy over dx equals fraction numerator straight y left parenthesis straight x minus 1 right parenthesis over denominator straight x left parenthesis 1 plus straight y right parenthesis end fraction
    Question 254
    CBSEENMA12034841

    <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/64/ea/07693cdc340768600ec4c104b639.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/64/ea/07693cdc340768600ec4c104b639.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>

    Solution
    Here space space space straight y equals straight a to the power of xy
therefore space log space straight y equals log space straight a to the power of xy space space space space space space space space space space space space space space space space space space rightwards double arrow space log space straight y equals left square bracket xy right square bracket log space straight a
Differentiate space straight w. straight r. straight t. straight x comma
space space space space space space 1 over straight y dy over dx equals open square brackets straight x. dy over dx plus straight y.1 close square brackets log space straight a
therefore space space 1 over straight y dy over dx equals straight x space log space straight a dy over dx plus straight y space log space straight a space space space space space rightwards double arrow space space space space space space open parentheses 1 over straight x minus straight x space log space straight a close parentheses dy over dx equals straight y space log space straight a
rightwards double arrow space space space open parentheses fraction numerator 1 minus xy space log space straight a over denominator straight y end fraction close parentheses dy over dx equals straight y space log space straight a space space space space space rightwards double arrow space space space space space space dy over dx equals fraction numerator straight y squared log space straight a over denominator 1 minus xy space log space straight a end fraction
    Question 255
    CBSEENMA12034843

    Here space If space straight y equals square root of fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction end root space
therefore space log space straight y equals log open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses to the power of 1 half end exponent space space space space space space space rightwards double arrow space log space straight y equals 1 half log space open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses
rightwards double arrow space log space straight y equals 1 half left square bracket log left parenthesis 1 minus straight x right parenthesis minus log left parenthesis 1 plus straight x right parenthesis right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space 1 over straight y dy over dx equals 1 half open square brackets fraction numerator 1 over denominator 1 minus straight x end fraction left parenthesis negative 1 right parenthesis minus fraction numerator 1 over denominator 1 plus straight x end fraction close square brackets
therefore space 1 over straight y dy over dx equals negative 1 half open square brackets fraction numerator 1 over denominator 1 minus straight x end fraction plus fraction numerator 1 over denominator 1 plus straight x end fraction close square brackets
rightwards double arrow space 1 over straight y dy over dx equals negative 1 half open square brackets fraction numerator 1 plus straight x plus negative straight x over denominator left parenthesis 1 minus straight x right parenthesis left parenthesis 1 plus straight x right parenthesis end fraction close square brackets
rightwards double arrow space 1 over straight y dy over dx equals negative 1 half open square brackets fraction numerator 2 over denominator 1 minus straight x squared end fraction close square brackets space space space space rightwards double arrow space 1 over straight y dy over dx equals negative fraction numerator 1 over denominator 1 minus straight x squared end fraction
therefore left parenthesis 1 minus straight x squared right parenthesis dy over dx equals negative straight y
therefore left parenthesis 1 minus straight x squared right parenthesis dy over dx plus straight y equals 0

    Solution
    Question 256
    CBSEENMA12034844

    space space space space space space space space space space space space space straight f left parenthesis straight x right parenthesis equals open parentheses fraction numerator 3 plus straight x over denominator 1 plus straight x end fraction close parentheses to the power of 2 plus 3 straight x end exponent
therefore space space space log space straight f left parenthesis straight x right parenthesis equals log open parentheses fraction numerator 3 plus straight x over denominator 1 plus straight x end fraction close parentheses to the power of 2 plus 3 straight x end exponent
rightwards double arrow space space log space straight f left parenthesis straight x right parenthesis equals left parenthesis 2 plus 3 straight x right parenthesis open parentheses fraction numerator 3 plus straight x over denominator 1 plus straight x end fraction close parentheses
rightwards double arrow space space log space straight f left parenthesis straight x right parenthesis equals left parenthesis 2 plus 3 straight x right parenthesis left square bracket log left parenthesis 3 plus straight x right parenthesis minus log left parenthesis 1 plus straight x right parenthesis right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
fraction numerator 1 over denominator straight f left parenthesis straight x right parenthesis end fraction. straight f apostrophe left parenthesis straight x right parenthesis equals left parenthesis 2 plus 3 straight x right parenthesis. open square brackets fraction numerator 1 over denominator 3 plus straight x end fraction minus fraction numerator 1 over denominator 1 plus straight x end fraction close square brackets plus 3. left square bracket log left parenthesis 3 plus straight x right parenthesis minus lg left parenthesis 1 plus straight x right parenthesis right square bracket
Put space straight x equals 0
therefore space 1 over 9 straight f apostrophe left parenthesis 0 right parenthesis equals left parenthesis 2 plus 0 right parenthesis. open square brackets fraction numerator 1 over denominator 3 plus 0 end fraction minus fraction numerator 1 over denominator 1 plus 0 end fraction close square brackets plus 3. left square bracket log left parenthesis 3 plus 0 right parenthesis minus lg left parenthesis 1 plus 0 right parenthesis right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space straight f left parenthesis 0 right parenthesis equals open parentheses fraction numerator 3 plus 0 over denominator 1 plus 0 end fraction close parentheses to the power of 2 plus 0 end exponent equals 3 squared equals 9 close square brackets
rightwards double arrow space 1 over 9 straight f apostrophe left parenthesis 0 right parenthesis equals 2 open parentheses fraction numerator 1 minus 3 over denominator 3 end fraction close parentheses plus 3 left parenthesis log space 3 minus 0 right parenthesis
rightwards double arrow space straight f apostrophe left parenthesis 0 right parenthesis equals negative 12 plus 27 space log space 3.

    Solution
    Question 257
    CBSEENMA12034846

    Differentiate space square root of fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis over denominator 3 straight x squared plus 4 straight x plus 5 end fraction end root straight w. straight r. straight t. straight x

    Solution
    Let space space straight y equals open square brackets fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis over denominator 3 straight x squared plus 4 straight x plus 5 end fraction close square brackets to the power of 1 half end exponent
therefore space log space straight y equals log open square brackets fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis over denominator 3 straight x squared plus 4 straight x plus 5 end fraction close square brackets to the power of 1 half end exponent
therefore space log space straight y equals 1 half log open square brackets fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis over denominator 3 straight x squared plus 4 straight x plus 5 end fraction close square brackets
therefore space log space straight y equals 1 half log left square bracket left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis right square bracket minus 1 half log space left parenthesis 3 straight x squared plus 4 straight x plus 5 right parenthesis
therefore space log space straight y equals 1 half log left parenthesis straight x minus 3 right parenthesis plus 1 half log left parenthesis straight x squared plus 4 right parenthesis minus 1 half left parenthesis 3 straight x squared plus 4 straight x plus 5 right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space 1 over straight y dy over dx equals fraction numerator 1 over denominator 2 left parenthesis straight x minus 3 right parenthesis end fraction plus fraction numerator 1 over denominator 2 left parenthesis straight x squared plus 4 right parenthesis end fraction.2 straight x minus fraction numerator 1 over denominator 2 left parenthesis 3 straight x squared plus 4 straight x plus 5 right parenthesis end fraction. left parenthesis 6 straight x plus 4 right parenthesis
therefore space space space dy over dx equals straight y over 2 open square brackets fraction numerator 1 over denominator straight x minus 3 end fraction plus fraction numerator 2 straight x over denominator straight x squared plus 4 end fraction minus fraction numerator 6 straight x plus 4 over denominator 3 straight x squared plus 4 straight x plus 5 end fraction close square brackets
therefore space space space dy over dx equals 1 half square root of fraction numerator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x squared plus 4 right parenthesis over denominator 3 straight x squared plus 4 straight x plus 5 end fraction end root open square brackets fraction numerator 1 over denominator straight x minus 3 end fraction plus fraction numerator 2 straight x over denominator straight x squared plus 4 end fraction minus fraction numerator 6 straight x plus 4 over denominator 3 straight x squared plus 4 straight x plus 5 end fraction close square brackets
    Question 258
    CBSEENMA12034848

    Differentiate space square root of fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis end fraction end root straight w. straight r. straight t. straight x

    Solution
    Let space space space space space space space straight y equals open square brackets fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis end fraction close square brackets to the power of 1 half end exponent
therefore space space log space straight y equals log open square brackets fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis end fraction close square brackets to the power of 1 half end exponent
space space space space space space space space space space space space space space space equals 1 half log open square brackets fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis end fraction close square brackets
space space space space space space space space space space space space space space space equals 1 half left square bracket log left curly bracket left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis right curly bracket minus log left curly bracket left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis right curly bracket right square bracket
therefore space space log space straight y equals 1 half left square bracket log left parenthesis straight x minus 1 right parenthesis plus log left parenthesis straight x minus 2 right parenthesis plus log left parenthesis straight x minus 3 right parenthesis plus log left parenthesis straight x minus 4 right parenthesis plus log left parenthesis straight x minus 5 right parenthesis right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space 1 over straight y dy over dx equals 1 half open square brackets fraction numerator 1 over denominator straight x minus 1 end fraction plus fraction numerator 1 over denominator straight x minus 2 end fraction minus fraction numerator 1 over denominator straight x minus 3 end fraction minus fraction numerator 1 over denominator straight x minus 4 end fraction minus fraction numerator 1 over denominator straight x minus 5 end fraction close square brackets
therefore space space dy over dx equals 1 half straight y open square brackets fraction numerator 1 over denominator straight x minus 1 end fraction plus fraction numerator 1 over denominator straight x minus 2 end fraction minus fraction numerator 1 over denominator straight x minus 3 end fraction minus fraction numerator 1 over denominator straight x minus 4 end fraction minus fraction numerator 1 over denominator straight x minus 5 end fraction close square brackets
therefore space space dy over dx equals 1 half square root of fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 3 right parenthesis left parenthesis straight x minus 4 right parenthesis left parenthesis straight x minus 5 right parenthesis end fraction end root open square brackets fraction numerator 1 over denominator straight x minus 1 end fraction plus fraction numerator 1 over denominator straight x minus 2 end fraction minus fraction numerator 1 over denominator straight x minus 3 end fraction minus fraction numerator 1 over denominator straight x minus 4 end fraction minus fraction numerator 1 over denominator straight x minus 5 end fraction close square brackets
    Question 259
    CBSEENMA12034849
    Question 261
    CBSEENMA12034852
    Question 262
    CBSEENMA12034854

    If space straight x to the power of straight p. straight y to the power of straight q equals left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent comma space show space that space dy over dx equals straight y over straight x

    Solution
    space space space space space straight x to the power of straight p. straight y to the power of straight q equals left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent
rightwards double arrow space log left parenthesis straight x to the power of straight p. straight y to the power of straight q right parenthesis equals log left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent
rightwards double arrow space log space straight x to the power of straight p plus log space straight y to the power of straight q equals log left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent
rightwards double arrow straight p space log space straight x plus straight q space log space straight y equals left parenthesis straight p plus straight q right parenthesis log left parenthesis straight x plus straight y right parenthesis
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space straight p over straight x plus straight q over straight y dy over dx equals fraction numerator straight p plus straight q over denominator straight x plus straight y end fraction open square brackets 1 plus dy over dx close square brackets
therefore space straight p over straight x plus straight q over straight y dy over dx equals fraction numerator straight p plus straight q over denominator straight x plus straight y end fraction plus fraction numerator straight p plus straight q over denominator straight x plus straight y end fraction dy over dx space space space rightwards double arrow space space open parentheses straight q over straight y minus fraction numerator straight p plus straight q over denominator straight x plus straight y end fraction close parentheses dy over dx equals fraction numerator straight p plus straight q over denominator straight x plus straight y end fraction minus straight p over straight x
therefore space open square brackets fraction numerator qz plus qy minus py minus qy over denominator straight y left parenthesis straight x plus straight y right parenthesis end fraction close square brackets dy over dx equals fraction numerator px plus qx minus px minus py over denominator straight x left parenthesis straight x plus straight y right parenthesis end fraction
therefore space open square brackets fraction numerator qx minus py over denominator straight y end fraction close square brackets dy over dx equals fraction numerator qx minus py over denominator straight x end fraction space rightwards double arrow space space 1 over straight y dy over dx equals 1 over straight x
therefore space dy over dx equals straight y over straight x.
    Question 263
    CBSEENMA12034855
    Question 264
    CBSEENMA12034858

    Differentiate the following functions w.r.t. x : straight x to the power of straight x plus straight x to the power of log space straight x end exponent

    Solution
    Let space space straight y equals straight x to the power of straight x plus straight x to the power of log space straight x end exponent
Put space straight x to the power of straight x equals straight u comma space straight x to the power of log space straight x end exponent equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals straight x to the power of straight x
therefore space log space straight u equals log space straight x to the power of straight x
rightwards double arrow space log space straight u equals straight x. log space straight x
therefore space 1 over straight u du over dx equals straight x.1 over straight x plus log space straight x.1
therefore space du over dx equals straight u left parenthesis 1 plus log space straight x right parenthesis
therefore space du over dx equals straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight x to the power of log space straight x end exponent
therefore space log space straight v equals log left parenthesis straight x to the power of log space straight x end exponent right parenthesis
rightwards double arrow space log space straight v equals log space straight x. log space straight x
therefore space 1 over straight v dv over dx equals log space straight x.1 over straight x plus log space straight x.1 over straight x
therefore space dv over dx equals straight v open parentheses fraction numerator 2 log space straight x over denominator straight x end fraction close parentheses
therefore space dv over dx equals 2 fraction numerator log space straight x over denominator straight x end fraction. straight x to the power of log space straight x end exponent
therefore space dv over dx equals 2 log space straight x. straight x to the power of lox space minus 1 end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (1), (2) and (3), we get,
    space space space space space space dy over dx equals straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis plus 2 log space straight x. straight x to the power of log space straight x minus 1 end exponent
    Question 265
    CBSEENMA12034860

    Differentiate the following functions w.r.t. x :
    left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent

    Solution
    Let space straight y equals left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent
Put space left parenthesis log space straight x right parenthesis to the power of straight x equals straight u comma space straight x to the power of logx equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals left parenthesis log space straight x right parenthesis to the power of straight x
therefore space log space straight u equals log left parenthesis log space straight x right parenthesis to the power of straight x
therefore space log space straight u equals straight x. log left parenthesis log space straight x right parenthesis
therefore space 1 over straight u du over dx equals straight x. open parentheses fraction numerator 1 over denominator log space straight x end fraction.1 over straight x close parentheses plus log left parenthesis log space straight x right parenthesis.1
therefore space du over dx equals straight u open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets
therefore space du over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight x to the power of log space straight x end exponent
therefore space log space straight v equals log left parenthesis straight x to the power of log space straight x end exponent right parenthesis
space space space space space space space space space space space space space equals log space straight x. log space straight x equals left parenthesis log space straight x right parenthesis squared
therefore space 1 over straight v dv over dx equals left parenthesis 2 log space straight x right parenthesis. open parentheses 1 over straight x close parentheses
therefore space dv over dx equals straight v open square brackets fraction numerator 2 log space straight x over denominator straight x end fraction close square brackets
therefore space dv over dx equals straight x to the power of log space straight x end exponent open parentheses fraction numerator 2 log space straight x over denominator straight x end fraction close parentheses
therefore space dv over dx equals 2 straight x to the power of log space straight x minus 1 end exponent log space straight x space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (1), (2), (3), we get,
    space space space space dy over dx equals left parenthesis log space straight x right parenthesis to the power of straight x open square brackets fraction numerator 1 over denominator log space straight x end fraction plus log left parenthesis log space straight x right parenthesis close square brackets plus 2 straight x to the power of log space straight x minus 1 end exponent. log space straight x
    Question 266
    CBSEENMA12034861
    Question 267
    CBSEENMA12034863
    Question 272
    CBSEENMA12034872

    Find space dy over dx comma space if space straight y to the power of straight x plus straight x to the power of straight y plus straight x to the power of straight x equals straight a to the power of straight b.

    Solution
    We space have space straight y to the power of straight x plus straight x to the power of straight y plus straight x to the power of straight x equals straight a to the power of straight b
Put space straight x to the power of straight y equals straight u comma space straight y to the power of straight x equals straight v
therefore space straight u plus straight v equals straight a to the power of straight b
Differentiating space straight w. straight r. straight t. straight x. space du over dx plus dv over dx equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals straight x to the power of straight y space space space space space space space space space space space space space space rightwards double arrow space log space straight u equals straight y space log space straight x
Differentiating space straight w. straight r. straight t. straight x comma space we space get
1 over straight u du over dx equals straight y.1 over straight x plus log space straight x. dy over dx space space rightwards double arrow space du over dx equals straight x to the power of straight y open square brackets straight y over straight x plus log space straight x. dy over dx close square brackets
rightwards double arrow space du over dx equals yx to the power of straight y minus 1 end exponent plus straight x to the power of straight y space log space straight x. dy over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight y to the power of straight x
therefore space log space straight v equals log space straight y to the power of straight x space space space space space space space space space space space space space space space or space log space straight v equals straight x space log space straight y
Differentiating space straight w. straight r. straight t. straight x.
space space 1 over straight v dv over dx equals straight x space 1 over straight y dy over dx plus log space straight y.1
therefore space dv over dx equals straight y to the power of straight x
therefore space dv over dx equals straight x space straight y to the power of straight x minus 1 end exponent dy over dx plus straight y to the power of straight x. log space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis. space we space get.
space space space space space space space yx to the power of straight y minus 1 end exponent plus straight x to the power of straight y log space straight x. dy over dx plus xy to the power of straight x minus 1 end exponent dy over dx plus straight y to the power of straight x. log space straight y equals 0
therefore space left parenthesis straight x to the power of straight y log space straight x plus xy to the power of straight x minus 1 end exponent right parenthesis dy over dx equals negative left parenthesis yx to the power of straight y minus 1 end exponent plus straight y to the power of straight x. log space straight y right parenthesis
therefore space dy over dx equals negative open parentheses fraction numerator yx to the power of straight y minus 1 end exponent plus straight y to the power of straight x. log space straight y over denominator straight x to the power of straight y log space straight x plus xy to the power of straight x minus 1 end exponent end fraction close parentheses.
    Question 273
    CBSEENMA12034874

    If space straight y equals 1 plus fraction numerator straight c subscript 1 over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction comma space prove space that space
dy over dx equals straight y over straight x open parentheses fraction numerator straight c subscript 1 over denominator straight c subscript 1 minus straight x end fraction plus fraction numerator straight c subscript 2 over denominator straight c subscript 2 minus straight x end fraction close parentheses

    Solution
    space space space straight y equals 1 plus fraction numerator straight c subscript 1 over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction
therefore space space straight y equals fraction numerator straight x minus straight c subscript 1 plus straight c subscript 1 over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction rightwards double arrow space straight y equals fraction numerator straight x over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction
rightwards double arrow space fraction numerator straight x left parenthesis straight x minus straight c subscript 2 right parenthesis plus straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction space rightwards double arrow space fraction numerator straight x squared minus xc subscript 2 plus straight c subscript 2 straight x over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction
rightwards double arrow space straight y equals fraction numerator straight x squared over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction
therefore space log space straight y equals log open square brackets fraction numerator straight x squared over denominator left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis end fraction close square brackets space rightwards double arrow space log space straight y equals log space straight x squared minus log left square bracket left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis right square bracket
rightwards double arrow space log space straight y equals 2 log space straight x minus log left parenthesis straight x minus straight c subscript 1 right parenthesis left parenthesis straight x minus straight c subscript 2 right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. straight x comma
space space space space space space 1 over straight y dy over dx equals 2 over straight x minus fraction numerator 1 over denominator straight x minus straight c subscript 1 end fraction minus fraction numerator 1 over denominator straight x minus straight c subscript 2 end fraction
rightwards double arrow space dy over dx equals straight y open square brackets 2 over straight x minus fraction numerator 1 over denominator straight x minus straight c subscript 1 end fraction minus fraction numerator 1 over denominator straight x minus straight c subscript 2 end fraction close square brackets space rightwards double arrow space dy over dx equals straight y over straight x open square brackets 2 minus fraction numerator straight x over denominator straight x minus straight c subscript 1 end fraction minus fraction numerator straight x over denominator straight x minus straight c subscript 2 end fraction close square brackets
rightwards double arrow space dy over dx equals straight y over straight x open square brackets open parentheses 1 minus fraction numerator 1 over denominator straight x minus straight c subscript 1 end fraction close parentheses plus open parentheses 1 minus fraction numerator 1 over denominator straight x minus straight c subscript 2 end fraction close parentheses close square brackets space rightwards double arrow space dy over dx equals straight y over straight x open square brackets fraction numerator straight x minus straight c subscript 1 minus straight x over denominator straight x minus straight c subscript 1 end fraction plus fraction numerator straight x minus straight c subscript 2 minus straight x over denominator straight x minus straight c subscript 2 end fraction close square brackets
rightwards double arrow space dy over dx equals straight y over straight x open square brackets negative fraction numerator straight c subscript 1 over denominator straight x minus straight c subscript 1 end fraction minus fraction numerator straight c subscript 2 over denominator straight x minus straight c subscript 2 end fraction close square brackets space rightwards double arrow space dy over dx equals straight y over straight x open square brackets fraction numerator straight c subscript 1 over denominator straight c subscript 1 minus straight x end fraction plus fraction numerator straight c subscript 2 over denominator straight c subscript 2 minus straight x end fraction close square brackets
    Question 274
    CBSEENMA12034875

    If space straight y equals fraction numerator ax over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight c over denominator straight x minus straight c end fraction plus 1.
prove space that space fraction numerator straight y apostrophe over denominator straight y end fraction equals 1 over straight x open parentheses fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close parentheses

    Solution
    space straight y equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight c over denominator straight x minus straight c end fraction plus 1
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus open parentheses fraction numerator straight c over denominator straight x minus straight c end fraction plus 1 close parentheses
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight x over denominator straight x minus straight c end fraction
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator bx plus straight x left parenthesis straight x minus straight b right parenthesis over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
space space space equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction plus fraction numerator straight x squared over denominator left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction equals fraction numerator ax squared plus straight x squared left parenthesis straight x minus straight a right parenthesis over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
therefore space straight y equals fraction numerator ax squared over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction
therefore space log space straight y equals log open square brackets fraction numerator straight x cubed over denominator left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis end fraction close square brackets
rightwards double arrow space log space straight y equals log space straight x cubed minus log left square bracket left parenthesis straight x minus straight a right parenthesis left parenthesis straight x minus straight b right parenthesis left parenthesis straight x minus straight c right parenthesis right square bracket
therefore space log space straight y equals 3 log space straight x minus log left parenthesis straight x minus straight a right parenthesis minus log left parenthesis straight x minus straight b right parenthesis minus log left parenthesis straight x minus straight c right parenthesis
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
    space space space space space 1 over straight y dy over dx equals 3 over straight x minus fraction numerator 1 over denominator straight x minus straight a end fraction minus fraction numerator 1 over denominator straight x minus straight b end fraction minus fraction numerator 1 over denominator straight x minus straight c end fraction
therefore space 1 over straight y dy over dx equals open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight a end fraction close parentheses plus open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight b end fraction close parentheses plus open parentheses 1 over straight x minus fraction numerator 1 over denominator straight x minus straight c end fraction close parentheses
therefore space 1 over straight y dy over dx equals fraction numerator straight x minus straight a minus straight x over denominator straight x left parenthesis straight x minus straight a right parenthesis end fraction plus fraction numerator straight x minus straight b minus straight x over denominator straight x left parenthesis straight x minus straight b right parenthesis end fraction plus fraction numerator straight x minus straight c minus straight x over denominator straight x left parenthesis straight x minus straight c right parenthesis end fraction
therefore space 1 over straight y dy over dx equals 1 over straight x open square brackets fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close square brackets
therefore space space space space space space space space fraction numerator straight y apostrophe over denominator straight y end fraction equals 1 over straight x open square brackets fraction numerator straight a over denominator straight a minus straight x end fraction plus fraction numerator straight b over denominator straight b minus straight x end fraction plus fraction numerator straight c over denominator straight c minus straight x end fraction close square brackets
    Question 277
    CBSEENMA12034880
    Question 279
    CBSEENMA12034882
    Question 280
    CBSEENMA12034884

    Differentiate w.r.t.x:sin left parenthesis straight x squared plus 5 right parenthesis

    Solution
    Let space space space space space straight y equals sin left parenthesis straight x squared plus 5 right parenthesis
therefore space dy over dx equals straight d over dx left square bracket sin left parenthesis straight x squared plus 5 right parenthesis right square bracket equals cos left parenthesis straight x squared plus 5 right parenthesis. straight d over dx left parenthesis straight x squared plus 5 right parenthesis
space space space space space space space space space space space space space equals cos left parenthesis straight x squared plus 5 right parenthesis. left parenthesis 2 straight x right parenthesis
therefore space straight d over dx left square bracket sin left parenthesis straight x squared plus 5 right parenthesis right square bracket equals 2 straight x space cos left parenthesis straight x squared plus 5 right parenthesis
    Question 281
    CBSEENMA12034885

    Differentiate w.r.t.x:space straight y equals sin left parenthesis ax plus straight b right parenthesis

    Solution
    space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y equals sin left parenthesis ax plus straight b right parenthesis
therefore space space space space space space space space space space space space space space space space space space space space space dy over dx equals straight d over dx left square bracket sin left parenthesis ax plus straight b right parenthesis right square bracket equals cos left parenthesis ax plus straight b right parenthesis. straight d over dx left parenthesis ax plus straight b right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals cos left parenthesis ax plus straight b right parenthesis. straight a
therefore space straight d over dx left square bracket sin left parenthesis ax plus straight b right parenthesis right square bracket equals straight a space cos left parenthesis ax plus straight b right parenthesis
    Question 282
    CBSEENMA12034886

    Differentiate w.r.t.x: cos left parenthesis square root of straight x right parenthesis

    Solution
    Let space space space space space space space space space space space space space space space space space space space space space space space space straight y equals space cos left parenthesis square root of straight x right parenthesis
therefore space space space space space space space space space space space space space space space space space space space space dy over dx equals straight d over dx open square brackets cos left parenthesis square root of straight x right parenthesis close square brackets equals negative sin left parenthesis square root of straight x right parenthesis. straight d over dx open parentheses straight x to the power of 1 half end exponent close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals negative sin left parenthesis square root of straight x right parenthesis.1 half straight x to the power of negative 1 half end exponent
therefore space straight d over dx open square brackets cos left parenthesis square root of straight x right parenthesis close square brackets equals negative fraction numerator 1 over denominator 2 square root of straight x end fraction. sin square root of straight x
    Question 283
    CBSEENMA12034888
    Question 284
    CBSEENMA12034889
    Question 285
    CBSEENMA12034890
    Question 286
    CBSEENMA12034892
    Question 287
    CBSEENMA12034893
    Question 288
    CBSEENMA12034894
    Question 289
    CBSEENMA12034896

    Find space dy over dx comma space when space straight y equals 3 tan space straight x plus 5 space log subscript straight a straight x plus square root of straight x minus 3 straight e to the power of straight x plus 1 over straight x.

    Solution
    Let space space space space straight y equals 3 tan space straight x plus 5 space log subscript straight a straight x plus square root of straight x minus 3 straight e to the power of straight x plus 1 over straight x
therefore space space space space space space straight y equals 3 tan space straight x plus 5 space log subscript straight a straight x plus straight x to the power of 1 half end exponent minus 3 straight e to the power of straight x plus straight x to the power of negative 1 end exponent
therefore space dy over dx equals 3 sec squared straight x space plus 5 log subscript straight a straight e plus 1 half straight x to the power of negative 1 half end exponent minus 3 straight e to the power of straight x minus straight x to the power of negative 2 end exponent
therefore space dy over dx equals 3 sec squared straight x plus 5 log subscript straight a straight e plus fraction numerator 1 over denominator 2 square root of straight x end fraction minus 3 straight e to the power of straight x minus 1 over straight x squared.
    Question 290
    CBSEENMA12034897
    Question 291
    CBSEENMA12034898
    Question 293
    CBSEENMA12034901
    Question 294
    CBSEENMA12034902
    Question 295
    CBSEENMA12034903
    Question 296
    CBSEENMA12034904
    Question 297
    CBSEENMA12034905
    Question 298
    CBSEENMA12034908
    Question 299
    CBSEENMA12034909
    Question 300
    CBSEENMA12034912
    Question 301
    CBSEENMA12034914
    Question 302
    CBSEENMA12034915
    Question 303
    CBSEENMA12034917
    Question 304
    CBSEENMA12034918
    Question 305
    CBSEENMA12034919

    Differentiate space straight e to the power of straight x space log square root of straight x. tan space straight x space straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space straight y equals straight e to the power of straight x space log space straight x to the power of 1 half end exponent tan space straight x space equals 1 half straight e to the power of straight x log space straight x. tan space straight x
therefore space dy over dx equals 1 half open square brackets straight e to the power of straight x log space straight x. straight d over dx left parenthesis tan space straight x right parenthesis plus straight e to the power of straight x tan space straight x straight d over dx left parenthesis log space straight x right parenthesis plus log space straight x. tanx straight d over dx left parenthesis straight e to the power of straight x right parenthesis close square brackets
space space space space space space space space space space space space space equals 1 half open square brackets straight e to the power of straight x log space xsec squared straight x plus fraction numerator straight e to the power of straight x tanx over denominator straight x end fraction plus log space xtan space straight x. straight e to the power of straight x close square brackets
space space space space space space space space space space space space space equals 1 half straight e to the power of straight x open square brackets log space straight x. sec squared straight x plus fraction numerator tan space straight x over denominator straight x end fraction plus log space straight x. tan space straight x close square brackets
    Question 306
    CBSEENMA12034921
    Question 307
    CBSEENMA12034922
    Question 308
    CBSEENMA12034923
    Question 309
    CBSEENMA12034924
    Question 310
    CBSEENMA12034925
    Question 311
    CBSEENMA12034926
    Question 312
    CBSEENMA12034927

    Differentiate :log space sin square root of straight x squared plus 1 end root

    Solution
    Let space space space space space straight y equals log space sin square root of straight x squared plus 1 end root
therefore space dy over dx equals fraction numerator 1 over denominator sin square root of straight x squared plus 1 end root end fraction. straight d over dx open square brackets sin square root of straight x squared plus 1 end root close square brackets
space space space space space space space space space space space space space equals fraction numerator 1 over denominator sin square root of straight x squared plus 1 end root end fraction. cos square root of straight x squared plus 1 end root. straight d over dx open parentheses square root of straight x squared plus 1 end root close parentheses
space space space space space space space space space space space space space equals fraction numerator 1 over denominator sin square root of straight x squared plus 1 end root end fraction. cos square root of straight x squared plus 1 end root. fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction equals fraction numerator straight x over denominator square root of straight x squared plus 1 end root end fraction. cot square root of straight x squared plus 1 end root
    Question 313
    CBSEENMA12034930

     If space straight y equals log square root of fraction numerator 1 plus cos squared straight x over denominator 1 minus straight e squared straight x end fraction end root comma space find space dy over dx

    Solution
    Here space straight y equals log open parentheses If space straight y equals log fraction numerator 1 plus cos squared straight x over denominator 1 minus straight e squared straight x end fraction close parentheses to the power of 1 half end exponent
therefore space space space space space space straight y equals 1 half log open parentheses fraction numerator 1 plus cos squared straight x over denominator 1 minus straight e squared straight x end fraction close parentheses
rightwards double arrow space space space space space space straight y equals 1 half left square bracket log left parenthesis 1 plus cos to the power of straight x right parenthesis minus log left parenthesis 1 minus straight e to the power of 2 straight x end exponent right parenthesis right square bracket
therefore space dy over dx equals 1 half open square brackets fraction numerator 1 over denominator 1 plus cos squared straight x end fraction left parenthesis negative 2 cos space straight x space sin space straight x right parenthesis minus fraction numerator 1 over denominator 1 minus straight e to the power of 2 straight x end exponent end fraction left parenthesis negative 2 straight e to the power of 2 straight x end exponent right parenthesis close square brackets
space space space space space space space space space space space space space equals 1 half open square brackets fraction numerator negative 2 sin space xcos space straight x over denominator 1 plus cos space straight x end fraction plus fraction numerator 2 straight e 2 straight x over denominator 1 minus straight e to the power of 2 straight x end exponent end fraction close square brackets
therefore space dy over dx equals negative fraction numerator sin space xcos space straight x over denominator 1 plus cos squared straight x end fraction plus fraction numerator straight e to the power of 2 straight x end exponent over denominator 1 minus straight e to the power of 2 straight x end exponent end fraction
    Question 314
    CBSEENMA12034932

    If space equals log square root of fraction numerator 1 plus sin squared straight x over denominator 1 minus tan space straight x end fraction end root comma space find space dy over dx.

    Solution
    Here space straight y equals log square root of fraction numerator 1 plus sin squared straight x over denominator 1 minus tan space straight x end fraction end root
therefore space space space space space space straight y equals 1 half log open parentheses fraction numerator 1 plus sin squared straight x over denominator 1 minus tan space straight x end fraction close parentheses
rightwards double arrow space space space space space space straight y equals 1 half left square bracket log left parenthesis 1 plus sin squared straight x right parenthesis minus log left parenthesis 1 minus tan space straight x right parenthesis right square bracket
therefore space dy over dx equals 1 half open square brackets fraction numerator 2 sin space straight x space cos space straight x over denominator 1 plus sin squared straight x end fraction minus fraction numerator negative sec squared straight x over denominator 1 minus tan space straight x end fraction close square brackets
therefore space dy over dx equals 1 half open square brackets fraction numerator sin space 2 straight x over denominator 1 plus sin squared straight x end fraction plus fraction numerator sec squared straight x over denominator 1 minus tan space straight x end fraction close square brackets
    Question 315
    CBSEENMA12034933
    Question 316
    CBSEENMA12034934
    Question 317
    CBSEENMA12034936
    Question 318
    CBSEENMA12034937
    Question 319
    CBSEENMA12034938
    Question 320
    CBSEENMA12034939
    Question 321
    CBSEENMA12034941

    If space straight y equals sin open square brackets square root of sin square root of straight x end root close square brackets comma space where space straight x greater than 0 comma space find space dy over dx

    Solution
    Here space straight y equals sin open square brackets square root of sin square root of straight x end root close square brackets
therefore space dy over dx equals cos open square brackets square root of sin square root of straight x end root close square brackets. straight d over dx open square brackets square root of sin square root of straight x end root close square brackets
space space space space space space space space space space space space space equals cos open square brackets square root of sin square root of straight x end root close square brackets. fraction numerator 1 over denominator 2 open square brackets square root of sin square root of straight x end root close square brackets end fraction. straight d over dx open parentheses sin square root of straight x close parentheses
space space space space space space space space space space space space space equals cos open square brackets square root of sin square root of straight x end root close square brackets. fraction numerator 1 over denominator 2 open square brackets square root of sin square root of straight x end root close square brackets end fraction. cos square root of straight x. straight d over dx left parenthesis square root of straight x right parenthesis
space space space space space space space space space space space space space equals cos open square brackets square root of sin square root of straight x end root close square brackets. fraction numerator 1 over denominator 2 open square brackets square root of sin square root of straight x end root close square brackets end fraction. open parentheses cos square root of straight x close parentheses. open parentheses fraction numerator 1 over denominator 2 square root of straight x end fraction close parentheses
space space space space space space space space space space space space space equals fraction numerator cos open square brackets square root of sin square root of straight x end root close square brackets. cos square root of straight x over denominator 4 square root of straight x square root of sin square root of straight x end root end root end fraction
    Question 322
    CBSEENMA12034943
    Question 323
    CBSEENMA12034945

    If space straight y equals square root of cos space straight x plus square root of cos space straight x plus square root of cos space straight x plus.... infinity end root end root end root comma space prove space that
space space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals negative sin space straight x

    Solution
    Since space straight y equals square root of cos space straight x plus square root of cos space straight x plus square root of cos space straight x plus.... infinity end root end root end root
therefore space space space space space space space straight y equals square root of cos space straight x plus straight y end root
therefore space space space space space straight y squared equals cos space straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space 2 straight y dy over dx equals negative sin space straight x plus dy over dx
therefore space space 2 straight y dy over dx minus dy over dx equals negative sin space straight x
therefore space space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals negative sin space straight x
    Question 324
    CBSEENMA12034946

    If space straight y equals square root of sin space straight x plus square root of sin space straight x plus square root of sin space straight x plus.... infinity end root end root end root comma space prove space that space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals cos space straight x

    Solution
    SInce space straight y equals square root of sin space straight x plus square root of sin space straight x plus square root of sin space straight x plus.... infinity end root end root end root
therefore space space space space space space space straight y equals square root of sin space straight x plus straight y end root
Squaring comma
space space space space space space space space space straight y squared equals sin space straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
2 straight y dy over dx equals cos space straight x plus dy over dx comma space space space therefore space 2 straight y dy over dx minus dy over dx equals cos space straight x
therefore space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals cos space straight x
    Question 325
    CBSEENMA12034947

    If space straight y equals square root of tan space straight x plus square root of tan space straight x plus square root of tan space straight x plus... infinity end root end root end root comma space prove space that space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals sec squared straight x.

    Solution
    SInce space space straight y equals square root of tan space straight x plus square root of tan space straight x plus square root of tan space straight x plus... infinity end root end root end root
therefore space space space space space space space space straight y equals square root of tan space straight x plus straight y end root
therefore space space space space space space straight y squared equals tan space straight x plus straight y
Differntiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space 2 straight y dy over dx equals sec squared straight x plus dy over dx
therefore space 2 straight y dy over dx minus dy over dx equals sec squared straight x
therefore space left parenthesis 2 straight y minus 1 right parenthesis dy over dx equals sec squared straight x.
    Question 326
    CBSEENMA12034949

    If space straight y equals fraction numerator sin space straight x over denominator 1 plus begin display style fraction numerator cos space straight x over denominator 1 plus begin display style fraction numerator sin space straight x over denominator 1 plus begin display style fraction numerator cos space straight x over denominator 1 plus.... infinity end fraction end style end fraction end style end fraction end style end fraction comma space prov e space that space dy over dx equals fraction numerator left parenthesis 1 plus straight y right parenthesis cos space straight x plus straight y space sin space straight x over denominator 1 plus 2 straight y plus cos space straight x minus sin space straight x end fraction

    Solution
    Here space straight y equals fraction numerator sin space straight x over denominator 1 plus begin display style fraction numerator cos space straight x over denominator 1 plus begin display style fraction numerator sin space straight x over denominator 1 plus begin display style fraction numerator cos space straight x over denominator 1 plus.... infinity end fraction end style end fraction end style end fraction end style end fraction
therefore space space space space space space straight y equals fraction numerator sin space straight x over denominator 1 plus begin display style fraction numerator cos space straight x over denominator 1 plus straight y end fraction end style end fraction space rightwards double arrow space straight y equals fraction numerator left parenthesis 1 plus straight y right parenthesis sin space straight x over denominator 1 plus straight y plus cos space straight x end fraction
rightwards double arrow space straight y plus straight y squared plus straight y space cos space straight x equals left parenthesis 1 plus straight y right parenthesis sin space straight x
Differntiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space dy over dx plus 2 straight y dy over dx plus straight y left parenthesis negative sin space straight x right parenthesis plus cos space straight x dy over dx equals left parenthesis 1 plus straight y right parenthesis cos space straight x plus sin space straight x. dy over dx
therefore space left parenthesis 1 plus 2 straight y plus cos space straight x minus sin space straight x right parenthesis dy over dx equals left parenthesis 1 plus straight y right parenthesis cos space straight x plus straight y space sin space straight x
therefore space dy over dx equals fraction numerator left parenthesis 1 plus straight y right parenthesis cos space straight x plus straight y space sin space straight x over denominator 1 plus 2 straight y plus cos space straight x minus sin space straight x end fraction
    Question 327
    CBSEENMA12034950
    Question 328
    CBSEENMA12034951
    Question 329
    CBSEENMA12034952
    Question 330
    CBSEENMA12034953
    Question 331
    CBSEENMA12034954
    Question 332
    CBSEENMA12034956
    Question 333
    CBSEENMA12034958
    Question 334
    CBSEENMA12034959
    Question 335
    CBSEENMA12034961
    Question 336
    CBSEENMA12034964

    If space straight y equals square root of fraction numerator 1 minus sin space 2 straight x over denominator 1 plus sin space 2 straight x end fraction end root comma space show space that space dy over dx plus sec squared open parentheses straight pi over 4 minus straight x close parentheses equals 0

    Solution
    Let space space space space straight y equals square root of fraction numerator 1 minus sin space 2 straight x over denominator 1 plus sin space 2 straight x end fraction end root
therefore space space space space space space straight y equals square root of fraction numerator cos squared straight x plus sin squared straight x minus 2 sin space straight x space cos space straight x over denominator cos squared straight x plus sin squared straight x plus 2 sin space straight x space cos space straight x end fraction end root equals square root of open parentheses fraction numerator cos space straight x minus sin space straight x over denominator cos space straight x plus sin space straight x end fraction close parentheses squared end root
space space space space space space space space space space space space equals fraction numerator cos space straight x minus sin space straight x over denominator cos space straight x plus sin space straight x end fraction equals fraction numerator begin display style fraction numerator cos space straight x over denominator cos space straight x end fraction end style minus begin display style fraction numerator sin space straight x over denominator cos space straight x end fraction end style over denominator begin display style fraction numerator cos space straight x over denominator cos space straight x end fraction end style plus begin display style fraction numerator sin space straight x over denominator cos space straight x end fraction end style end fraction equals fraction numerator 1 minus tan space straight x over denominator 1 plus tan space straight x end fraction
space space space space space space space space space space space straight y equals tan open parentheses straight pi over 4 minus straight x close parentheses
therefore space dy over dx equals sec squared straight x open parentheses straight pi over 4 minus straight x close parentheses. straight d over dx open parentheses straight pi over 4 minus straight x close parentheses equals sec squared straight x. left parenthesis 1 right parenthesis
therefore space dy over dx plus sec squared straight x open parentheses straight pi over 4 minus straight x close parentheses equals 0
    Question 337
    CBSEENMA12034965

    Differentiate :
    log square root of fraction numerator 1 plus sin space straight x over denominator 1 minus sin space straight x end fraction end root w.r.t.x.

    Solution
    Let space space space space space straight y equals log square root of fraction numerator 1 plus sin space straight x over denominator 1 minus sin space straight x end fraction end root
therefore space space space space space space space straight y equals log open parentheses fraction numerator 1 plus sin space straight x over denominator 1 minus sin space straight x end fraction close parentheses to the power of 1 half end exponent equals 1 half log open parentheses fraction numerator 1 plus sin space straight x over denominator 1 minus sin space straight x end fraction close parentheses
space space space space space space space space space space space space space equals 1 half left square bracket log left parenthesis 1 plus sin space straight x right parenthesis minus log left parenthesis 1 minus sin space straight x right parenthesis right square bracket
therefore space dy over dx equals 1 half open square brackets fraction numerator 1 over denominator 1 plus sin space straight x end fraction plus fraction numerator 1 over denominator 1 minus sin space straight x end fraction close square brackets equals 1 half cos space straight x open square brackets fraction numerator 1 minus sin space straight x plus 1 plus sin space straight x over denominator left parenthesis 1 plus sin space straight x right parenthesis left parenthesis 1 minus sin space straight x right parenthesis end fraction close square brackets
space space space space space space space space space space space space space equals 1 half cos space straight x open square brackets fraction numerator 2 over denominator 1 minus sin squared straight x end fraction close square brackets equals 1 half cos space straight x open square brackets fraction numerator 2 over denominator cos squared straight x end fraction close square brackets equals fraction numerator 1 over denominator cos space straight x end fraction equals sec space straight x.
    Question 338
    CBSEENMA12034968

    Given space that space cos space straight x over 2. cos space straight x over 2. cos straight x over 8.... equals fraction numerator sin space straight x over denominator straight x end fraction comma space prove space that
1 over 2 squared sec squared straight x over 2 plus 1 over 2 to the power of 4 sec squared straight x over 4 plus..... equals cosec squared straight x minus 1 over straight x squared

    Solution
    We space have space
space space space space space cos space straight x over 2. cos space straight x over 2. cos straight x over 8.... equals fraction numerator sin space straight x over denominator straight x end fraction
therefore space log open square brackets cos space straight x over 2. cos space straight x over 2. cos straight x over 8.... close square brackets equals log open parentheses fraction numerator sin space straight x over denominator straight x end fraction close parentheses
therefore space log open parentheses cos space straight x over 2 close parentheses plus log open parentheses cos space straight x over 2 close parentheses plus log open parentheses cos straight x over 8 close parentheses plus... equals log space sin space straight x minus log space straight x
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space fraction numerator negative begin display style 1 half end style sin begin display style straight x over 2 end style over denominator cos begin display style straight x over 2 end style end fraction plus fraction numerator negative begin display style 1 fourth end style sin begin display style straight x over 4 end style over denominator cos begin display style straight x over 4 end style end fraction plus fraction numerator negative begin display style 1 over 8 end style sin begin display style straight x over 8 end style over denominator cos begin display style straight x over 8 end style end fraction plus... equals fraction numerator cos space straight x over denominator sin space straight x end fraction minus 1 over straight x
or space space minus 1 half tan space straight x over 2 minus 1 fourth tan straight x over 4 minus 1 over 8 tan straight x over 8... equals negative cot space straight x minus 1 over straight x
Again space differentiating space straight w. straight r. straight t. straight x comma we space get comma
space space space space space minus 1 over 2 squared sec squared straight x over 2 minus 1 over 2 to the power of 4 sec squared straight x over 4 minus... equals negative cosec squared straight x plus 1 over straight x squared
therefore space 1 over 2 squared sec squared straight x over 2 plus 1 over 2 to the power of 4 sec squared straight x over 4 plus... equals cosec squared straight x minus 1 over straight x squared
    Question 339
    CBSEENMA12034969
    Question 340
    CBSEENMA12034970
    Question 341
    CBSEENMA12034974
    Question 342
    CBSEENMA12034975

    If space straight x space straight y plus straight y squared equals tan space straight x plus straight y comma space find dy over dx

    Solution
    space space space space space space space space space space space space space space space space space straight x space straight y plus straight y squared equals tan space straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space straight x dy over dx plus straight y.1 plus 2 straight y dy over dx equals sec squared straight x plus dy over dx
therefore space space straight x dy over dx plus 2 straight y dy over dx minus dy over dx equals sec squared straight x minus straight y
therefore space left parenthesis straight x plus 2 straight y minus 1 right parenthesis dy over dx equals sec squared straight x minus straight y
therefore space space space space dy over dx equals fraction numerator sec squared straight x minus straight y over denominator straight x plus 2 straight y minus 1 end fraction
    Question 343
    CBSEENMA12034977

    Find space dy over dx space when space sin left parenthesis straight x space straight y right parenthesis plus straight x over straight y equals straight x squared minus straight y.

    Solution
    space space space space space sin left parenthesis straight x space straight y right parenthesis plus straight x over straight y equals straight x squared minus straight y.
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma
cos left parenthesis straight x space straight y right parenthesis. straight d over dx left parenthesis straight x space straight y right parenthesis plus fraction numerator straight y begin display style straight d over dx end style left parenthesis straight x right parenthesis minus straight x begin display style straight d over dx end style left parenthesis straight y right parenthesis over denominator straight y squared end fraction equals 2 straight x minus dy over dx
therefore space cos left parenthesis straight x space straight y right parenthesis cross times open square brackets straight x dy over dx plus straight y.1 close square brackets plus fraction numerator straight y.1 minus straight x begin display style dy over dx end style over denominator straight y squared end fraction equals 2 straight x minus dy over dx
therefore space straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis dy over dx plus straight y cubed cos left parenthesis straight x space straight y right parenthesis plus straight y minus straight x dy over dx equals 2 straight x space straight y squared minus straight y squared dy over dx
therefore space left square bracket straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis minus straight x plus straight y squared right square bracket dy over dx equals 2 space straight x space straight y squared minus straight y cubed space cos left parenthesis straight x space straight y right parenthesis minus straight y
therefore space dy over dx equals fraction numerator straight y left square bracket 2 space straight x space straight y minus straight y squared space cos left parenthesis straight x space straight y right parenthesis minus 1 right square bracket over denominator straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis minus straight x plus straight y squared end fraction.
    Question 344
    CBSEENMA12034981

    FInd space dy over dx of space 2 straight x plus 3 straight y equals sin space straight x.

    Solution
    Here space 2 straight x plus 3 straight y equals sin space straight x
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
straight d over dx left parenthesis 2 straight x right parenthesis plus straight d over dx left parenthesis 3 straight y right parenthesis equals straight d over dx left parenthesis sin space straight x right parenthesis
therefore space 2 straight d over dx left parenthesis straight x right parenthesis plus 3 straight d over dx left parenthesis straight y right parenthesis equals straight d over dx left parenthesis sin space straight x right parenthesis
therefore space 2.1 plus 3 dy over dx equals cos space straight x
therefore space space space space space space space space space space space 3 dy over dx equals cos space straight x minus 2
therefore space space space space space space space space space space space space space space space dy over dx equals 1 third left parenthesis cos space straight x minus 2 right parenthesis
    Question 345
    CBSEENMA12034982

    FInd space dy over dx space of space 2 straight x plus 3 straight y equals sin space straight y

    Solution
    Here space 2 straight x plus 3 straight y equals sin space straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
straight d over dx left parenthesis 2 straight x right parenthesis plus straight d over dx left parenthesis 3 straight y right parenthesis equals straight d over dx left parenthesis sin space straight y right parenthesis
therefore space 2 plus 3 dy over dx equals cos space straight y. dy over dx
therefore space left parenthesis cos space straight y minus 3 right parenthesis dy over dx equals 2
therefore space dy over dx equals fraction numerator 2 over denominator cos space straight y minus 3 end fraction
    Question 346
    CBSEENMA12034985

    Find space dy over dx space of space straight a space straight x plus straight b space straight y squared equals cos space straight y space

    Solution
    Here space space straight a space straight x plus straight b space straight y squared equals cos space straight y
Didfferentiating space both space side space straight w. straight r. straight t. straight x comma space we space get comma
space straight d over dx left parenthesis straight a space straight x right parenthesis plus straight d over dx left parenthesis straight b space straight y squared right parenthesis equals straight d over dx left parenthesis cos space straight y right parenthesis
therefore space straight a plus 2 straight b space straight y dy over dx equals negative sin space straight y. dy over dx
therefore space left parenthesis 2 straight b space straight y plus sin space straight y right parenthesis dy over dx equals negative straight a
therefore dy over dx equals negative open parentheses fraction numerator straight a over denominator 2 straight b space straight y plus sin space straight y end fraction close parentheses
    Question 347
    CBSEENMA12034987

    Find space dy over dx space of space straight x space straight y plus straight y squared space equals tan space straight x plus straight y

    Solution
    Here space space space straight x space straight y plus straight y squared space equals tan space straight x plus straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space straight d over dx left parenthesis straight x space straight y right parenthesis plus straight d over dy left parenthesis straight y squared right parenthesis equals straight d over dx left parenthesis tan space straight x right parenthesis plus straight d over dx left parenthesis straight y right parenthesis
therefore space straight x dy over dx plus straight y.1 plus 2 straight y dy over dx equals sec squared straight x plus dy over dx
therefore space left parenthesis straight x plus 2 straight y minus 1 right parenthesis dy over dx equals sec squared straight x minus straight y
therefore space space space space space space space space space space space space space space space space space space space space space dy over dx equals fraction numerator sec squared straight x minus straight y over denominator straight x plus 2 straight y minus 1 end fraction
    Question 348
    CBSEENMA12034989

    Find space dy over dx space of space sin squared space straight y plus cos space straight x space straight y equals straight pi

    Solution
    Here space space sin squared space straight y plus cos space straight x space straight y equals straight pi
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space straight d over dx left parenthesis sin squared straight y right parenthesis plus straight d over dx left parenthesis cos space straight x space straight y right parenthesis equals straight d over dx left parenthesis straight pi right parenthesis
therefore space 2 sin space straight y dy over dx minus sin space straight x space straight y. straight d over dx left parenthesis straight x space straight y right parenthesis equals 0
therefore space 2 sin space straight y dy over dx minus sin space straight x space straight y. open parentheses straight x dy over dx plus straight y.1 close parentheses equals 0
therefore space 2 sin space straight y dy over dx minus straight x space sin space straight x space straight y. dy over dx minus straight y space sin space straight x space straight y equals 0
therefore space left parenthesis 2 space sin space straight v minus straight x space sin space xy right parenthesis dy over dx equals straight y space sin space straight x space straight y equals 0
therefore space dy over dx equals fraction numerator straight y space sin space xy over denominator 2 space sin space straight y minus straight x space sin space straight x space straight y end fraction
    Question 350
    CBSEENMA12034992
    Question 351
    CBSEENMA12034994
    Question 352
    CBSEENMA12034995
    Question 353
    CBSEENMA12034997
    Question 354
    CBSEENMA12034999
    Question 355
    CBSEENMA12035002

    Find space dy over dx when space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis comma space straight y equals straight a left parenthesis 1 minus cosθ right parenthesis

    Solution
    space space space space space space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis comma space straight y equals straight a left parenthesis 1 minus cosθ right parenthesis
dy over dθ equals straight a left parenthesis 1 plus cosθ right parenthesis equals straight a open parentheses 2 space cos squared straight theta over 2 close parentheses equals 2 straight a space cos squared straight theta over 2
space space space space space space straight y equals straight a left parenthesis 1 minus cosθ right parenthesis
therefore space space space space space dy over dθ equals straight a left parenthesis sinθ right parenthesis equals straight a open parentheses 2 space sin straight theta over 2 cos straight theta over 2 close parentheses equals 2 straight a space sin straight theta over 2 cos straight theta over 2
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator 2 space sin straight theta over 2 cos straight theta over 2 over denominator 2 straight a space cos squared straight theta over 2 end fraction equals fraction numerator sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction equals tan straight theta over 2
    Question 356
    CBSEENMA12035003

    Find space dy over dx space when space straight x equals straight a left parenthesis 1 minus cosθ right parenthesis comma space straight y equals straight a left parenthesis straight theta plus sinθ right parenthesis

    Solution
    Here space space space space space straight x equals straight a left parenthesis 1 minus cosθ right parenthesis comma space space straight y equals straight a left parenthesis straight theta plus sinθ right parenthesis
therefore space space space space dx over dθ equals straight a space sinθ comma space space dy over dθ equals straight a left parenthesis 1 plus cosθ right parenthesis
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight a left parenthesis 1 plus cosθ right parenthesis over denominator straight a space sinθ end fraction equals fraction numerator 1 plus cosθ over denominator sinθ end fraction equals fraction numerator 2 cos squared begin display style straight theta over 2 end style over denominator 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style end fraction equals fraction numerator cos begin display style straight theta over 2 end style over denominator sin begin display style straight theta over 2 end style end fraction
therefore space fraction numerator space space space space dy over denominator dx end fraction equals cot straight theta over 2
    Question 357
    CBSEENMA12035007

    Find space dy over dx when space straight x equals straight a space sinθ comma space straight y equals straight a open parentheses cosθ plus log space tan straight theta over 2 close parentheses

    Solution
    space space space space space space space space space space space straight x equals straight a space sinθ
therefore space dx over dθ equals straight a space cosθ
Also
space space space space space space space space space space space straight y equals straight a open parentheses cosθ plus log space tan straight theta over 2 close parentheses
therefore space dy over dθ equals straight a open square brackets negative sinθ plus fraction numerator 1 over denominator tan begin display style straight theta over 2 end style end fraction. sec squared straight theta over 2.1 half close square brackets
space space space space space space space space space space space space space equals straight a open square brackets negative sinθ plus fraction numerator cos begin display style straight theta over 2 end style over denominator begin display style sin straight theta over 2 end style end fraction. fraction numerator 1 over denominator 2 cos squared begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space space space space space equals straight a open square brackets negative sinθ plus fraction numerator 1 over denominator 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space space space space space equals straight a open square brackets negative sinθ plus 1 over sinθ close square brackets
space space space space space space space space space space space space space equals straight a open parentheses fraction numerator negative sin squared straight theta plus 1 over denominator sinθ end fraction close parentheses equals fraction numerator straight a space cos squared straight theta over denominator sinθ end fraction
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight a space cos squared straight theta over denominator sinθ end fraction cross times fraction numerator 1 over denominator straight a space cosθ end fraction equals cosθ over sinθ
therefore space space space space space dy over dx equals cotθ
    Question 358
    CBSEENMA12035010

    Find space dy over dx space when space straight x equals cos cubed straight theta comma space straight y equals straight b space sin cubed straight theta

    Solution
    space space space space space space space space space space space straight x equals cos cubed straight theta
therefore space dx over dθ equals 3 straight a space cos squared straight theta left parenthesis negative sinθ right parenthesis equals negative 3 acos squared θsinθ
space space space space space space space space space space space straight y equals straight b space sin cubed straight theta
therefore space dy over dθ equals 3 straight b space sin squared θcosθ
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator 3 straight b space sin squared θcosθ over denominator negative 3 acos squared θsinθ end fraction
    Question 359
    CBSEENMA12035011

    If space space straight x equals straight a left parenthesis 1 minus cosθ right parenthesis comma space straight y equals straight a left parenthesis 1 plus sinθ right parenthesis comma space find dy over dx comma

    Solution
    space straight x equals straight a left parenthesis 1 minus cosθ right parenthesis space rightwards double arrow dx over dθ equals straight a space sinθ
space straight y equals straight a left parenthesis 1 plus sinθ right parenthesis space rightwards double arrow space dy over dθ equals straight a space cosθ
Now space dy over dθ equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight a space cosθ over denominator straight a space sinθ end fraction equals cotθ
    Question 360
    CBSEENMA12035012

    Find space dy over dx when space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis comma space straight y equals straight a left parenthesis 1 plus cosθ right parenthesis.

    Solution
    space space space space space space space space space space space space space space space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis space rightwards double arrow space dx over xθ equals straight a left parenthesis 1 plus cosθ right parenthesis
space space space space space space space space space space space space space space space straight y equals straight a left parenthesis 1 plus cosθ right parenthesis space rightwards double arrow space dx over dθ equals negative straight a space sinθ
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator negative straight a space sinθ over denominator straight a left parenthesis 1 plus cosθ right parenthesis end fraction equals fraction numerator negative 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction equals negative fraction numerator sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction equals negative tan straight theta over 2
    Question 361
    CBSEENMA12035013

    If space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis comma space straight y equals straight a left parenthesis 1 minus cosθ right parenthesis comma space fimd space dy over dx at space straight theta equals straight pi over 2.

    Solution
    space straight x equals straight a left parenthesis straight theta plus sinθ right parenthesis space rightwards double arrow space dx over xθ equals straight a left parenthesis 1 plus cosθ right parenthesis
straight y equals straight a left parenthesis 1 minus cosθ right parenthesis space rightwards double arrow space dy over dθ equals straight a space sinθ
Now space dy over dθ equals fraction numerator straight a space sinθ over denominator straight a left parenthesis 1 plus cosθ right parenthesis end fraction
At space straight theta equals straight pi over 2 comma space dy over dx equals fraction numerator sin begin display style straight pi over 2 end style over denominator 1 plus cos begin display style straight pi over 2 end style end fraction equals fraction numerator 1 over denominator 1 plus 0 end fraction equals 1
    Question 363
    CBSEENMA12035015

    FInd space dy over dx
x equals straight a open parentheses cos space straight t plus log space tan straight t over 2 close parentheses comma space straight y equals straight a space sin space straight t.

    Solution
    space space space space space space space space space space space straight x equals straight a open parentheses cos space straight t plus tog space tan straight t over 2 close parentheses
therefore space dx over dt equals straight a open square brackets negative sin space straight t plus fraction numerator 1 over denominator tan straight t over 2 end fraction. straight d over dt open parentheses tan straight t over 2 close parentheses close square brackets equals straight a open square brackets negative sin space straight t plus fraction numerator 1 over denominator tan straight t over 2 end fraction cross times sec squared straight t over 2 cross times 1 half close square brackets
space space space space space space space space space space space space space equals straight a open square brackets negative sin space straight t plus fraction numerator cos begin display style straight t over 2 end style over denominator sin begin display style straight t over 2 end style end fraction cross times fraction numerator 1 over denominator cos squared begin display style straight t over 2 end style end fraction cross times 1 half close square brackets
space space space space space space space space space space space space space equals straight a open square brackets negative sin space straight t plus fraction numerator 1 over denominator 2 space sin begin display style straight t over 2 end style cos begin display style straight t over 2 end style end fraction close square brackets equals straight a open square brackets negative sin space straight t plus fraction numerator 1 over denominator sin space straight t end fraction close square brackets equals straight a open square brackets fraction numerator negative sin squared space straight t plus 1 over denominator sin space straight t end fraction close square brackets equals fraction numerator straight a space cos squared straight t over denominator sin space straight t end fraction

space space space space space space space space space space space straight y equals straight a space sin space straight t
therefore space dy over dx equals straight a space cos space straight t
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator straight a space cos space straight t cross times sin space straight t over denominator straight a space cos squared straight t end fraction equals fraction numerator sin space straight t over denominator cos space straight t end fraction equals tan space straight t
    Question 364
    CBSEENMA12035017

    Find space dy over dx space when space straight x space equals straight a space cosө comma space straight y space equals straight b space cosө space

    Solution
    space space space space space space space space space space straight x space equals straight a space cosө comma space straight y space equals straight b space cosө
therefore space dx over dθ equals negative straight a space sinθ comma space dy over dθ equals negative straight b space sinθ
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator negative straight b space sinθ over denominator negative straight a space sinθ end fraction equals straight b over straight a
    Question 365
    CBSEENMA12035019

    Find space dy over dx space when space straight x equals sin space straight t comma space straight y space equals cos space 2 straight t

    Solution
    space space space space space space space space space space straight x equals sin space straight t comma space straight y space equals cos space 2 straight t
therefore space dx over dt equals cos space straight t comma space dy over dt equals negative 2 space sin space 2 straight t
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator negative 2 space sin space 2 straight t over denominator cos space straight t end fraction equals negative 2 fraction numerator 2 space sin space straight t space cos space straight t over denominator cos space straight t end fraction equals negative 4 space sin space straight t
    Question 366
    CBSEENMA12035021

    Find space dy over dx when space straight x equals straight a space secө comma space straight y equals straight b space tanө space

    Solution
    space space space space space space space space space space space space space space straight x equals straight a space secө comma space space straight y equals straight b space tanө space
therefore space space straight b dx over dθ equals straight a space secθ space tanθ comma space dy over dθ equals straight b space sec squared
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight b space sec squared over denominator straight a space secθ space tanθ end fraction equals fraction numerator straight b space secθ over denominator straight a space tan space straight theta end fraction
equals straight b over straight a fraction numerator begin display style 1 over cosθ end style over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction equals straight b over straight a fraction numerator 1 over denominator cos space straight theta end fraction cross times fraction numerator cos space straight theta over denominator sin space straight theta end fraction equals straight b over straight a fraction numerator 1 over denominator sin space straight theta end fraction equals straight b over straight a cosec space straight theta
    Question 367
    CBSEENMA12035022

    space space space space space space space space space space space straight x equals cosө minus cos 2 straight ө comma space space space space straight y equals sinө minus sin 2 straight ө
therefore space dx over dθ equals negative sinθ plus 2 space sinθ
space space space space space dy over dθ equals cosθ minus 2 cosθ
space space space space space dy over dx equals fraction numerator cosθ minus 2 cosθ over denominator negative sinθ plus 2 space sinθ end fraction

    Solution
    Question 368
    CBSEENMA12035024

    Find space dy over dx when space straight x equals straight a left parenthesis straight ө minus sinө right parenthesis space comma straight y equals straight a left parenthesis 1 plus cosө right parenthesis

    Solution
    space space space space space space straight x equals straight a left parenthesis straight ө minus sinө right parenthesis comma space straight y equals straight a left parenthesis 1 plus cosө right parenthesis
dx over dθ equals straight a left parenthesis 1 minus cosθ right parenthesis
dy over dθ equals straight a left parenthesis 0 minus sinθ right parenthesis
dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator negative asinθ over denominator straight a left parenthesis 1 minus cosθ right parenthesis end fraction equals negative fraction numerator 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style over denominator 2 sin squared begin display style straight theta over 2 end style end fraction equals negative cot straight theta over 2
    Question 369
    CBSEENMA12035025

    Find space dy over dx when space straight x space equals straight a space left parenthesis cosө plus straight ө space sinө right parenthesis comma space straight y space equals space straight a space left parenthesis sinө space minus space straight ө space cosө right parenthesis

    Solution
    space space space space space space straight x equals straight a left parenthesis cosө plus straight ө space sinө right parenthesis comma space straight y equals straight a left parenthesis sinө minus straight ө space cosө right parenthesis
dx over dθ equals straight a left parenthesis negative sinθ plus straight theta space cosθ plus sinθ right parenthesis equals straight a space straight theta space cosθ
dy over dθ equals straight a left parenthesis cosθ plus straight theta space sinθ minus cosθ right parenthesis equals straight a space straight theta space sinθ
dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight a space straight theta space sinθ over denominator straight a space straight theta space cosθ end fraction equals tanθ
    Question 370
    CBSEENMA12035029

    Find space dy over dx when space straight x equals fraction numerator sin cubed straight t over denominator square root of cos space 2 straight t end root end fraction comma space straight y equals fraction numerator cos cubed straight t over denominator square root of cos space 2 straight t end root end fraction

    Solution
    space space space space space space straight x equals fraction numerator sin cubed straight t over denominator square root of cos space 2 straight t end root end fraction comma space space straight y equals fraction numerator cos cubed straight t over denominator square root of cos space 2 straight t end root end fraction
dx over dt equals fraction numerator square root of cos space 2 straight t end root.3 space sin squared straight t. begin display style fraction numerator negative 2 sin space 2 straight t over denominator 2 square root of cos space 2 straight t end root end fraction end style over denominator cos space 2 straight t end fraction
space space space space space space space space equals space fraction numerator begin display style fraction numerator 3 sin squared straight t space cos space straight t space square root of cos space 2 straight t space end root over denominator 1 end fraction end style plus begin display style fraction numerator sin cubed straight t space sin space 2 straight t over denominator square root of cos space 2 straight t end root end fraction end style over denominator cos space 2 straight t end fraction
space space space space space space space space equals fraction numerator begin display style 3 sin squared straight t space cos space straight t space. cos space 2 straight t plus sin cubed straight t space sin space 2 straight t end style over denominator open parentheses cos space 2 straight t close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction
dy over dt equals fraction numerator square root of cos space 2 straight t end root. left parenthesis negative 3 cos squared straight t space sin space straight t right parenthesis minus cos cubed straight t. begin display style fraction numerator negative 2 sin space 2 straight t over denominator 2 square root of cos space 2 straight t end root end fraction end style over denominator cos space 2 straight t end fraction
space space space space space space space space equals fraction numerator negative begin display style fraction numerator 3 cos squared straight t space sin space straight t square root of cos space 2 straight t end root over denominator 1 end fraction end style plus begin display style fraction numerator cos cubed straight t space sin space 2 straight t over denominator square root of cos space 2 straight t end root end fraction end style over denominator cos space 2 straight t end fraction
dy over dt equals fraction numerator negative 3 cos squared straight t space sin space straight t space cos space 2 straight t plus cos cubed straight t space sin space 2 straight t over denominator open parentheses cos space 2 straight t close parentheses to the power of 3 over 2 end exponent end fraction
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction
equals fraction numerator negative 3 cos squared straight t space sin space straight t space cos space 2 straight t plus cos cubed straight t space sin space 2 straight t over denominator open parentheses cos space 2 straight t close parentheses to the power of 3 over 2 end exponent end fraction cross times fraction numerator open parentheses cos space 2 straight t close parentheses to the power of 3 over 2 end exponent over denominator 3 sin squared straight t space cos space straight t space. cos space 2 straight t plus sin cubed straight t space sin space 2 straight t end fraction
    equals fraction numerator negative 3 cos squared straight t space sin space straight t space cos space 2 straight t plus cos cubed straight t space sin space 2 straight t over denominator 3 sin squared straight t space cos space straight t space. cos space 2 straight t plus sin cubed straight t space sin space 2 straight t end fraction
equals fraction numerator negative 3 cos squared straight t space sin space straight t left parenthesis 2 cos squared straight t minus 1 right parenthesis plus cos cubed straight t space.2 sin space straight t space cos space straight t over denominator 3 sin squared straight t space cos space straight t space left parenthesis 1 minus 2 sin squared straight t right parenthesis. negative plus 2 sin space straight t space cos space 2 straight t plus sin cubed straight t space end fraction
equals fraction numerator negative 6 cos to the power of 4 straight t space sin space straight t plus 3 space cos squared straight t space sin space straight t plus 2 sint space cos to the power of 4 straight t over denominator 3 sin squared straight t space cos space straight t minus 6 space sin to the power of 4 straight t space cos space straight t plus space 2 sin to the power of 4 straight t space cos space straight t end fraction equals fraction numerator negative 4 cos to the power of 4 straight t space sin space straight t plus 3 cos squared straight t space sin space straight t over denominator 3 sin squared straight t space cos space straight t minus 4 sin to the power of 4 straight t space cos space straight t end fraction
equals fraction numerator sin space straight t space cos space straight t left parenthesis 3 cos space straight t minus 4 cos cubed straight t right parenthesis over denominator negative sin space straight t space cos space straight t left parenthesis 4 sin cubed straight t minus 3 sint right parenthesis end fraction equals negative fraction numerator cos space 3 straight t over denominator sin space 3 straight t end fraction equals negative cot space 3 straight t.
    Question 371
    CBSEENMA12035030

    Differentiate space cos space straight x times cos space 2 straight x. cos 3 straight x space space straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space space straight y space equals space cos space straight x space times space cos space 2 straight x space cos space 3 space straight x
therefore space log space straight y space equals space log space left square bracket cos space straight x space times space cos space 2 straight x space times space cos space 3 straight a right square bracket
therefore space log space straight y space equals space log space cos space straight x space plus space log space cos space 2 straight a space plus space log space cos space 3 straight x
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get.
space 1 over straight y dy over dx equals fraction numerator negative sin space straight x over denominator cos space straight x end fraction plus fraction numerator negative 2 sin space straight x over denominator cos space 2 straight x end fraction plus fraction numerator negative 3 sin space 3 straight x over denominator cos space 3 straight x end fraction
therefore space space space dy over dx equals negative straight y left square bracket tan space straight x plus 2 tan space 2 straight x plus 3 space tan space 3 straight x right square bracket
therefore space space space space space space space space space space space equals negative cos space straight x space cos 2 straight x space cos space 3 straight x left square bracket tan space straight x plus 2 tan space 2 straight x plus 3 tan space 3 straight x right square bracket
    Question 372
    CBSEENMA12035032

    Find space dy over dx comma space if space straight y equals left parenthesis sin space straight x right parenthesis to the power of sin space straight x to the power of sin space straight x... infinity end exponent end exponent

    Solution
    space space space space space space straight y equals left parenthesis sin space straight x right parenthesis sin space xsin space straight x space... space infinity space
therefore space straight y space equals space left parenthesis sin space straight x right parenthesis straight y
therefore space log space straight y space equals space log space left parenthesis sin right parenthesis straight y space space rightwards double arrow space log space straight y space equals straight y space times space log space left parenthesis sin space straight x right parenthesis space space space space... left parenthesis 1 right parenthesis space
space Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space 1 over straight y dy over dx equals straight y. fraction numerator cos space straight x over denominator sin space straight x end fraction plus log left parenthesis sin space straight x right parenthesis. dy over dx
therefore space open square brackets 1 over straight y minus log left parenthesis sin space straight x right parenthesis close square brackets dy over dx equals straight y space cot space straight x
therefore space open parentheses fraction numerator 1 minus straight y space log left parenthesis sin space straight x right parenthesis over denominator straight y end fraction close parentheses dy over dx equals straight y space cot space straight x
therefore space dy over dx equals fraction numerator straight y squared cot space straight x over denominator 1 minus ylog left parenthesis sin space straight x right parenthesis end fraction
therefore space dy over dx equals fraction numerator straight y squared cot space straight x over denominator 1 minus log space straight y end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of left parenthesis 1 right parenthesis right square bracket
    Question 373
    CBSEENMA12035035

    If space straight y equals left parenthesis cos right parenthesis to the power of cos space straight x to the power of cos space straight x..... infinity end exponent end exponent comma space prove space that space dy over dx equals negative fraction numerator straight y squared tan space straight x over denominator 1 minus straight y space log space cos space straight x end fraction

    Solution
    Here space space straight y equals left parenthesis cos right parenthesis to the power of cos space straight x to the power of cos space straight x..... infinity end exponent end exponent
therefore space space space space space space space straight y equals left parenthesis cos space straight x right parenthesis to the power of straight y
therefore space log space straight y equals log left parenthesis cos space straight x right parenthesis to the power of straight y space space rightwards double arrow space log space straight y equals straight y comma space log space cos space straight x
Differentiating space straight w. straight r. straight t. comma space we space get comma
1 over straight y dy over dx equals straight y. fraction numerator negative sin space straight x over denominator cos space straight x end fraction plus log space cos space straight x. dy over dx
therefore space open parentheses 1 over straight y minus log space cos space straight x close parentheses dy over dx equals negative straight y space tan space straight x
therefore space open parentheses fraction numerator 1 minus log space cos space straight x over denominator straight y end fraction close parentheses dy over dx equals negative straight y space tan space straight x
dy over dx equals negative fraction numerator straight y squared tan space straight x over denominator 1 minus straight y space log space cos space straight x end fraction
    Question 374
    CBSEENMA12035037

    If space straight y equals left parenthesis tan space straight x right parenthesis to the power of tan space straight x to the power of tan space straight x.... infinity end exponent end exponent comma space prove space that space dy over dx equals 2 space at space straight x equals straight pi over 2

    Solution
    Here space straight y equals left parenthesis tan space straight x right parenthesis to the power of tan space straight x to the power of tan space straight x.... infinity end exponent end exponent
therefore space straight y equals left parenthesis tan space straight x right parenthesis to the power of straight y
therefore space log space straight y equals log left parenthesis tan space straight x right parenthesis to the power of straight y space rightwards double arrow space log space straight y equals straight y. log space tan space straight x
Differentiating space straight w. straight r. straight t comma space we space get comma
space space space space space 1 over straight y dy over dx equals straight y. fraction numerator sec squared straight x over denominator tan space straight x end fraction plus log space tan space straight x dy over dx
therefore space open parentheses 1 over straight y minus log space tan space straight x close parentheses dy over dx equals fraction numerator straight y space sec squared straight x over denominator tan space straight x end fraction
therefore space open parentheses fraction numerator 1 minus log space tan space straight x over denominator straight y end fraction close parentheses dy over dx equals fraction numerator straight y space sec squared straight x over denominator tan space straight x end fraction
therefore space space space space space dy over dx equals negative fraction numerator straight y squared sec squared straight x over denominator tan space straight x open parentheses 1 minus straight y space log space tan space straight x close parentheses end fraction
When space straight x equals straight pi over 2 comma space dy over dx equals fraction numerator left parenthesis 1 right parenthesis sec squared begin display style straight pi over 4 end style over denominator tan begin display style straight pi over 4 end style open parentheses 1 minus 1 space log space tan begin display style straight pi over 4 end style close parentheses end fraction space space space space space space space space space space space space space space space space open square brackets because space straight y equals 1 space when space straight x equals straight pi over 4 close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator open parentheses square root of 2 close parentheses squared over denominator left parenthesis 1 right parenthesis left parenthesis 1 minus log space 1 right parenthesis end fraction equals 2
    Question 375
    CBSEENMA12035038
    Question 376
    CBSEENMA12035040
    Question 377
    CBSEENMA12035042
    Question 378
    CBSEENMA12035043
    Question 379
    CBSEENMA12035044
    Question 380
    CBSEENMA12035046

    Differentiate space straight x to the power of tan space straight x end exponent plus square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space space space space space space space straight y equals straight x to the power of tan space straight x end exponent plus square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root
Put space straight x to the power of tan space straight x end exponent equals straight u comma space square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space space space space space space space straight u equals straight x to the power of tan space straight x end exponent
therefore space space space space space space log space straight u equals log space space straight x to the power of tan space straight x end exponent
therefore space space space space space space log space straight u equals space tan space straight x. log space straight x
therefore space 1 over straight u du over dx equals left parenthesis tan space straight x right parenthesis. open parentheses 1 over straight x close parentheses plus left parenthesis log space straight x right parenthesis. sec squared straight x
therefore space space space space space space space du over dx equals straight u open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets
therefore space space space space space space space du over dx equals straight x to the power of tan space straight x end exponent open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    space space space space space space space space space space straight v equals open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses to the power of 1 half end exponent
therefore space dv over dx equals 1 half open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses to the power of 1 half end exponent. straight d over dx open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses equals 1 half open parentheses fraction numerator straight x over denominator straight x squared plus 1 end fraction close parentheses to the power of 1 half end exponent. open square brackets fraction numerator straight x.2 straight x minus left parenthesis straight x squared plus 1 right parenthesis.1 over denominator straight x squared end fraction close square brackets
space space space space space space space space space space space space space equals 1 half fraction numerator straight x to the power of begin display style 1 half end style end exponent over denominator left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction cross times fraction numerator straight x squared minus 1 over denominator straight x squared end fraction
therefore space dv over dx equals fraction numerator straight x squared minus 1 over denominator 2 straight x to the power of begin display style 3 over 2 end style end exponent left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx equals straight x to the power of tan space straight x end exponent open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets plus fraction numerator straight x squared minus 1 over denominator 2 straight x to the power of begin display style 3 over 2 end style end exponent left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction
    Question 381
    CBSEENMA12035047
    Question 382
    CBSEENMA12035049
    Question 383
    CBSEENMA12035053

    If space straight y equals left parenthesis straight x right parenthesis to the power of cos space straight x end exponent plus left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent comma space find space dy over dx.

    Solution
    Here space straight y equals left parenthesis straight x right parenthesis to the power of cos space straight x end exponent plus left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent
Put space left parenthesis straight x right parenthesis to the power of cos space straight x end exponent equals straight u comma space left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space space straight u equals straight x to the power of cos space straight x end exponent
therefore space log space straight u equals log space straight x to the power of cos space straight x end exponent
therefore space log space straight u equals cos space straight x. log space straight x
therefore space 1 over straight u du over dx equals cos space straight x.1 over straight x plus log space straight x. left parenthesis negative sin space straight x right parenthesis
therefore space du over dx equals straight u open square brackets fraction numerator cos space straight x over denominator straight x end fraction minus sin space straight x space log space straight x close square brackets
therefore space du over dx equals space straight x to the power of cos space straight x end exponent open square brackets fraction numerator cos space straight x over denominator straight x end fraction minus sin space straight x space log space straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent
therefore space log space straight v equals log left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent equals sin space straight x. space log left parenthesis cos space straight x right parenthesis
therefore space 1 over straight v dv over dx equals sin space straight x. straight d over dx left square bracket log left parenthesis cos space straight x right parenthesis right square bracket plus log left parenthesis cos space straight x right parenthesis. straight d over dx left parenthesis sin space straight x right parenthesis
therefore space dv over dx equals straight v open square brackets sin space straight x. fraction numerator 1 over denominator cos space straight x end fraction. left parenthesis negative sin space straight x right parenthesis plus log left parenthesis cos space straight x right parenthesis cross times cos space straight x close square brackets
therefore space dv over dx equals space left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent left square bracket negative sin space straight x. tan space straight x plus cos space straight x. log left parenthesis cos space straight x right parenthesis right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (1), (2),(3), we get.
    dy over dx equals straight x to the power of cos space straight x end exponent open square brackets fraction numerator cos space straight x over denominator straight x end fraction minus sin space straight x space log space straight x close square brackets plus left parenthesis cos space straight x right parenthesis to the power of sin space straight x end exponent left square bracket negative sin space straight x. tan space straight x plus cos space straight x. log left parenthesis cos space straight x right parenthesis right square bracket
    Question 384
    CBSEENMA12035056

    Find space dy over dx when space left parenthesis cos space straight x right parenthesis to the power of straight y equals left parenthesis cos space straight y right parenthesis to the power of straight x.

    Solution
    Here space space space space left parenthesis cos space straight x right parenthesis to the power of straight y equals left parenthesis cos space straight y right parenthesis to the power of straight x
therefore space space space log left parenthesis cos space straight x right parenthesis to the power of straight y equals log left parenthesis cos space straight y right parenthesis to the power of straight x
therefore space straight y. space log left parenthesis cos space straight x right parenthesis equals straight x. space log left parenthesis cos space straight y right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space straight y. fraction numerator negative sin space straight x over denominator cos space straight x end fraction plus log left parenthesis cos space straight x right parenthesis. dy over dx equals straight x. fraction numerator negative sin space straight y over denominator cos space straight y end fraction dy over dx plus log left parenthesis cos space straight y right parenthesis.1
therefore space minus straight y space tan space straight x plus log left parenthesis cos space straight x right parenthesis. dy over dx equals negative straight x space tan space straight y dy over dx plus log left parenthesis cos space straight y right parenthesis
therefore space left square bracket log left parenthesis cos space straight x right parenthesis plus straight x space tan space straight y right square bracket dy over dx equals straight y space tan space straight x plus log left parenthesis cos space straight y right parenthesis
therefore space dy over dx equals fraction numerator straight y space tan space straight x plus log left parenthesis cos space straight y right parenthesis over denominator log left parenthesis cos space straight x right parenthesis plus straight x space tan space straight y end fraction
    Question 385
    CBSEENMA12035061

    If space straight y equals straight x to the power of cot space straight x end exponent plus left parenthesis sin space straight x right parenthesis to the power of straight x comma space find space dy over dx.

    Solution
    Here space space space space space straight y equals straight x to the power of cot space straight x end exponent plus left parenthesis sin space straight x right parenthesis to the power of straight x
Put space straight x to the power of cot space straight x end exponent equals straight u comma space left parenthesis sin space straight x right parenthesis to the power of straight x equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals straight x to the power of cot space straight x end exponent
therefore space log space straight u equals log space straight x to the power of cot space straight x end exponent
therefore space log space straight u equals cot space straight x. space log space straight x
therefore space 1 over straight u du over dx equals left parenthesis cot space straight x right parenthesis. open parentheses 1 over straight x close parentheses plus left parenthesis log space straight x right parenthesis. left parenthesis negative coesc squared straight x right parenthesis
therefore space du over dx equals straight u open square brackets fraction numerator cot space straight x over denominator straight x end fraction minus log space straight x. coesc squared straight x close square brackets
therefore space du over dx equals straight x to the power of cot space straight x end exponent open square brackets fraction numerator cot space straight x over denominator straight x end fraction minus log space straight x. coesc squared straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Again space straight v equals left parenthesis sin space straight x right parenthesis to the power of straight x
therefore space log space straight v equals log left parenthesis sin right parenthesis to the power of straight x
therefore space log space straight v equals straight x. log left parenthesis sin space straight x right parenthesis
therefore space 1 over straight v dv over dx equals straight x. open parentheses fraction numerator 1 over denominator sin space straight x end fraction. cos space straight x close parentheses plus log left parenthesis sin space straight x right parenthesis.1
therefore space dv over dx equals straight v left square bracket straight x space cot space straight x plus log left parenthesis sin space straight x right parenthesis right square bracket
therefore space dv over dx equals left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log left parenthesis sin space straight x right parenthesis right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx equals straight x to the power of cot space straight x end exponent open square brackets fraction numerator cot space straight x over denominator straight x end fraction minus log space straight x. cosec squared straight x close square brackets plus left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log left parenthesis sin space straight x right parenthesis right square bracket
    Question 386
    CBSEENMA12035067

    If space straight y equals left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent plus fraction numerator straight x squared plus 1 over denominator straight x squared minus 1 end fraction comma space find space dy over dx

    Solution
    Here space space space space space space space straight y equals left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent plus fraction numerator straight x squared plus 1 over denominator straight x squared minus 1 end fraction
Put space left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent equals straight u comma space fraction numerator straight x squared plus 1 over denominator straight x squared minus 1 end fraction equals straight v
therefore space space space space space space space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space log space straight u equals log open square brackets left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent close square brackets
therefore space log space straight u equals cos space straight x. space loh left parenthesis log space straight x right parenthesis
therefore space 1 over straight u du over dx equals cos space straight x. open parentheses fraction numerator 1 over denominator log space straight x end fraction.1 over straight x close parentheses plus log left parenthesis log space straight x right parenthesis. left parenthesis negative sin space straight x right parenthesis
therefore space du over dx equals straight u open square brackets fraction numerator cos space straight x over denominator straight x space log space straight x end fraction minus sin space straight x space log left parenthesis log space straight x right parenthesis close square brackets
therefore space du over dx equals left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent open square brackets fraction numerator cos space straight x over denominator straight x space log space straight x end fraction minus sin space straight x space log left parenthesis log space straight x right parenthesis close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Again space straight v equals fraction numerator straight x squared plus 1 over denominator straight x squared minus 1 end fraction
therefore space dv over dx equals fraction numerator left parenthesis straight x squared minus 1 right parenthesis. begin display style straight d over dx end style left parenthesis straight x squared plus 1 right parenthesis minus left parenthesis straight x squared plus 1 right parenthesis begin display style straight d over dx end style left parenthesis straight x squared minus 1 right parenthesis over denominator left parenthesis straight x squared minus 1 right parenthesis squared end fraction
therefore space dv over dx equals negative fraction numerator 4 straight x over denominator left parenthesis straight x squared minus 1 right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis space space
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx equals left parenthesis log space straight x right parenthesis to the power of cos space straight x end exponent open square brackets fraction numerator cos space straight x over denominator straight x space log space straight x end fraction minus sin space straight x. log left parenthesis log space straight x right parenthesis close square brackets minus fraction numerator 4 straight x over denominator left parenthesis straight x squared minus 1 right parenthesis squared end fraction
    Question 387
    CBSEENMA12035070
    Question 388
    CBSEENMA12035073
    Question 389
    CBSEENMA12035076
    Question 390
    CBSEENMA12035078
    Question 391
    CBSEENMA12035080
    Question 392
    CBSEENMA12035082
    Question 393
    CBSEENMA12035084
    Question 394
    CBSEENMA12035087
    Question 395
    CBSEENMA12035091
    Question 396
    CBSEENMA12035094
    Question 397
    CBSEENMA12035096
    Question 398
    CBSEENMA12035097
    Question 399
    CBSEENMA12035098
    Question 400
    CBSEENMA12035099
    Question 401
    CBSEENMA12035101
    Question 402
    CBSEENMA12035102
    Question 403
    CBSEENMA12035103
    Question 404
    CBSEENMA12035104
    Question 405
    CBSEENMA12035108
    Question 406
    CBSEENMA12035109
    Question 407
    CBSEENMA12035110
    Question 408
    CBSEENMA12035111
    Question 409
    CBSEENMA12035113
    Question 410
    CBSEENMA12035118
    Question 411
    CBSEENMA12035119
    Question 412
    CBSEENMA12035120
    Question 413
    CBSEENMA12035121
    Question 414
    CBSEENMA12035123
    Question 415
    CBSEENMA12035125
    Question 416
    CBSEENMA12035126
    Question 417
    CBSEENMA12035129
    Question 418
    CBSEENMA12035131

    Differentiate : fraction numerator straight x space cos to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction comma space straight x not equal to 1 comma space straight w. straight r. straight t. straight x

    Solution
    Let space space space space space straight y equals fraction numerator straight x space cos to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction
therefore space dy over dx equals fraction numerator square root of 1 minus straight x squared end root. begin display style straight d over dx end style left parenthesis straight x space cos to the power of negative 1 end exponent straight x right parenthesis minus left parenthesis straight x space cos to the power of negative 1 end exponent straight x right parenthesis. begin display style straight d over dx end style open parentheses square root of 1 minus straight x squared end root close parentheses over denominator open parentheses square root of 1 minus straight x squared end root close parentheses squared end fraction
space space space space space space space space space space space space space equals fraction numerator square root of 1 minus straight x squared end root open parentheses straight x. begin display style fraction numerator negative 1 over denominator square root of 1 minus straight x squared end root end fraction end style plus space cos to the power of negative 1 end exponent straight x.1 close parentheses minus left parenthesis straight x space cos to the power of negative 1 end exponent straight x right parenthesis. begin display style fraction numerator negative 2 straight x over denominator 2 square root of 1 minus straight x squared end root end fraction end style over denominator 1 minus straight x squared end fraction
space space space space space space space space space space space space space equals fraction numerator negative straight x plus square root of 1 minus straight x squared end root space cos to the power of negative 1 end exponent straight x plus begin display style fraction numerator straight x squared cos to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction end style over denominator 1 minus straight x squared end fraction
space space space space space space space space space space space space space equals fraction numerator negative straight x square root of 1 minus straight x squared end root space plus left parenthesis 1 minus straight x squared right parenthesis cos to the power of negative 1 end exponent straight x plus straight x squared cos to the power of negative 1 end exponent straight x over denominator open parentheses 1 minus straight x squared close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction
space space space space space space space space space space space space space equals fraction numerator negative straight x square root of 1 minus straight x squared end root space plus cos to the power of negative 1 end exponent space straight x minus straight x squared cos to the power of negative 1 end exponent straight x plus straight x squared cos to the power of negative 1 end exponent straight x over denominator open parentheses 1 minus straight x squared close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction
therefore space dy over dx equals fraction numerator negative straight x square root of 1 minus straight x squared end root space plus cos to the power of negative 1 end exponent space straight x over denominator open parentheses 1 minus straight x squared close parentheses to the power of 3 over 2 end exponent end fraction
    Question 419
    CBSEENMA12035132

    Prove space that space cot to the power of negative 1 end exponent straight x space plus space cot minus 1 space 1 over straight x space is space constant.

    Solution
    Let space space space space space straight y equals cot to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent 1 over straight x
therefore space dy over dx equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction minus fraction numerator 1 over denominator 1 plus begin display style 1 over straight x squared end style end fraction. straight d over dx open parentheses 1 over straight x close parentheses equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction minus fraction numerator straight x squared over denominator 1 plus straight x squared end fraction cross times open parentheses negative 1 over straight x squared close parentheses
space space space space space space space space space space space space space equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction plus fraction numerator 1 over denominator 1 plus straight x squared end fraction
therefore space straight d over dx left parenthesis straight y right parenthesis equals 0 space rightwards double arrow space straight y equals constant
therefore space cot to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent 1 over straight x space space is space constant
    Question 420
    CBSEENMA12035134

    If space straight y equals fraction numerator 2 over denominator square root of straight a squared minus straight b squared end root end fraction tan to the power of negative 1 end exponent open parentheses square root of fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end root tan straight x over 2 close parentheses comma space prove space that
space dy over dx equals fraction numerator 1 over denominator straight a plus straight b space cos space straight x end fraction comma space straight a greater than straight b greater than 0.

    Solution
    Here space space straight y equals fraction numerator 2 over denominator square root of straight a squared minus straight b squared end root end fraction tan to the power of negative 1 end exponent open parentheses square root of fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end root tan straight x over 2 close parentheses
therefore space dy over dx equals fraction numerator 2 over denominator square root of straight a squared minus straight b squared end root end fraction. fraction numerator 1 over denominator 1 plus begin display style fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end style tan squared begin display style straight x over 2 end style end fraction. straight d over dx open parentheses square root of fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end root tan straight x over 2 close parentheses
space space space space space space space space space space space space space equals fraction numerator 2 over denominator square root of straight a squared minus straight b squared end root end fraction. fraction numerator straight a plus straight b over denominator straight a plus straight b plus left parenthesis straight a minus straight b right parenthesis space tan squared begin display style straight x over 2 end style end fraction. square root of fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end root. sec squared straight x over 2.1 half
space space space space space space space space space space space space space equals fraction numerator 2 over denominator square root of straight a squared minus straight b squared end root end fraction cross times fraction numerator straight a plus straight b over denominator 2 end fraction cross times fraction numerator square root of straight a minus straight b end root over denominator square root of straight a plus straight b end root end fraction. fraction numerator sec squared straight x over 2 over denominator straight a open parentheses 1 plus tan squared straight x over 2 close parentheses plus straight b open parentheses 1 minus tan squared straight x over 2 close parentheses end fraction
space space space space space space space space space space space space space equals fraction numerator 1 over denominator straight a plus straight b end fraction cross times fraction numerator straight a plus straight b over denominator 1 end fraction. fraction numerator begin display style fraction numerator sec squared straight x over 2 over denominator open parentheses 1 plus tan squared straight x over 2 close parentheses end fraction end style over denominator straight a plus straight b open parentheses begin display style fraction numerator 1 minus tan squared straight x over 2 over denominator 1 plus tan squared straight x over 2 end fraction end style close parentheses end fraction equals fraction numerator begin display style fraction numerator sec squared straight x over 2 over denominator sec squared straight x over 2 end fraction end style over denominator straight a plus straight b space cos space straight x end fraction equals fraction numerator 1 over denominator straight a plus straight b space cos space straight x end fraction
    Question 421
    CBSEENMA12035136

    Differentiate space straight w. straight r. straight t. straight x colon space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 1 plus 2 sin space straight x over denominator 2 plus cos space straight x end fraction close parentheses

    Solution
    space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 1 plus 2 sin space straight x over denominator 2 plus cos space straight x end fraction close parentheses
therefore space dy over dx equals fraction numerator 1 over denominator square root of 1 minus open parentheses begin display style fraction numerator 1 plus 2 sin space straight x over denominator 2 plus cos space straight x end fraction end style close parentheses squared end root end fraction. straight d over dx open parentheses fraction numerator 1 plus 2 sin space straight x over denominator 2 plus cos space straight x end fraction close parentheses
space space space space space space space space space space space space space equals fraction numerator 2 plus cos space straight x over denominator square root of left parenthesis 2 plus cos space straight x right parenthesis squared minus left parenthesis 1 plus 2 sin space straight x right parenthesis end root end fraction. fraction numerator left parenthesis 2 plus cos space straight x right parenthesis. left parenthesis 2 cos space straight x right parenthesis minus left parenthesis 1 plus 2 sin space straight x right parenthesis left parenthesis negative sin space straight x right parenthesis over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator 2 plus cos space straight x over denominator square root of 4 plus cos squared straight x plus 4 cos space straight x minus 1 minus 4 sinx minus 4 sin squared straight x end root end fraction cross times fraction numerator 4 cos space straight x plus 2 cos squared straight x plus sin space straight x plus 2 sin squared straight x over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction
space space space space space space space space space space space space space equals fraction numerator 1 over denominator square root of 3 plus cos squared straight x minus 4 sin squared straight x plus 4 cos space straight x minus 4 sin space straight x end root end fraction cross times fraction numerator 4 cos space straight x plus sin space straight x plus 2 left parenthesis cos squared straight x plus sin squared straight x right parenthesis over denominator 2 plus cos space straight x end fraction
space space space space space space space space space space space space space equals fraction numerator 4 cos space straight x plus sin space straight x plus 2 over denominator left parenthesis 2 plus cos space straight x right parenthesis square root of 3 plus cos squared straight x minus 4 sin squared straight x plus 4 cos space straight x minus 4 sin space straight x end root end fraction
    Question 422
    CBSEENMA12035140

    Differentiate space sin to the power of negative 1 end exponent open parentheses fraction numerator straight a plus straight b space cos space straight x over denominator straight b plus straight a space cos space straight x end fraction close parentheses space straight w. straight r. straight t. straight x comma space using space chain space rule

    Solution
    Let space space space space space space space space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator straight a plus straight b space cos space straight x over denominator straight b plus straight a space cos space straight x end fraction close parentheses
Put space fraction numerator straight a plus straight b space cos space straight x over denominator straight b plus straight a space cos space straight x end fraction equals straight u
therefore space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent
therefore space space space space space dy over du equals fraction numerator 1 over denominator square root of 1 minus straight u squared end root end fraction
Also space du over dx equals fraction numerator left parenthesis straight b plus straight a space cos space straight x right parenthesis left parenthesis negative straight b space sin space straight x right parenthesis minus left parenthesis straight a plus straight b space cos space straight x right parenthesis left parenthesis negative straight a space sin space straight x right parenthesis over denominator left parenthesis straight b plus straight a space cos space straight x right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space equals fraction numerator negative straight b squared sin space straight x minus absin space straight x space cos space straight x plus straight a squared sin space straight x space plus absin space straight x space cos space straight x over denominator left parenthesis straight b plus straight a space cos space straight x right parenthesis squared end fraction
therefore space space space space space du over dx equals fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis sin space straight x over denominator left parenthesis straight b plus straight a space cos space straight x right parenthesis squared end fraction
Now space by space chain space rule comma
    dy over dx equals dy over du. du over dx equals fraction numerator 1 over denominator square root of 1 minus straight u squared end root end fraction. fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis sin space straight x over denominator left parenthesis straight b plus acos space straight x right parenthesis end fraction space left square bracket because space of left parenthesis 1 right parenthesis comma left parenthesis 2 right parenthesis right square bracket
space space space space space space space space equals fraction numerator 1 over denominator square root of 1 minus begin display style fraction numerator left parenthesis straight a plus straight b space cos space straight x right parenthesis squared over denominator left parenthesis straight b plus acos space straight x right parenthesis squared end fraction end style end root end fraction. fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis sin space straight x over denominator left parenthesis straight b plus acos space straight x right parenthesis squared end fraction
space space space space space space space space equals fraction numerator straight b plus acos space straight x over denominator square root of left parenthesis straight b plus acos space straight x right parenthesis squared minus left parenthesis straight a plus straight b space cos space straight x right parenthesis squared end root end fraction cross times fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis sin space straight x over denominator left parenthesis straight b plus acos space straight x right parenthesis squared end fraction
space space space space space space space space equals fraction numerator 1 over denominator square root of left parenthesis straight b squared minus straight a squared right parenthesis minus left parenthesis straight b squared minus straight a squared right parenthesis cos squared straight x end root end fraction cross times fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis sin space straight x over denominator straight b plus acos space straight x end fraction
space space space space space space space space equals fraction numerator 1 over denominator square root of straight b squared minus straight a squared end root cross times sin space straight x end fraction cross times fraction numerator negative left parenthesis straight b squared minus straight a squared right parenthesis sin space straight x over denominator straight b plus acos space straight x end fraction equals negative fraction numerator square root of straight b squared minus straight a squared end root over denominator straight b plus acos space straight x end fraction
    Question 423
    CBSEENMA12035141

    Prove space that space straight d over straight d open square brackets square root of 1 minus straight x squared end root sin to the power of negative 1 end exponent straight x minus straight x close square brackets equals negative fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction

    Solution
    straight L. straight H. straight S. space space equals space straight d over dx open square brackets square root of 1 minus straight x squared end root sin to the power of negative 1 end exponent straight x minus straight x close square brackets equals straight d over dx open square brackets square root of 1 minus straight x squared end root sin to the power of negative 1 end exponent straight x close square brackets minus straight d over dx left parenthesis straight x right parenthesis
space space space space space space space space space space space space space equals square root of 1 minus straight x squared end root. straight d over dx left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis plus sin to the power of negative 1 end exponent straight x. straight d over dx open parentheses square root of 1 minus straight x squared end root close parentheses minus 1
space space space space space space space space space space space space space equals square root of 1 minus straight x squared end root. fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction plus sin to the power of negative 1 end exponent straight x. fraction numerator negative 2 straight x over denominator 2 square root of 1 minus straight x squared end root end fraction minus 1 equals 1 minus fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction minus 1
space space space space space space space space space space space space space equals negative fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction equals straight R. straight H. straight S.
    Question 424
    CBSEENMA12035142

    Prove space that space straight d over dx left square bracket 2 straight x space tan to the power of negative 1 end exponent straight x minus log left parenthesis 1 plus straight x squared right parenthesis right square bracket equals 2 space tan to the power of negative 1 end exponent straight x.

    Solution
    straight L. straight H. straight S. space equals straight d over dx left square bracket 2 straight x space tan to the power of negative 1 end exponent straight x minus log left parenthesis 1 plus straight x squared right parenthesis right square bracket
space space space space space space space space space space space space space equals straight d over dx left parenthesis 2 straight x space tan to the power of negative 1 end exponent straight x right parenthesis minus straight d over dx left square bracket log left parenthesis 1 plus straight x squared right parenthesis right square bracket
space space space space space space space space space space space space space equals 2 straight d over dx left parenthesis straight x space tan to the power of negative 1 end exponent straight x right parenthesis minus fraction numerator 1 over denominator 1 plus straight x squared end fraction. straight d over dx left parenthesis 1 plus straight x squared right parenthesis
space space space space space space space space space space space space space equals 2 open square brackets straight x straight d over dx left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis plus space tan to the power of negative 1 end exponent straight x. straight d over dx left parenthesis straight x right parenthesis close square brackets minus fraction numerator 1 over denominator 1 plus straight x squared end fraction.2 straight x
equals 2 open square brackets straight x. fraction numerator 1 over denominator 1 plus straight x squared end fraction plus space tan to the power of negative 1 end exponent straight x.1 close square brackets minus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction equals fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus 2 space tan to the power of negative 1 end exponent straight x minus fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction
equals 2 space tan to the power of negative 1 end exponent straight x
equals straight R. straight H. straight S.
    Question 425
    CBSEENMA12035147

    Prove space that space straight d over dx open square brackets straight x over 2 square root of straight a squared minus straight x squared end root plus straight a squared over 2 sin to the power of negative 1 end exponent straight x over straight a close square brackets equals square root of straight a squared minus straight x squared end root

    Solution
    straight L. straight H. straight S. space equals straight d over dx open square brackets straight x over 2 square root of straight a squared minus straight x squared end root plus straight a squared over 2 sin to the power of negative 1 end exponent straight x over straight a close square brackets
space space space space space space space space space space space space space equals 1 half straight d over dx open parentheses straight x square root of straight a squared minus straight x squared end root close parentheses plus straight a squared over 2 straight d over dx open parentheses sin to the power of negative 1 end exponent straight x over straight a close parentheses
space space space space space space space space space space space space space equals 1 half open square brackets straight x. fraction numerator negative 2 straight x over denominator 2 square root of straight a squared minus straight x squared end root end fraction plus square root of straight a squared minus straight x squared end root.1 close square brackets plus straight a squared over 2. fraction numerator 1 over denominator square root of 1 minus open parentheses begin display style straight x over straight a end style close parentheses squared end root end fraction.1 over straight a
space space space space space space space space space space space space space equals 1 half open square brackets negative fraction numerator straight x squared over denominator square root of straight a squared minus straight x squared end root end fraction plus fraction numerator square root of straight a squared minus straight x squared end root over denominator 1 end fraction close square brackets plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction
space space space space space space space space space space space space space equals 1 half open square brackets fraction numerator negative straight x squared plus straight a squared minus straight x squared over denominator square root of straight a squared minus straight x squared end root end fraction close square brackets plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals fraction numerator straight a squared minus 2 straight x squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction
space space space space space space space space space space space space space equals fraction numerator straight a squared minus 2 straight x squared plus straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals fraction numerator 2 left parenthesis straight a squared minus straight x squared right parenthesis over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals square root of straight a squared minus straight x squared end root equals straight R. straight H. straight S
    Question 426
    CBSEENMA12035151

    Differerntiate space cos to the power of negative 1 end exponent open parentheses fraction numerator 3 cos space straight x minus 4 sin space straight x over denominator 5 end fraction close parentheses space straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 3 cos space straight x minus 4 sin space straight x over denominator 5 end fraction close parentheses
therefore space space space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses 3 over 5 cos space straight x minus 4 over 5 sin space straight x close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Put space 3 over 5 equals straight r space cosθ space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
and space 4 over 5 equals straight r space sinθ space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
squaring space and space adding space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space can space get comma
space space space space 9 over 25 plus 16 over 25 equals straight r squared left parenthesis cos squared straight theta plus sin squared straight theta right parenthesis space rightwards double arrow space 1 equals straight r squared space rightwards double arrow straight r equals 1
Dividing space left parenthesis 3 right parenthesis space by space left parenthesis 2 right parenthesis comma space we space get comma
space space space space space space space space space space space space space space space tan space straight theta equals 4 over 3 space rightwards double arrow space straight theta equals tan to the power of negative 1 end exponent space open parentheses 4 over 3 close parentheses
therefore space from left parenthesis 1 right parenthesis comma space space straight y equals cos to the power of negative 1 end exponent left parenthesis straight r space cosθ space sin space straight x equals straight r space sinθ space sin space straight x right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space equals cos to the power of negative 1 end exponent left parenthesis cos space straight x space cosθ minus sin space xsinθ right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight r equals 1 right square bracket
space space space space space space space space space space space space space space space space space space space space space space space equals cos to the power of negative 1 end exponent left square bracket cos left parenthesis straight x plus straight theta right parenthesis right square bracket equals straight x plus straight theta
therefore space space space space space space space space space space space space space space space space space straight y equals straight x plus tan to the power of negative 1 end exponent 4 over 3 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space straight theta equals tan to the power of negative 1 end exponent 4 over 3 close square brackets
therefore space space space space space space space space space space space space dy over dx equals 1 plus 0 space rightwards double arrow dy over dx equals 1
    Question 427
    CBSEENMA12035153

    Find space dy over dx space if space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 5 straight x plus 12 square root of 1 minus straight x squared end root over denominator 13 end fraction close parentheses

    Solution
    Here space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 5 straight x plus 12 square root of 1 minus straight x squared end root over denominator 13 end fraction close parentheses equals sin to the power of negative 1 end exponent open parentheses 5 over 13 straight x plus 12 over 13 square root of 1 minus straight x squared end root close parentheses
space space space space space space space space space space space space equals sin to the power of negative 1 end exponent open square brackets straight x square root of 1 minus open parentheses 12 over 13 close parentheses squared end root plus 12 over 13 square root of 1 minus straight x squared end root close square brackets
therefore space space space space space space straight y equals sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent 12 over 13
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space sin to the power of negative 1 end exponent straight theta plus sin to the power of negative 1 end exponent straight ϕ equals sin to the power of negative 1 end exponent open curly brackets straight theta square root of 1 minus straight ϕ squared end root plus straight ϕ square root of 1 minus straight x squared end root close curly brackets close square brackets
therefore space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction plus 0
therefore space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
    Question 428
    CBSEENMA12035155

    If space straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses plus sin to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses comma space find space dy over dx.

    Solution
    straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses plus sin to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses
space space equals cos to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses plus sin to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 1 over denominator straight x minus 1 end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space open square brackets because space sec to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent open parentheses 1 over straight x close parentheses close square brackets
space space equals straight pi over 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space sin to the power of negative 1 end exponent straight theta plus cos to the power of negative 1 end exponent straight theta equals straight pi over 2 close square brackets
therefore space dy over dx equals 0
    Question 429
    CBSEENMA12035157
    Question 430
    CBSEENMA12035159
    Question 431
    CBSEENMA12035162
    Question 432
    CBSEENMA12035163
    Question 433
    CBSEENMA12035165
    Question 434
    CBSEENMA12035166
    Question 435
    CBSEENMA12035167
    Question 436
    CBSEENMA12035169
    Question 437
    CBSEENMA12035170
    Question 438
    CBSEENMA12035171
    Question 439
    CBSEENMA12035172
    Question 440
    CBSEENMA12035173
    Question 441
    CBSEENMA12035176
    Question 442
    CBSEENMA12035177
    Question 443
    CBSEENMA12035178

    Find space dy over dx comma space when space straight y equals sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent square root of 1 minus straight x squared end root.

    Solution
    space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent square root of 1 minus straight x squared end root
Put space space space space space straight x equals sin space straight theta
space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent left parenthesis sin space straight theta right parenthesis plus sin to the power of negative 1 end exponent square root of 1 minus sin squared straight theta end root equals square root of 1 minus straight x squared end root equals sin to the power of negative 1 end exponent left parenthesis sin space straight theta right parenthesis plus sin to the power of negative 1 end exponent left parenthesis cos space straight theta right parenthesis
space space space space space space space space space space space space space equals sin to the power of negative 1 end exponent left parenthesis sin space straight theta right parenthesis plus sin to the power of negative 1 end exponent open square brackets sin open parentheses straight x over 2 minus straight theta close parentheses close square brackets equals straight theta plus straight pi over 2 equals straight pi over 2
therefore space dy over dx equals 0
    Question 444
    CBSEENMA12035179

    Differentiate space straight x to the power of straight x sin to the power of negative 1 end exponent square root of straight x space straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space straight y equals straight x to the power of straight x sin to the power of negative 1 end exponent square root of straight x
Put space space space straight x to the power of straight x equals straight u comma space sin to the power of negative 1 end exponent square root of straight x equals straight v
therefore space space space space space space space straight y equals vu
therefore space dy over dx equals straight u dv over dx plus straight v dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space space space space space space straight u equals straight x to the power of straight x
therefore space space space space space log space straight u equals log space straight x to the power of straight x space rightwards double arrow space log space straight u equals straight x space log space straight x
therefore space 1 over straight u du over dx equals straight x.1 over straight x plus log space straight x.1
rightwards double arrow space du over dx equals straight u left parenthesis 1 plus log space straight x right parenthesis
therefore space space du over dx equals straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space space straight v equals sin to the power of negative 1 end exponent square root of straight x
therefore space dv over dx equals fraction numerator 1 over denominator square root of 1 minus open parentheses square root of straight x close parentheses squared end root end fraction straight d over dx open parentheses square root of straight x close parentheses equals fraction numerator 1 over denominator square root of 1 minus straight x end root end fraction. fraction numerator 1 over denominator 2 square root of straight x end fraction
therefore space dv over dx equals fraction numerator 1 over denominator 2 square root of 1 minus straight x end root square root of straight x end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis comma space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx equals straight x to the power of straight x. fraction numerator 1 over denominator 2 square root of 1 minus straight x end root square root of straight x end fraction plus sin to the power of negative 1 end exponent square root of straight x. space straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis
space space space space space space space space equals fraction numerator straight x to the power of straight x over denominator 2 square root of straight x minus straight x squared end root end fraction plus straight x to the power of straight x left parenthesis 1 plus log space straight x right parenthesis. space sin to the power of negative 1 end exponent square root of straight x
    Question 445
    CBSEENMA12035180

    If space straight y equals sin left parenthesis 2 space sin to the power of negative 1 end exponent straight x right parenthesis comma space show space that space dy over dx equals 2 square root of fraction numerator 1 minus straight y squared over denominator 1 minus straight x squared end fraction end root.

    Solution
    Here space space space space space space straight y equals sin left parenthesis 2 space sin to the power of negative 1 end exponent straight x right parenthesis
Put space sin to the power of negative 1 end exponent straight x equals straight theta space straight i. straight e. space straight x equals sin space straight theta
therefore space space space space space space space space space space space straight y equals sin space 2 straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space dy over dx equals 2 space cos space 2 straight theta equals 2 square root of 1 minus sin squared space straight theta end root
therefore space space space space space dy over dx equals 2 square root of 1 minus straight y squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
Now space dy over dx equals dy over dθ cross times dθ over dx
space space space space space space space space space space space space space space space space space equals 2 square root of 1 minus straight y squared end root cross times fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction comma space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight theta equals sin to the power of negative 1 end exponent straight x right square bracket
therefore space space space space space space dy over dx equals 2 square root of fraction numerator 1 minus straight y squared over denominator 1 minus straight x squared end fraction end root.
    Question 446
    CBSEENMA12035181

    Find space dy over dx space of space the space following space cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses comma space 0 less than straight x less than 1 space straight w. straight r. straight t. straight x. space

    Solution
    Let space space space space straight y equals cos to the power of negative 1 end exponent fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction
Put space space space space straight x equals tan space straight theta
therefore space space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses equals cos to the power of negative 1 end exponent left parenthesis cos space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space space space straight y equals 2 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction.
    Question 447
    CBSEENMA12035182

    Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x squared end root minus 1 over denominator straight x end fraction close parentheses comma 0 less than straight x less than 1 comma space straight w. straight r. straight t. straight x.

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x squared end root minus 1 over denominator straight x end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root minus 1 over denominator tan space straight theta end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of sec squared space straight theta end root minus 1 over denominator tan space straight theta end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator sec space straight theta minus 1 over denominator tan space straight theta end fraction close square brackets
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 over denominator cos space straight theta end fraction end style minus 1 over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 sin squared begin display style straight theta over 2 end style over denominator 2 sin squared begin display style straight theta over 2 end style cos space begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator sin space begin display style straight theta over 2 end style over denominator cos space begin display style straight theta over 2 end style end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets tan space straight theta over 2 close square brackets equals straight theta over 2
therefore space space space straight y equals 1 half tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals 1 half cross times fraction numerator 1 over denominator 1 plus straight x squared end fraction equals fraction numerator 1 over denominator 2 left parenthesis 1 plus straight x squared right parenthesis end fraction
    Question 448
    CBSEENMA12035183

    Find space dy over dx space in space the space following space colon
space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses

    Solution
    Le space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus tan squared straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis equals 2 straight theta space space space rightwards double arrow space 2 tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction.
    Question 449
    CBSEENMA12035184

    Find space fraction numerator dy over denominator dx space end fraction space in space the space following space
space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses

    Solution
    Let space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 minus tan squared straight theta end fraction close parentheses equals space tan to the power of negative 1 end exponent left parenthesis tan space 2 straight theta right parenthesis equals 2 straight theta space space rightwards double arrow space straight y equals 2 space space tan to the power of negative 1 end exponent straight x
therefore space space space straight y equals dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction.
    Question 450
    CBSEENMA12035185

    Find space dy over dx space in space the space following space colon
space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses comma space minus fraction numerator 1 over denominator square root of 3 end fraction less than straight x less than fraction numerator 1 over denominator square root of 3 end fraction

    Solution
    Let space space space space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space space space space straight x equals tan space straight theta
therefore space space space space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses equals space tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis equals 3 straight theta space space space space rightwards double arrow space straight y equals 3 space tan to the power of negative 1 end exponent space straight x
therefore space dy over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction.
    Question 451
    CBSEENMA12035186

    Differentiate space cot to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses space straight w. straight r. straight t. straight x.

    Solution
    Let space space space space space straight y equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses
Put space space space space space straight x equals tan space straight theta
therefore space space space space space space space straight y equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan space straight theta over denominator 1 plus tan space straight theta end fraction close parentheses equals cot to the power of negative 1 end exponent open square brackets cot open parentheses straight pi over 4 plus straight theta close parentheses close square brackets equals straight pi over 4 plus straight theta equals straight pi over 4 plus tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals 0 plus fraction numerator 1 over denominator 1 plus straight x squared end fraction equals fraction numerator 1 over denominator 1 plus straight x squared end fraction
    Question 452
    CBSEENMA12035187

    Find space dy over dx space in space the space following space colon
sin to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses comma space minus fraction numerator 1 over denominator square root of 2 end fraction less than straight x less than fraction numerator 1 over denominator square root of 2 end fraction

    Solution
    Let space space straight y equals sin to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses space semicolon space Put space straight x equals sin space straight theta
therefore space space space space straight y equals sin to the power of negative 1 end exponent open parentheses 2 sin space straight theta square root of 1 minus sin squared space straight theta end root close parentheses equals sin to the power of negative 1 end exponent open parentheses 2 sin space straight theta space cos space straight theta close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space straight y equals 2 sin to the power of negative 1 end exponent straight x space space space rightwards double arrow space dy over dx equals fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction
    Question 453
    CBSEENMA12035188

    Differentiate space the space following space straight w. straight r. straight t. straight x colon
cos to the power of negative 1 end exponent straight x left parenthesis 2 straight x squared minus 1 right parenthesis comma space straight x greater than 0

    Solution
    Let space space straight y equals cos to the power of negative 1 end exponent straight x left parenthesis 2 straight x squared minus 1 right parenthesis space semicolon space Put space straight x equals cos space straight theta
therefore space space space space straight y equals cos to the power of negative 1 end exponent left parenthesis 2 cos squared space straight theta minus 1 right parenthesis equals cos to the power of negative 1 end exponent left parenthesis cos space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space straight y equals cos to the power of negative 1 end exponent straight x space space rightwards double arrow space dy over dx equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction
    Question 454
    CBSEENMA12035189
    Question 455
    CBSEENMA12035190
    Question 456
    CBSEENMA12035191
    Question 457
    CBSEENMA12035192
    Question 458
    CBSEENMA12035193
    Question 459
    CBSEENMA12035194
    Question 460
    CBSEENMA12035195

    Find space dy over dx space in space the space following space colon
sin to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses comma space 0 less than straight x less than 1

    Solution
    Let space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan squared straight theta over denominator 1 plus tan squared straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis cos space 2 straight theta right parenthesis equals sin to the power of negative 1 end exponent open square brackets sin open parentheses straight pi over 2 minus 2 straight theta close parentheses close square brackets
therefore space straight y equals straight pi over 2 minus 2 straight theta equals straight pi over 2 minus 2 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals 0 minus 2. fraction numerator 1 over denominator 1 plus straight x squared end fraction
    Question 461
    CBSEENMA12035196

    Find space dy over dx in space the space following space colon
cos to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses comma negative 1 less than straight x less than 1

    Solution
    Let space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
Put space space straight x equals tan space straight theta
therefore space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 2 tanθ over denominator 1 plus tan squared space straight theta end fraction close parentheses equals cos to the power of negative 1 end exponent open parentheses sin space 2 straight theta close parentheses equals cos to the power of negative 1 end exponent open square brackets cos open parentheses straight pi over 2 minus 2 straight theta close parentheses close square brackets
space space space space space space space space space space equals straight pi over 2 minus 2 straight theta equals straight pi over 2 minus 2 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals 0 minus fraction numerator 2 over denominator 1 plus straight x squared end fraction
    Question 462
    CBSEENMA12035197

    Differentiate space the space following space functions space by space substitutions space method space colon
cos to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses comma space minus fraction numerator 1 over denominator square root of 2 end fraction less than straight x less than fraction numerator 1 over denominator square root of 2 end fraction

    Solution
    Let space space straight y equals cos to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses
Put space space straight x equals sin space straight theta
therefore space space space space straight y equals cos to the power of negative 1 end exponent open parentheses 2 sin space straight theta square root of 1 minus sin squared space straight theta end root close parentheses equals cos to the power of negative 1 end exponent open parentheses 2 sin space straight theta space cos space straight theta close parentheses
space space space space space space space space space space equals cos to the power of negative 1 end exponent open parentheses sin space 2 straight theta close parentheses equals cos to the power of negative 1 end exponent open square brackets cos open parentheses straight pi over 2 minus 2 straight theta close parentheses close square brackets equals straight pi over 2 minus 2 straight theta
therefore space space space space space straight y equals straight pi over 2 minus 2 space sin to the power of negative 1 end exponent straight x
therefore space dy over dx equals 0 minus fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction
    Question 467
    CBSEENMA12035204
    Question 468
    CBSEENMA12035205
    Question 469
    CBSEENMA12035211
    Question 470
    CBSEENMA12035213
    Question 471
    CBSEENMA12035215

    Differentiate space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight a squared space straight x squared end root minus 1 over denominator straight a space straight x end fraction close square brackets space straight w. straight r. straight t. straight x.

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight a squared space straight x squared end root minus 1 over denominator straight a space straight x end fraction close square brackets semicolon space Put space straight a space straight x equals tan space straight theta
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus tan squared space straight theta end root minus 1 over denominator tan space straight theta end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator sec space straight theta minus 1 over denominator tan space straight theta end fraction close square brackets
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 over denominator cos space straight theta end fraction end style minus 1 over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction close square brackets equals equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction close square brackets
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 space sin squared begin display style straight theta over 2 end style over denominator 2 space sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets tan space straight theta over 2 close square brackets equals straight theta over 2
space space space space space space space straight y equals 1 half tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals 1 half. fraction numerator straight a over denominator 1 plus left parenthesis straight a space straight x right parenthesis squared end fraction equals fraction numerator straight a over denominator 2 left parenthesis 1 plus straight a squared space straight x squared right parenthesis end fraction
    Question 472
    CBSEENMA12035216

    If space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses plus sec to the power of negative 1 end exponent open parentheses fraction numerator 1 plus straight x squared over denominator 1 minus straight x squared end fraction close parentheses comma space prove space that space dy over dx equals fraction numerator 4 over denominator 1 plus straight x squared end fraction

    Solution
    Here space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses plus sec to the power of negative 1 end exponent open parentheses fraction numerator 1 plus straight x squared over denominator 1 minus straight x squared end fraction close parentheses
Put space space space space space straight x equals tan space straight theta
therefore space space space space If space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 tan space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses plus sec to the power of negative 1 end exponent open parentheses fraction numerator 1 plus tan squared space straight theta over denominator 1 minus tan squared space straight theta end fraction close parentheses
or space space space space space space space space straight y equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis plus sec to the power of negative 1 end exponent open parentheses fraction numerator 1 plus tan squared space straight theta over denominator 1 minus tan squared straight theta end fraction close parentheses
therefore space space space space space space space space straight y equals 2 space straight theta plus 2 space straight theta comma space or space straight y equals 4 space straight theta
therefore space space space space space space space space straight y equals 4 space tan to the power of negative 1 end exponent straight x
therefore dy over dx equals fraction numerator 4 over denominator 1 plus straight x squared end fraction
    Question 473
    CBSEENMA12035218

    If space straight y equals sin open square brackets 2 space tan to the power of negative 1 end exponent square root of fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction end root close square brackets comma space prove space that space dy over dx equals negative fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction

    Solution
    Here space straight y equals sin open square brackets 2 space tan to the power of negative 1 end exponent square root of fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction end root close square brackets
space space space space Put space straight x equals cos space straight theta
therefore space space space space space space space space straight y equals sin open square brackets 2 space tan to the power of negative 1 end exponent square root of fraction numerator 1 minus cos space straight theta over denominator 1 plus cos space straight theta end fraction end root close square brackets equals sin open square brackets 2 space tan to the power of negative 1 end exponent open parentheses square root of fraction numerator 2 sin squared begin display style straight theta over 2 end style over denominator 2 cos squared begin display style straight theta over 2 end style end fraction end root close parentheses close square brackets
space space space space space space space space space space space space space space equals sin open square brackets 2 space tan to the power of negative 1 end exponent open parentheses tan straight theta over 2 close parentheses close square brackets equals sin open square brackets 2 cross times straight theta over 2 close square brackets equals sin space straight theta equals square root of 1 minus cos squared space straight theta end root equals square root of 1 minus straight x squared end root
therefore space dy over dx equals fraction numerator negative 2 straight x over denominator 2 square root of 1 minus straight x squared end root end fraction
therefore space dy over dx equals fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction
    Question 474
    CBSEENMA12035219

    If space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root end fraction close square brackets comma space find space dy over dx

    Solution
    space space space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root end fraction close square brackets
Put space space straight x squared equals cos space straight theta
therefore space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus cos space straight theta end root minus square root of 1 minus cos space straight theta end root over denominator square root of 1 plus cos space straight theta end root plus square root of 1 minus cos space straight theta end root end fraction close square brackets equals tan space to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cos squared straight theta over 2 end root minus square root of 2 sin squared straight theta over 2 end root over denominator square root of 2 cos squared straight theta over 2 end root plus square root of 2 sin squared straight theta over 2 end root end fraction close square brackets
space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 space end root cos straight theta over 2 minus square root of 2 space end root sin space straight theta over 2 over denominator square root of 2 space end root cos straight theta over 2 plus square root of 2 space end root sin space straight theta over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator cos straight theta over 2 minus sin straight theta over 2 over denominator cos straight theta over 2 plus sin straight theta over 2 end fraction close square brackets
space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 minus tan space straight theta over 2 over denominator 1 minus tan space straight theta over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 4 minus straight theta over 2 close parentheses close square brackets equals straight pi over 4 minus straight theta over 2
therefore space space straight y equals straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight x squared
therefore space dy over dx equals 0 minus 1 half open square brackets negative fraction numerator 1 over denominator square root of 1 minus straight x to the power of 4 end root end fraction close square brackets straight d over dx left parenthesis straight x squared right parenthesis equals fraction numerator 1 over denominator 2 square root of 1 minus straight x to the power of 4 end root end fraction cross times 2 straight x
therefore space dy over dx equals fraction numerator straight x over denominator square root of 1 minus straight x to the power of 4 end root end fraction.
    Question 475
    CBSEENMA12035220

    If space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root end fraction close square brackets comma space prove space that space dy over dx equals negative fraction numerator straight x over denominator square root of 1 minus straight x to the power of 4 end root end fraction

    Solution
    space space space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root end fraction close square brackets
Put space space straight x squared equals cos space straight theta
therefore space space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus cos space straight theta end root plus square root of 1 minus cos space straight theta end root over denominator square root of 1 plus cos space straight theta end root minus square root of 1 minus cos space straight theta end root end fraction close square brackets
equals tan space to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cos squared straight theta over 2 end root plus square root of 2 sin squared straight theta over 2 end root over denominator square root of 2 cos squared straight theta over 2 end root minus square root of 2 sin squared straight theta over 2 end root end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 space end root cos straight theta over 2 minus square root of 2 space end root sin space straight theta over 2 over denominator square root of 2 space end root cos straight theta over 2 plus square root of 2 space end root sin space straight theta over 2 end fraction close square brackets
equals tan to the power of negative 1 end exponent open square brackets fraction numerator cos straight theta over 2 plus sin straight theta over 2 over denominator cos straight theta over 2 minus sin straight theta over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 plus tan space straight theta over 2 over denominator 1 minus tan space straight theta over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 4 plus straight theta over 2 close parentheses close square brackets equals straight pi over 4 plus straight theta over 2
therefore space space straight y equals straight pi over 4 plus 1 half cos to the power of negative 1 end exponent open parentheses straight x squared close parentheses
therefore space dy over dx equals 0 plus 1 half open square brackets negative fraction numerator 1 over denominator square root of 1 minus straight x to the power of 4 end root end fraction close square brackets straight d over dx left parenthesis straight x squared right parenthesis equals 1 half cross times negative fraction numerator 1 over denominator square root of 1 minus straight x to the power of 4 end root end fraction cross times 2 straight x equals negative fraction numerator straight x over denominator square root of 1 minus straight x to the power of 4 end root end fraction.
    Question 476
    CBSEENMA12035221

    Find the equation of the normal to the curve x2 = 4 y which passes through the point (1, 2).

    Solution

    The equation of the curve is x2 = 4y                                       ...(1)
    therefore space space space space space space space space space space straight y space equals space straight x squared over 4 space space space space space space space rightwards double arrow space space space space space dy over dx space equals space fraction numerator 2 straight x over denominator 4 end fraction space equals space straight x over 2
    Let normal at (h, k) pass through (1, 2).
    Since (h, k) lies on (1)
    therefore space space space space straight h squared space equals space 4 straight k                                                                        ...(2)
    Slope of tangent at (h, k) = straight h over 2
    therefore space space space space space space slope space of space normal space at space left parenthesis straight h comma space straight k right parenthesis space equals space minus 2 over straight h
    Equation of normal at (h, k) is straight y minus straight k space equals space minus 2 over straight h left parenthesis straight x minus straight h right parenthesis
    because space space space space space space space it space passes space through space left parenthesis 1 comma space 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space because space space space space space space space 2 minus straight k space equals space minus 2 over straight h left parenthesis 1 minus straight h right parenthesis
    or space space space space space 2 straight h minus hk space equals space minus 2 plus 2 straight h space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight h space straight k space equals space 2
From space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma space straight h open parentheses straight h squared over 4 close parentheses space equals space 2.
therefore space space space space space space space space straight h squared space equals space 8 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight h space equals space 2 space space space space space space space space space space space therefore space space space straight k space equals space 2 over straight h space equals space 2 over 2 space equals space 1
therefore space space space space space space equation space of space normal space is space straight y minus 1 space equals space minus 2 over 2 left parenthesis straight x minus 2 right parenthesis
or space space space space space space straight y minus 1 space equals space minus straight x plus 2 space space space space space space space space space space space space space space or space space space space space space space straight x plus straight y minus 3 space equals space 0

    Question 479
    CBSEENMA12035226

    If space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 5 straight a over denominator straight a squared minus 6 straight x squared end fraction close parentheses comma space prove space that space dy over dx equals fraction numerator 3 straight a over denominator straight a squared plus 9 straight x squared end fraction plus fraction numerator 2 straight a over denominator straight a squared plus 4 straight x squared end fraction

    Solution
    because space space space space space space space space straight y equals space tan to the power of negative 1 end exponent fraction numerator 5 straight a over denominator straight a squared minus 6 straight x squared end fraction
therefore space space space space space space space space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 5 begin display style straight x over straight a end style over denominator 1 minus 6 open parentheses begin display style straight x over straight a end style close parentheses squared end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator 3 straight x over denominator straight a end fraction end style plus begin display style fraction numerator 2 straight x over denominator straight a end fraction end style over denominator 1 minus open parentheses begin display style fraction numerator 3 straight x over denominator straight a end fraction end style close parentheses open parentheses begin display style fraction numerator 2 straight x over denominator straight a end fraction end style close parentheses end fraction close parentheses
therefore space space space space space space space space straight y equals tan to the power of negative 1 end exponent fraction numerator 3 straight x over denominator straight a end fraction plus tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator straight a end fraction space open square brackets because space tan to the power of negative 1 end exponent space straight A plus tan to the power of negative 1 end exponent straight B equals tan to the power of negative 1 end exponent space fraction numerator straight A plus straight B over denominator 1 minus AB end fraction close square brackets

space therefore space dy over dx equals fraction numerator 1 over denominator 1 plus begin display style fraction numerator 9 straight x squared over denominator straight a squared end fraction end style end fraction. straight d over dx open parentheses fraction numerator 3 straight x over denominator straight a end fraction close parentheses plus fraction numerator 1 over denominator 1 plus begin display style fraction numerator 4 straight x squared over denominator straight a squared end fraction end style end fraction. straight d over dx open parentheses fraction numerator 2 straight x over denominator straight a end fraction close parentheses
space space space space space space space space space space space space space space equals fraction numerator straight a squared over denominator straight a squared plus 9 space straight x squared end fraction.3 over straight a plus fraction numerator straight a squared over denominator straight a squared plus 4 space straight x squared end fraction.2 over straight a equals fraction numerator 3 straight a over denominator straight a squared plus 9 space straight x squared end fraction plus fraction numerator 2 straight a over denominator straight a squared plus 4 space straight x squared end fraction
    Question 480
    CBSEENMA12035228

    If space straight y equals fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction plus log square root of 1 minus straight x squared end root comma space prove space that space dy over dx equals fraction numerator sin to the power of negative 1 end exponent straight x over denominator left parenthesis 1 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction

    Solution
    space space space space space space space space space space space straight y equals fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction plus log left parenthesis 1 minus straight x squared right parenthesis to the power of 1 half end exponent
therefore space space space space space space space straight y equals fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction plus 1 half log left parenthesis 1 minus straight x squared right parenthesis
therefore space dy over dx equals straight d over dx open parentheses fraction numerator straight x space sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction close parentheses plus 1 half straight d over dx left square bracket log left parenthesis 1 minus straight x squared right parenthesis right square bracket
space space space space space space space space space space space space space equals fraction numerator square root of 1 minus straight x squared end root. begin display style straight d over dx end style left parenthesis straight x space sin to the power of negative 1 end exponent straight x right parenthesis minus left parenthesis straight x space sin to the power of negative 1 end exponent straight x right parenthesis. begin display style straight d over dx end style left parenthesis square root of 1 minus straight x squared end root right parenthesis over denominator 1 minus straight x squared end fraction plus 1 half fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction

space space space space space space space space space space space space space equals fraction numerator square root of 1 minus straight x squared end root. open parentheses begin display style fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction end style plus sin to the power of negative 1 end exponent straight x.1 close parentheses space minus straight x space sin to the power of negative 1 end exponent straight x. begin display style fraction numerator negative 2 straight x over denominator 2 square root of 1 minus straight x squared end root end fraction end style over denominator 1 minus straight x squared end fraction minus fraction numerator straight x over denominator 1 minus straight x squared end fraction
space space space space space space space space space space space space space equals fraction numerator straight x plus square root of 1 minus straight x squared end root space sin to the power of negative 1 end exponent straight x plus begin display style fraction numerator straight x squared sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction end style over denominator 1 minus straight x squared end fraction minus fraction numerator straight x over denominator 1 minus straight x squared end fraction
space space space space space space space space space space space space space equals fraction numerator straight x plus square root of 1 minus straight x squared end root space sin to the power of negative 1 end exponent straight x plus begin display style fraction numerator straight x squared sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction end style minus straight x over denominator 1 minus straight x squared end fraction
space space space space space space space space space space space space space equals fraction numerator square root of 1 minus straight x squared end root space sin to the power of negative 1 end exponent straight x plus begin display style fraction numerator straight x squared sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction end style over denominator 1 minus straight x squared end fraction equals fraction numerator left parenthesis 1 minus straight x squared right parenthesis sin to the power of negative 1 end exponent straight x plus straight x squared space sin to the power of negative 1 end exponent straight x over denominator left parenthesis 1 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
space space space space space space space space space space space space space equals fraction numerator sin to the power of negative 1 end exponent straight x over denominator left parenthesis 1 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    Question 481
    CBSEENMA12035230

    Prove space that space dy over dx space is space independent space of space straight x comma space when
straight y equals cot to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close square brackets comma space open parentheses 0 less than straight x less than straight pi over 2 close parentheses.

    Solution
    space space space space straight y equals cot to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close square brackets
Now space square root of 1 plus sin space straight x end root equals square root of cos squared straight x over 2 plus sin squared straight x over 2 plus 2 sin straight x over 2 cos straight x over 2 end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals square root of open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses squared end root equals cos straight x over 2 plus sin straight x over 2
square root of 1 minus sin space straight x end root equals square root of cos squared straight x over 2 plus sin squared straight x over 2 minus 2 sin straight x over 2 cos straight x over 2 end root equals square root of open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses squared end root equals cos straight x over 2 minus sin straight x over 2
space space space space space therefore space space space space space space space space straight y equals cot to the power of negative 1 end exponent open parentheses fraction numerator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses plus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses over denominator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses minus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses end fraction close parentheses
space space space space space space space space space space space space space space space space space space space equals cot to the power of negative 1 end exponent open parentheses fraction numerator 2 cos begin display style straight x over 2 end style over denominator 2 sin begin display style straight x over 2 end style end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses cot straight x over 2 close parentheses equals straight x over 2
space space space space space therefore space space dy over dx equals 1 half.
    Question 482
    CBSEENMA12035231

    Differentiate colon space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close parentheses space straight w. straight r. straight t. straight x.

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close parentheses
therefore space straight y equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of cos squared straight x over 2 plus sin squared straight x over 2 plus 2 sin straight x over 2 cos straight x over 2 end root plus square root of cos squared straight x over 2 plus sin squared straight x over 2 minus 2 sin straight x over 2 cos straight x over 2 end root over denominator square root of cos squared straight x over 2 plus sin squared straight x over 2 plus 2 sin straight x over 2 cos straight x over 2 end root minus square root of cos squared straight x over 2 plus sin squared straight x over 2 minus 2 sin straight x over 2 cos straight x over 2 end root end fraction close square brackets
space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses plus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses over denominator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses minus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses end fraction close square brackets
space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 cos begin display style straight x over 2 end style over denominator 2 sin straight x over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses cot straight x over 2 close parentheses equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 2 minus straight x over 2 close parentheses close square brackets
therefore space straight y equals straight pi over 2 minus straight x over 2
therefore space dy over dx equals negative 1 half
    Question 483
    CBSEENMA12035233

    Differentiate space colon space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x end root minus square root of 1 minus straight x end root over denominator square root of 1 plus straight x end root plus square root of 1 minus straight x end root end fraction close parentheses space straight w. straight r. straight t. straight x.

    Solution
    Let space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x end root minus square root of 1 minus straight x end root over denominator square root of 1 plus straight x end root plus square root of 1 minus straight x end root end fraction close parentheses
Put space straight x equals cos space straight theta
therefore space space space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus cosθ end root minus square root of 1 minus cosθ end root over denominator square root of 1 plus cosθ end root plus square root of 1 minus cosθ end root end fraction close parentheses equals space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cos squared straight theta over 2 end root minus square root of 2 sin squared straight theta over 2 end root over denominator square root of 2 cos squared straight theta over 2 end root plus square root of 2 sin squared straight theta over 2 end root end fraction close square brackets
space space space space space space space space space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cos straight theta over 2 minus square root of 2 sin straight theta over 2 over denominator square root of 2 cos straight theta over 2 plus square root of 2 sin straight theta over 2 end fraction close square brackets equals space tan to the power of negative 1 end exponent open square brackets fraction numerator cos straight theta over 2 minus sin straight theta over 2 over denominator cos straight theta over 2 plus sin straight theta over 2 end fraction close square brackets
space space space space space space space space space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator cos begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction end style minus begin display style fraction numerator sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction end style over denominator begin display style fraction numerator cos begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction end style plus begin display style fraction numerator sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style end fraction end style end fraction close square brackets equals space tan to the power of negative 1 end exponent open square brackets fraction numerator 1 minus tan begin display style straight theta over 2 end style over denominator 1 plus tan begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 4 minus straight theta over 2 close parentheses close square brackets equals straight pi over 4 minus straight theta over 2
therefore space straight y equals straight pi over 4 minus 1 half. cos to the power of negative 1 end exponent straight x
dy over dx equals 0 minus 1 half. fraction numerator negative 1 over denominator square root of 1 minus straight x squared end root end fraction
    Question 485
    CBSEENMA12035241

    straight y equals sin to the power of negative 1 end exponent open curly brackets straight x square root of 1 minus straight x end root minus square root of straight x square root of 1 minus straight x squared end root close curly brackets space semicolon space find space dy over dx comma

    Solution
    space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent open curly brackets straight x square root of 1 minus straight x end root minus square root of straight x square root of 1 minus straight x squared end root close curly brackets
Put space space space space straight x equals sin space straight theta comma space square root of straight x equals sin space straight ϕ
therefore space space space space space space straight y equals sin to the power of negative 1 end exponent open curly brackets sin space straight theta square root of 1 minus sin squared space straight ϕ end root minus sin space straight ϕ square root of 1 minus sin squared space straight theta end root close curly brackets
space space space space space space space space space space space space equals sin to the power of negative 1 end exponent left curly bracket sin space straight theta space cos space straight ϕ minus sin space straight ϕ space cos space straight theta right curly bracket equals sin to the power of negative 1 end exponent left curly bracket sin left parenthesis straight theta minus straight ϕ right parenthesis right curly bracket equals straight theta minus straight ϕ
therefore space space space space space space straight y equals sin to the power of negative 1 end exponent straight x minus sin to the power of negative 1 end exponent square root of straight x
therefore space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction minus fraction numerator 1 over denominator 1 minus straight x end fraction. fraction numerator 1 over denominator 2 square root of straight x end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction minus fraction numerator 1 over denominator 2 square root of straight x square root of 1 minus straight x end root end fraction
    Question 486
    CBSEENMA12035242

    If space straight y equals sin to the power of negative 1 end exponent left parenthesis straight x squared square root of 1 minus straight x squared end root plus straight x square root of 1 minus straight x to the power of 4 end root right parenthesis comma space show space that space
dy over dx minus fraction numerator 2 straight x over denominator square root of 1 minus straight x to the power of 4 end root end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x to the power of 4 end root end fraction

    Solution
    space straight y equals sin to the power of negative 1 end exponent left parenthesis straight x squared square root of 1 minus straight x squared end root plus straight x square root of 1 minus straight x to the power of 4 end root right parenthesis
Put space straight x squared equals sin space straight theta comma space straight x equals sin space straight ϕ
therefore space straight y equals sin to the power of negative 1 end exponent left parenthesis sin space straight theta square root of 1 minus sin squared space straight ϕ end root plus sin space straight ϕ square root of 1 minus sin squared space straight theta end root right parenthesis
space space space space space space space equals sin to the power of negative 1 end exponent left parenthesis sin space straight theta space cos space straight ϕ plus cos space straight theta space sin space straight ϕ right parenthesis equals sin to the power of negative 1 end exponent left square bracket sin left parenthesis straight theta plus straight ϕ right parenthesis right square bracket
therefore space straight y equals straight theta plus straight ϕ space space rightwards double arrow space straight y equals sin to the power of negative 1 end exponent space straight x squared plus sin to the power of negative 1 end exponent space straight x
dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x to the power of 4 end root end fraction 2 straight x plus fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction space rightwards double arrow space dy over dx minus fraction numerator 2 straight x over denominator square root of 1 minus straight x to the power of 4 end root end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
    Question 487
    CBSEENMA12035246

    Differentiate space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent straight x.

    Solution
    Let space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
Put space space straight x equals tan space straight theta
therefore space space space space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
space space space space space space space space space space equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space straight y equals 2 tan to the power of negative 1 end exponent straight x space rightwards double arrow space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Also space straight u equals tan to the power of negative 1 end exponent
therefore space space space space space du over dx equals fraction numerator 1 over denominator 1 plus straight x squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 1 end fraction equals 2
    Question 488
    CBSEENMA12035250

    Differentiate space colon space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x squared end root over denominator straight x end fraction close parentheses space straight w. straight r. straight t. space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses.

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x squared end root over denominator straight x end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus tan squared space straight theta end root minus 1 over denominator tan space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator sec space straight theta minus 1 over denominator tan space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 over denominator cos space straight theta end fraction minus 1 end style over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 sin squared begin display style straight theta over 2 end style over denominator 2 sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin begin display style straight theta over 2 end style over denominator cos space begin display style straight theta over 2 end style end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses tan space straight theta over 2 close parentheses equals straight theta over 2
space space space space space space space space space equals 1 half tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 1 over denominator 2 left parenthesis 1 plus straight x squared right parenthesis end fraction
    Also
    space space space space space space space straight u equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
Put space space straight x equals tan space straight theta
therefore space space space space straight u equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 tan space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
space space space space space space space space space space equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis
space space space space space space space space space space equals 2 space straight theta

therefore space space space space straight u equals 2 space tan to the power of negative 1 end exponent straight x
therefore space du over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
    Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 1 over denominator 2 left parenthesis 1 plus straight x squared right parenthesis end fraction cross times fraction numerator 1 plus straight x squared over denominator 2 end fraction
therefore space space space space space dy over dx equals 1 fourth
     
    Question 489
    CBSEENMA12035252

    Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses

    Solution
    Let space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses comma space straight u equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses
Put space space space straight x equals tan space straight theta
therefore space space space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 atn squared space straight theta end fraction close parentheses comma space straight u equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 tan space straight theta over denominator 1 minus tan squared straight theta end fraction close parentheses
therefore space space space space space straight y equals tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis space space comma space space space space space space space space space space space space straight u equals tan to the power of negative 1 end exponent left parenthesis 2 straight theta right parenthesis
therefore space space space space space straight y equals 3 space straight theta space space space space space space space space space space space space space space space space space space space space comma space space space space space space space space space space space space space straight u equals 2 space straight theta
therefore space space space space space straight y equals 3 space tan to the power of negative 1 end exponent straight x space space space space space space space space space space space comma space space space space space space space space space space space space space straight u equals 2 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction space space space space space space space space space space space comma space space space space space space space space du over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Now space space space space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 3 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 2 end fraction equals 3 over 2
    Question 490
    CBSEENMA12035254

    Differentiate space colon space cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses

    Solution
    Let space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
Put space space space space space straight x equals tan space straight theta
therefore space space space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan squared space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
space space space space space space space space space space space space space equals cos to the power of negative 1 end exponent left parenthesis cos space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space space space space straight y equals 2 tan to the power of negative 1 end exponent space straight x
therefore space space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Also space space space space straight u equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space space space space space space space straight x equals space tan space straight theta
therefore space space space space space space space space space space space straight u equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses
space space space space space space space space space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis equals 3 straight theta
therefore space space space space space space space space space space space straight u equals 3 space tan to the power of negative 1 end exponent space straight x
therefore space space space space space du over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 3 end fraction
therefore space dy over dx equals 2 over 3
    Question 491
    CBSEENMA12035259

    Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses space straight w. straight r. straight t. space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses.

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses space space space space space comma space space space space space straight u equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 minus tan squared space straight theta end fraction close parentheses comma space space space space space straight u equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
therefore space straight y equals tan to the power of negative 1 end exponent left parenthesis tan space 2 straight theta right parenthesis space space space space space space space space space space comma space space space space space space straight u equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis
therefore space straight y equals 2 straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space comma space space space space space space straight u equals 2 straight theta space
therefore space straight y equals 2 tan to the power of negative 1 end exponent straight x space space space space space space space space space space space space space space space space space space space comma space space space space space space straight u equals 2 sin to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction space space space space space space space space space space space space space space comma space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 2 end fraction equals 1
    Question 492
    CBSEENMA12035263

    Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction close parentheses

    Solution
    Let space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis
space space space space space space space space space equals 3 space straight theta
therefore space space space straight y equals 3 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction
Also space straight u equals tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction close parentheses
Put space straight x equals sin space straight theta
therefore space space space straight u equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator square root of 1 minus sin squared space straight theta end root end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis
space space space space space space space space space equals straight theta
therefore space straight u equals sin to the power of negative 1 end exponent straight x
therefore space du over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 3 over denominator 1 plus straight x squared end fraction cross times fraction numerator square root of 1 plus straight x squared end root over denominator 1 end fraction equals fraction numerator 3 square root of 1 plus straight x squared end root over denominator 1 plus straight x squared end fraction
    Question 494
    CBSEENMA12035267

    Find space the space derivative space of space tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction space straight w. straight r. straight t. space tan to the power of negative 1 end exponent straight x

    Solution
    Let space space space space space space straight y equals tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction comma space straight u equals tan to the power of negative 1 end exponent straight x
Put space space space space space space straight x equals tan space straight theta
therefore space space space space space space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 tan space straight theta over denominator 1 minus tan squared space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent left parenthesis tan space 2 straight theta right parenthesis equals 2 straight theta equals 2 space tan to the power of negative 1 end exponent straight x
therefore space space space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Also space space space space straight u equals tan to the power of negative 1 end exponent straight x space space rightwards double arrow space du over dx equals fraction numerator 1 over denominator 1 plus straight x squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 1 end fraction equals 2
    Question 495
    CBSEENMA12035269

    Differentiate space sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 straight x squared minus 1 end fraction close parentheses space straight w. straight r. straight t. space sin to the power of negative 1 end exponent left parenthesis 3 straight x minus 4 straight x cubed right parenthesis.

    Solution
    Let space straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 straight x squared minus 1 end fraction close parentheses
Put space straight x equals cos space straight theta
therefore space space space straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 cos squared space straight theta minus 1 end fraction close parentheses equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator cos space 2 straight theta end fraction close parentheses
space space space space space space space space space equals sec to the power of negative 1 end exponent left parenthesis sec space 2 straight theta right parenthesis equals 2 straight theta equals 2 space cos to the power of negative 1 end exponent straight x
therefore space dy over dx equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction
Also space
space space space space space space space straight u equals space sin to the power of negative 1 end exponent left parenthesis 3 straight x minus 4 straight x cubed right parenthesis
Put space straight x equals sin space straight theta
therefore space space space straight u equals sin to the power of negative 1 end exponent left parenthesis 3 sin space straight theta minus 4 sin cubed space straight theta right parenthesis
space space space space space space space space space equals sin to the power of negative 1 end exponent left parenthesis sin space 3 straight theta right parenthesis equals 3 straight theta equals 3 sin to the power of negative 1 end exponent
therefore space du over dx equals fraction numerator 3 over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction cross times fraction numerator square root of 1 minus straight x squared end root over denominator 3 end fraction equals negative 2 over 3
    Question 496
    CBSEENMA12035271

    Differentiate space sin to the power of negative 1 end exponent straight x space straight w. straight r. straight t. space cos to the power of negative 1 end exponent square root of 1 minus straight x squared end root.

    Solution
    Let space space space space space space space space space straight y equals sin to the power of negative 1 end exponent straight x space comma space straight u equals cos to the power of negative 1 end exponent square root of 1 minus straight x squared end root
therefore space space space space space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
space space space space space space space space space du over dx equals negative fraction numerator 1 over denominator square root of 1 minus left parenthesis 1 minus straight x squared right parenthesis end root end fraction. straight d over dx left parenthesis square root of 1 minus straight x squared end root right parenthesis equals negative 1 over straight x. fraction numerator negative 2 straight x over denominator 2 square root of 1 minus straight x squared end root end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction cross times fraction numerator square root of 1 minus straight x squared end root over denominator 1 end fraction equals 1
    Question 497
    CBSEENMA12035273

    Differentiate space sin to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses space straight w. straight r. straight t. space square root of straight x

    Solution
    Let space straight y equals sin to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses comma space straight u equals square root of straight x
space dy over dx equals fraction numerator 1 over denominator square root of 1 minus open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses squared end root end fraction. straight d over dx open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses equals fraction numerator 1 plus straight x over denominator square root of left parenthesis 1 plus straight x right parenthesis squared minus left parenthesis 1 minus straight x right parenthesis squared end root end fraction cross times fraction numerator left parenthesis 1 plus straight x right parenthesis left parenthesis negative 1 right parenthesis minus left parenthesis 1 minus straight x right parenthesis left parenthesis 1 right parenthesis over denominator left parenthesis 1 plus straight x right parenthesis squared end fraction
space space space space space space space space space equals fraction numerator 1 plus straight x over denominator square root of 4 straight x end root end fraction cross times fraction numerator negative 2 over denominator left parenthesis 1 plus straight x right parenthesis squared end fraction equals negative fraction numerator 1 over denominator square root of straight x left parenthesis 1 plus straight x right parenthesis end fraction
space du over dx equals fraction numerator 1 over denominator 2 square root of straight x end fraction
space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals negative fraction numerator 1 over denominator square root of straight x left parenthesis 1 plus straight x right parenthesis end fraction cross times fraction numerator 2 square root of straight x over denominator 1 end fraction equals negative fraction numerator 2 over denominator 1 plus straight x end fraction
    Question 498
    CBSEENMA12035275

    Differentiate space cos to the power of negative 1 end exponent straight theta space straight w. straight r. straight t. space log left parenthesis 1 plus straight theta right parenthesis

    Solution
    Let space space space space space straight y equals cos to the power of negative 1 end exponent straight theta comma space straight u equals log left parenthesis 1 plus straight theta right parenthesis
therefore space dy over dx equals negative fraction numerator 1 over denominator square root of 1 minus straight theta squared end root end fraction comma space du over dx equals fraction numerator 1 over denominator 1 plus straight theta end fraction
Now space dy over du equals fraction numerator begin display style dy over dθ end style over denominator begin display style du over dθ end style end fraction equals negative fraction numerator 1 over denominator square root of 1 minus straight theta squared end root end fraction cross times fraction numerator 1 plus straight theta over denominator 1 end fraction equals negative fraction numerator 1 plus straight theta over denominator square root of 1 minus straight theta squared end root end fraction
    Question 499
    CBSEENMA12035276

    Differentiate space sin to the power of negative 1 end exponent straight theta space straight w. straight r. straight t. space log left parenthesis 1 plus straight theta right parenthesis

    Solution
    Let space space space space space space space space space space straight y equals space sin to the power of negative 1 end exponent straight theta comma space straight u equals log left parenthesis 1 plus straight theta right parenthesis
therefore space space space space space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight theta squared end root end fraction comma space du over dθ equals fraction numerator 1 over denominator 1 plus straight theta end fraction
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style du over dθ end style end fraction equals fraction numerator 1 over denominator square root of 1 minus straight theta squared end root end fraction cross times fraction numerator 1 plus straight theta over denominator 1 end fraction equals fraction numerator 1 plus straight theta over denominator square root of 1 minus straight theta squared end root end fraction
    Question 500
    CBSEENMA12035277

    Differentiate space log left parenthesis 1 plus straight theta right parenthesis space straight w. straight r. straight t. space sin to the power of negative 1 end exponent space straight theta

    Solution
    Let space space space space space straight y equals log left parenthesis 1 plus straight theta right parenthesis comma space straight u equals sin to the power of negative 1 end exponent space straight theta
therefore space dy over dθ equals fraction numerator 1 over denominator 1 plus straight theta end fraction comma space du over dθ equals fraction numerator 1 over denominator square root of 1 minus straight theta squared end root end fraction
therefore space dy over du equals fraction numerator 1 over denominator 1 plus straight theta end fraction cross times fraction numerator square root of 1 minus straight theta squared end root over denominator 1 plus straight theta end fraction equals fraction numerator square root of 1 minus straight theta squared end root over denominator 1 plus straight theta end fraction
    Question 501
    CBSEENMA12035279

    Prove space that space the space derivative space of space sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 straight x squared minus 1 end fraction close parentheses comma space straight x greater than 0 space straight w. straight r. straight t. space square root of 1 minus straight x squared end root space is space equal space to space the space
derivative space straight l subscript straight n space left parenthesis straight x squared right parenthesis space with space respect space to space straight x comma space left square bracket straight l subscript straight n left parenthesis straight x squared right parenthesis equals space log to the power of straight e. left parenthesis straight a squared right parenthesis right square bracket.

    Solution
    Let space straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 straight x squared minus 1 end fraction close parentheses comma space straight u equals square root of 1 minus straight x squared end root
Put space straight x equals cos space straight theta
therefore space straight y equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator 2 cos squared space straight theta minus 1 end fraction close parentheses equals sec to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator cos space 2 straight theta end fraction close parentheses equals sec to the power of negative 1 end exponent open parentheses sec space 2 straight theta close parentheses equals 2 straight theta
therefore space straight y equals 2 space cos to the power of negative 1 end exponent straight x space space rightwards double arrow space dy over dx equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction
Also space straight u equals square root of 1 minus straight x squared end root
therefore space space space space space du over dx equals fraction numerator 1 over denominator 2 square root of 1 minus straight x squared end root end fraction cross times left parenthesis negative 2 straight x right parenthesis equals negative fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction cross times fraction numerator square root of 1 minus straight x squared end root over denominator negative straight x end fraction
space space space space space space space space space space space space space space space space space equals 2 over straight x equals 2 straight d over dx left parenthesis log subscript straight e space straight x right parenthesis equals straight d over dx left parenthesis 2 space log subscript straight e space straight x right parenthesis equals straight d over dx left parenthesis log subscript straight e space straight x squared right parenthesis equals straight d over dx left square bracket straight l subscript straight n left parenthesis straight x squared right parenthesis right square bracket
    Question 502
    CBSEENMA12035283

    Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator 1 plus square root of 1 minus straight x squared end root end fraction close parentheses space straight w. straight r. straight t. space sin open parentheses 2 space cot to the power of negative 1 end exponent space square root of fraction numerator 1 plus straight x over denominator 1 minus straight x end fraction end root close parentheses

    Solution
    Let space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator 1 plus square root of 1 minus straight x squared end root end fraction close parentheses
Put space straight x equals sin space straight theta
therefore space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator 1 plus square root of 1 minus sin squared space straight theta end root end fraction close parentheses
space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator 1 plus cos space straight theta end fraction close parentheses
space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space sin space begin display style straight theta over 2 end style cos begin display style fraction numerator space straight theta over denominator 2 end fraction end style over denominator 2 cos squared begin display style straight theta over 2 end style end fraction close parentheses
space space space space space space space equals tan to the power of negative 1 end exponent open parentheses tan space straight theta over 2 close parentheses
space space space space space space space equals straight theta over 2
therefore space straight y equals 1 half sin to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 1 over denominator 2 square root of 1 minus straight x squared end root end fraction
    Also space straight u equals sin open square brackets 2 space cot to the power of negative 1 end exponent open parentheses square root of fraction numerator 1 plus straight x over denominator 1 minus straight x end fraction end root close parentheses close square brackets
Put space space space space straight x equals cos space straight theta
therefore space space space space space space straight u equals sin open square brackets 2 space cot to the power of negative 1 end exponent open parentheses square root of fraction numerator 1 plus cos space straight theta over denominator 1 minus cos space straight theta end fraction end root close parentheses close square brackets
space space space space space space space space space space space space equals sin open square brackets 2 space cot to the power of negative 1 end exponent open parentheses square root of fraction numerator 2 space cos 2 begin display style straight theta over 2 end style over denominator 2 space sin 2 begin display style straight theta over 2 end style end fraction end root close parentheses close square brackets
space space space space space space space space space space space space equals sin open square brackets 2 space cot to the power of negative 1 end exponent open parentheses cot straight theta over 2 close parentheses close square brackets
space space space space space space space space space space space space equals sin open square brackets 2 cross times straight theta over 2 close square brackets
space space space space space space space space space space space space equals sin space straight theta equals square root of 1 minus cos squared space straight theta end root
therefore space straight u equals square root of 1 minus straight x squared end root
therefore space du over dx equals fraction numerator negative 2 straight x over denominator square root of 1 minus straight x squared end root end fraction
therefore space du over dx equals negative fraction numerator 2 straight x over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over du equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 1 over denominator 2 square root of 1 minus straight x squared end root end fraction cross times fraction numerator square root of 1 minus straight x squared end root over denominator negative straight x end fraction equals negative fraction numerator 1 over denominator 2 straight x end fraction
    Question 503
    CBSEENMA12035285

    If space straight y equals tan to the power of negative 1 end exponent fraction numerator 4 straight x over denominator 1 plus 5 straight x squared end fraction plus tan to the power of negative 1 end exponent fraction numerator 2 plus 3 straight x over denominator 3 minus 2 straight x end fraction comma space prove space that space dy over dx equals fraction numerator 5 over denominator 1 plus 25 straight x squared end fraction.

    Solution
    Here space straight y equals tan to the power of negative 1 end exponent fraction numerator 4 straight x over denominator 1 plus 5 straight x squared end fraction plus tan to the power of negative 1 end exponent fraction numerator 2 plus 3 straight x over denominator 3 minus 2 straight x end fraction
space space space space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 5 xx minus straight x over denominator 1 plus 5 straight x. straight x end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus begin display style 2 over 3 end style over denominator 1 minus straight x. begin display style 2 over 3 end style end fraction close parentheses
space space space space space space space space space space space space equals tan to the power of negative 1 end exponent 5 straight x minus tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent 2 over 3 equals tan to the power of negative 1 end exponent 5 straight x plus tan to the power of negative 1 end exponent 2 over 3
therefore space dy over dx equals fraction numerator 5 over denominator 1 plus left parenthesis 5 straight x right parenthesis squared end fraction plus 0 equals fraction numerator 5 over denominator 1 plus 25 straight x squared end fraction
    Question 504
    CBSEENMA12035287

    Given space that space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 2 over denominator 1 minus 2 straight x end fraction close parentheses comma space minus 1 less than straight x less than 1 half. space After space using space
the space property space of space inverse space trigonometric space function comma space show space that space dy over dx equals 0

    Solution
    Here space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus 2 over denominator 1 minus 2 straight x end fraction close parentheses
equals tan to the power of negative 1 end exponent 1 minus tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent 2 equals tan to the power of negative 1 end exponent 1 plus tan to the power of negative 1 end exponent 2
therefore space dy over dx equals 0 plus 0 space rightwards double arrow space dy over dx equals 0
    Question 505
    CBSEENMA12035288

    If space straight theta equals cos to the power of negative 1 end exponent open parentheses straight r over straight k close parentheses minus fraction numerator square root of straight k squared minus straight r squared end root over denominator straight r end fraction comma space find space dθ over dr

    Solution
    Here space straight theta equals cos to the power of negative 1 end exponent open parentheses straight r over straight k close parentheses minus fraction numerator square root of straight k squared minus straight r squared end root over denominator straight r end fraction
Differentiating space both space sides space straight w. straight r. straight t. space straight theta. space we space get comma
dθ over dr equals negative fraction numerator 1 over denominator square root of 1 minus open parentheses begin display style straight r over straight k end style close parentheses squared end root end fraction.1 over straight k minus fraction numerator straight r. begin display style fraction numerator negative 2 straight r over denominator 2 square root of straight k squared minus straight r squared end root end fraction end style minus square root of straight k squared minus straight r squared end root.1 over denominator straight r squared end fraction
space space space space space space space space equals negative fraction numerator straight k over denominator square root of straight k squared minus straight r squared end root end fraction.1 over straight k plus fraction numerator begin display style fraction numerator straight r squared over denominator square root of straight k squared minus straight r squared end root end fraction end style plus begin display style fraction numerator square root of straight k squared minus straight r squared end root over denominator 1 end fraction end style over denominator straight r squared end fraction
space space space space space space space space equals negative fraction numerator 1 over denominator square root of straight k squared minus straight r squared end root end fraction plus fraction numerator straight r squared plus straight k squared minus straight r squared over denominator straight r squared square root of straight k squared minus straight r squared end root end fraction equals negative fraction numerator 1 over denominator square root of straight k squared minus straight r squared end root end fraction plus fraction numerator straight k squared over denominator straight r squared square root of straight k squared minus straight r squared end root end fraction
space space space space space space space space equals fraction numerator negative straight r squared plus straight k squared over denominator straight r squared square root of straight k squared minus straight r squared end root end fraction equals fraction numerator square root of straight k squared minus straight r squared end root over denominator straight r squared end fraction
    Question 506
    CBSEENMA12035291
    Question 507
    CBSEENMA12035294

    Differentiate space the space following space straight w. straight r. straight t. straight x colon space left parenthesis sin space straight x right parenthesis to the power of cos to the power of negative 1 end exponent straight x end exponent

    Solution
    space space space space space Let space straight y equals left parenthesis sin space straight x right parenthesis to the power of cos to the power of negative 1 end exponent straight x end exponent
therefore space log space straight y equals log left parenthesis sin space straight x right parenthesis to the power of cos to the power of negative 1 end exponent straight x end exponent equals cos to the power of negative 1 end exponent straight x. space log space sin space straight x
therefore space 1 over straight y dy over dx equals left parenthesis cos to the power of negative 1 end exponent straight x right parenthesis. fraction numerator cos space straight x over denominator sin space straight x end fraction minus fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction. log space sin space straight x
therefore space dy over dx equals open parentheses sin space straight x close parentheses to the power of cos to the power of negative 1 end exponent straight x end exponent open square brackets cot space straight x. space cos to the power of negative 1 end exponent straight x minus fraction numerator log space sin space straight x over denominator square root of 1 minus straight x squared end root end fraction close square brackets
    Question 508
    CBSEENMA12035296
    Question 509
    CBSEENMA12035299

    If space straight y equals tan to the power of negative 1 end exponent straight x over straight y comma space then space evaluate space dy over dx.

    Solution
    straight y equals tan to the power of negative 1 end exponent straight x over straight y space rightwards double arrow space straight y over straight x equals tan to the power of negative 1 end exponent straight x over straight y space rightwards double arrow space tan straight x over straight y equals straight x over straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Differentiating space both space sides space of space left parenthesis 1 right parenthesis space straight w. straight r. straight t. straight x. space comma
open parentheses sec squared straight y over straight x close parentheses. fraction numerator straight x begin display style dy over dx end style minus straight y.1 over denominator straight x squared end fraction equals fraction numerator straight y.1 minus straight x begin display style dy over dx end style over denominator straight y squared end fraction
rightwards double arrow space 1 over straight x squared open parentheses 1 plus tan squared straight y over straight x close parentheses open parentheses straight x dy over dx minus straight y close parentheses equals 1 over straight y squared open parentheses straight y minus straight x dy over dx close parentheses
rightwards double arrow 1 over straight x squared open parentheses 1 plus straight x squared over straight y squared close parentheses open parentheses straight x dy over dx minus straight y close parentheses plus 1 over straight y squared open parentheses straight x dy over dx minus straight y close parentheses equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of left parenthesis 1 right parenthesis right square bracket
space space space space space space open square brackets 1 over straight x squared open parentheses 1 plus straight x squared over straight y squared close parentheses plus 1 over straight y squared open parentheses straight x dy over dx minus straight y close parentheses close square brackets equals 0
rightwards double arrow space straight x dy over dx minus straight y equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space fraction numerator 1 over denominator straight x squared open parentheses 1 plus straight x squared over straight y squared close parentheses end fraction plus 1 over straight y squared not equal to 0 close square brackets
rightwards double arrow space straight x dy over dx equals straight y space rightwards double arrow space dy over dx equals straight x over straight x.
    Question 510
    CBSEENMA12035306

    If space left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis plus straight y to the power of cot space straight x end exponent equals 1 comma space find space dy over dx.

    Solution
    Here space left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y plus straight y to the power of cot space straight x end exponent equals 1
Put space left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis equals straight u comma space straight y to the power of cot space straight x end exponent equals straight v
therefore space straight u plus straight v equals 1 space space space space space space space space space space space space space space space space rightwards double arrow space du over dx plus dv over dx equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y space rightwards double arrow space log space straight u equals log left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y space rightwards double arrow space log space straight v equals straight y. log left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis
therefore space 1 over straight u du over dx equals straight y. fraction numerator 1 over denominator tan to the power of negative 1 end exponent straight x end fraction. fraction numerator 1 over denominator 1 plus straight x squared end fraction plus dy over dx. log space tan to the power of negative 1 end exponent straight x
therefore space du over dx equals left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y open square brackets fraction numerator straight y over denominator left parenthesis 1 plus straight x squared right parenthesis tan to the power of negative 1 end exponent straight x end fraction plus dy over dx. log space tan to the power of negative 1 end exponent straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals straight y to the power of cot space straight x end exponent space rightwards double arrow space log space straight v equals log space straight y to the power of cot space straight x end exponent space rightwards double arrow space log space straight v equals cot space straight x. log space straight y
therefore space 1 over straight v dv over dx equals cot space straight x.1 over straight y dy over dx minus cosec squared straight x. space log space straight y
therefore space dv over dx equals straight y to the power of cot space straight x end exponent open square brackets fraction numerator cot space straight x over denominator straight y end fraction dy over dx minus cosec squared straight x. log space straight y close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (1), (2) and (3), we get,
    left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y open square brackets fraction numerator straight y over denominator left parenthesis 1 plus straight x squared right parenthesis tan to the power of negative 1 end exponent straight x end fraction plus dy over dx. log space tan to the power of negative 1 end exponent straight x close square brackets plus straight y to the power of cot space straight x end exponent open square brackets fraction numerator cot space straight x over denominator straight y end fraction dy over dx minus cosec squared straight x. log space straight y close square brackets equals 0
open square brackets left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y. space log space tan to the power of negative 1 end exponent straight x plus straight y to the power of cot space straight x end exponent. fraction numerator cot space straight x over denominator straight y end fraction close square brackets dy over dx equals straight y to the power of cot space straight x end exponent cosec squared straight x space log space straight y minus fraction numerator straight y left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y over denominator left parenthesis 1 plus straight x squared right parenthesis tan to the power of negative 1 end exponent straight x end fraction
space space space space space space space space therefore space dy over dx equals fraction numerator straight y to the power of cot space straight x end exponent cosec squared straight x space log space straight y minus begin display style fraction numerator straight y left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y over denominator left parenthesis 1 plus straight x squared right parenthesis tan to the power of negative 1 end exponent straight x end fraction end style over denominator left parenthesis tan to the power of negative 1 end exponent straight x right parenthesis to the power of straight y. space log space tan to the power of negative 1 end exponent straight x plus straight y to the power of cot space straight x end exponent. begin display style fraction numerator cot space straight x over denominator straight y end fraction end style end fraction
    Question 511
    CBSEENMA12035311

    Find space dy over dx space when space straight y equals left parenthesis sin space straight x right parenthesis to the power of straight x plus sin to the power of negative 1 end exponent square root of straight x.

    Solution
    Here space straight y equals left parenthesis sin space straight x right parenthesis to the power of straight x plus sin to the power of negative 1 end exponent square root of straight x
Put space space left parenthesis sin space straight x right parenthesis to the power of straight x equals straight u comma space sin to the power of negative 1 end exponent square root of straight x equals straight v
therefore space straight y equals straight u plus straight v space
therefore space dy over dx equals du over dx plus dv over dx
Now space straight u equals left parenthesis sin space straight x right parenthesis to the power of straight x space rightwards double arrow space log space straight u equals log left parenthesis sin space straight x right parenthesis to the power of straight x
rightwards double arrow space log space straight u equals straight x. space log space sin space straight x.
Differentiating space both space sides space straight w. straight r. straight t. straight x.
1 over straight u du over dx equals straight x. open parentheses fraction numerator 1 over denominator sin space straight x end fraction cross times cos space straight x close parentheses plus left parenthesis log space sin space straight x right parenthesis.1
rightwards double arrow space du over dx equals straight u left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket
rightwards double arrow space du over dx equals left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket
Also space space space space straight v equals sin to the power of negative 1 end exponent square root of straight x
therefore space space dv over dx equals fraction numerator 1 over denominator square root of 1 minus open parentheses square root of straight x close parentheses squared end root end fraction cross times straight d over dx left parenthesis square root of straight x right parenthesis equals fraction numerator 1 over denominator square root of 1 minus straight x end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight x end fraction
therefore space space dv over dx equals fraction numerator 1 over denominator 2 square root of straight x left parenthesis 1 minus straight x right parenthesis end root end fraction
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get.
dy over dx equals left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket plus fraction numerator 1 over denominator 2 square root of straight x left parenthesis 1 minus straight x right parenthesis end root end fraction
    Question 512
    CBSEENMA12035315

    If space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 3 plus 5 space cos space straight x over denominator 5 plus 3 space cos space straight x end fraction close parentheses comma space prove space that space cos space straight x equals fraction numerator 4 minus 5 straight y subscript 1 over denominator 3 straight y subscript 1 end fraction comma space where space straight y subscript 1 equals dy over dx

    Solution
    space space space space space space space space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 3 plus 5 space cos space straight x over denominator 5 plus 3 space cos space straight x end fraction close parentheses
space space therefore space dy over dx equals negative fraction numerator 1 over denominator square root of 1 minus open parentheses begin display style fraction numerator 3 plus 5 space cos space straight x over denominator 5 plus 3 space cos space straight x end fraction end style close parentheses squared end root end fraction. straight d over dx open parentheses fraction numerator 3 plus 5 space cos space straight x over denominator 5 plus 3 space cos space straight x end fraction close parentheses
equals negative fraction numerator 5 plus 3 cos space straight x over denominator square root of left parenthesis 5 plus 3 cos space straight x right parenthesis squared minus left parenthesis 3 plus 5 space cos space straight x right parenthesis squared end root end fraction cross times fraction numerator left parenthesis 5 plus 3 cos space straight x right parenthesis left parenthesis negative 5 sin space straight x right parenthesis minus left parenthesis 3 plus 5 space cos space straight x right parenthesis left parenthesis negative 3 sin space straight x right parenthesis over denominator left parenthesis 5 plus 3 cos space straight x right parenthesis squared end fraction
equals negative fraction numerator 1 over denominator square root of 25 plus 9 space cos squared space straight x minus 9 minus 25 space cos to the power of 2 space end exponent straight x end root end fraction cross times fraction numerator negative 25 space sin space straight x minus 15 space sin space straight x space cos space straight x plus 9 space sin space straight x plus 15 space sin space straight x space cos space straight x over denominator 5 plus 3 cos space straight x end fraction
equals negative fraction numerator 1 over denominator square root of 16 minus 16 space cos squared space straight x end root end fraction cross times fraction numerator negative 16 space sin space straight x over denominator 5 plus 3 space cos space straight x end fraction equals negative fraction numerator 1 over denominator 4 space sin space straight x end fraction cross times fraction numerator negative 16 space sin space straight x over denominator 5 plus 3 space cos space straight x end fraction
space space space space space therefore space straight y subscript 1 equals fraction numerator 4 over denominator 5 plus 3 space cos space straight x end fraction
space space space straight R. straight H. straight S. equals fraction numerator 4 minus 5 straight y subscript 1 over denominator 3 straight y subscript 1 end fraction equals fraction numerator 4 minus begin display style fraction numerator 20 over denominator 5 plus 3 space cos space straight x end fraction end style over denominator begin display style fraction numerator 12 over denominator 5 plus 3 space cos space straight x end fraction end style end fraction equals fraction numerator 20 plus 12 space cos space straight x minus 20 over denominator 12 end fraction
space space space space space space space space space space equals fraction numerator 12 space cos space straight x over denominator 12 end fraction equals cos space straight x equals straight L. straight H. straight S.
    Question 513
    CBSEENMA12035319

    Expressing space the space equation space in space terms space of space an space equation space square root of 1 minus straight x squared end root plus square root of 1 minus straight y squared end root equals straight a left parenthesis straight x minus straight y right parenthesis space in space term space oa space an space equation
involving space inverse space trigonometric space functions space by space straight a space suitable space substitution comma space prove space that
dy over dx equals fraction numerator square root of 1 minus straight y squared end root over denominator square root of 1 minus straight x squared end root end fraction.

    Solution
    Here space square root of 1 minus straight x squared end root plus square root of 1 minus straight y squared end root equals straight a left parenthesis straight x minus straight y right parenthesis
Put space straight x equals sin space straight theta comma space straight y equals sin space straight ϕ
therefore space space space square root of 1 minus sin squared space straight theta end root plus square root of 1 minus sin squared space straight theta end root equals straight a left parenthesis sin space straight theta minus sin space straight ϕ right parenthesis
therefore space space space cos space straight theta plus cos space straight ϕ equals straight a left parenthesis sin space straight theta minus sin space straight ϕ right parenthesis
therefore space space space 2 space cos space fraction numerator straight theta plus straight ϕ over denominator 2 end fraction cos fraction numerator straight theta minus straight ϕ over denominator 2 end fraction equals straight a. space 2 space cos space fraction numerator straight theta plus straight ϕ over denominator 2 end fraction sin fraction numerator straight theta minus straight ϕ over denominator 2 end fraction
or space space space cos fraction numerator straight theta minus straight ϕ over denominator 2 end fraction equals straight a space sin fraction numerator straight theta minus straight ϕ over denominator 2 end fraction space space space or space fraction numerator cos fraction numerator straight theta minus straight ϕ over denominator 2 end fraction over denominator sin fraction numerator straight theta minus straight ϕ over denominator 2 end fraction end fraction equals straight a space space space rightwards double arrow space cot fraction numerator straight theta minus straight ϕ over denominator 2 end fraction equals straight a
rightwards double arrow space space space fraction numerator straight theta minus straight ϕ over denominator 2 end fraction equals cot to the power of negative 1 end exponent straight a space space space rightwards double arrow space straight theta minus straight ϕ equals 2 space cot to the power of negative 1 end exponent straight a space rightwards double arrow space sin to the power of negative 1 end exponent straight x minus sin to the power of negative 1 end exponent straight y equals 2 space cot to the power of negative 1 end exponent straight a.
Diff. space both space sides space straight w. straight r. straight t. straight x. comma space fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction minus fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy over dx equals 0
therefore space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction space space space space space space space space space space space space space space space space space space therefore space space space space space space space space space dy over dx equals fraction numerator square root of 1 minus straight y squared end root over denominator square root of 1 minus straight x squared end root end fraction
    Question 514
    CBSEENMA12035324

    Find the derivative w.r.t.x of the function 
    left parenthesis log subscript cos space straight x end subscript sin space straight x right parenthesis space left parenthesis log subscript sin space straight x end subscript space cos space straight x right parenthesis to the power of negative 1 end exponent plus sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses space at space straight x equals straight pi over 4

    Solution
    Let space straight y equals left parenthesis log subscript cos space straight x end subscript sin space straight x right parenthesis space left parenthesis log subscript sin space straight x end subscript space cos space straight x right parenthesis to the power of negative 1 end exponent plus sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses space
Put space straight u equals left parenthesis log subscript cos space straight x end subscript sin space straight x right parenthesis space left parenthesis log subscript sin space straight x end subscript space cos space straight x right parenthesis to the power of negative 1 end exponent comma space straight v equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses space
therefore space space space straight y equals straight u plus straight v
rightwards double arrow space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals log subscript cos space straight x end subscript sin space straight x. left parenthesis log subscript sin space straight x end subscript space cos space straight x right parenthesis to the power of negative 1 end exponent
therefore space straight u equals fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction. open parentheses fraction numerator log space cos space straight x over denominator log space sin space straight x end fraction close parentheses to the power of negative 1 end exponent equals fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction cross times fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction
therefore space straight u equals open parentheses fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction close parentheses squared
therefore space du over dx equals 2 fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction cross times fraction numerator left parenthesis log space cos space straight x right parenthesis. begin display style fraction numerator cos space straight x over denominator sin space straight x end fraction end style minus left parenthesis log space sin space straight x right parenthesis. begin display style fraction numerator negative sin space straight x over denominator cos space straight x end fraction end style over denominator left parenthesis log space cos space straight x right parenthesis squared end fraction
therefore space du over dx equals fraction numerator 2 left parenthesis log space sin space straight x right parenthesis over denominator log space cos space straight x end fraction cross times fraction numerator cot space straight x space left parenthesis log space cos space straight x right parenthesis plus tan space straight x space left parenthesis log space sin space straight x right parenthesis over denominator left parenthesis log space cos space straight x right parenthesis squared end fraction
rightwards double arrow space du over dx equals fraction numerator 2 left parenthesis log space sin space straight x right parenthesis left square bracket cot space straight x left parenthesis log space cos space straight x right parenthesis plus tan space straight x left parenthesis log space sin space straight x right parenthesis right square bracket over denominator left parenthesis log space cos space straight x right parenthesis cubed end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Also space straight v equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses semicolon space Put space straight x equals tan space straight theta
therefore space straight v equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 tan space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 straight theta right parenthesis equals 2 straight theta equals 2 space tan to the power of negative 1 end exponent straight x
therefore space dv over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (i), (2), (3), we get,
    space dy over dx equals fraction numerator 2 left parenthesis log space sin space straight x right parenthesis left square bracket cot space straight x left parenthesis log space cos space straight x right parenthesis plus tan space straight x left parenthesis log space sin space straight x right parenthesis right square bracket over denominator left parenthesis log space cos space straight x right parenthesis cubed end fraction plus fraction numerator 2 over denominator 1 plus straight x squared end fraction
At space space space straight x equals straight pi over 4 comma space we space get comma
space space dy over dx equals fraction numerator 2 open parentheses log space sin space begin display style straight pi over 4 end style close parentheses open square brackets cot space begin display style straight pi over 4 end style open parentheses log space cos space begin display style straight pi over 4 end style close parentheses plus tan space begin display style straight pi over 4 end style open parentheses log space sin space begin display style straight pi over 4 end style close parentheses close square brackets over denominator open parentheses log space cos space begin display style straight pi over 4 end style close parentheses cubed end fraction plus fraction numerator 2 over denominator 1 plus open parentheses begin display style straight pi over 4 end style close parentheses squared end fraction
space space space space space space space space space space equals fraction numerator 2 open parentheses log begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses open square brackets 1 open parentheses log space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses plus 1. open parentheses log space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses close square brackets over denominator open parentheses log space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses cubed end fraction plus fraction numerator 2 over denominator 1 plus begin display style straight pi squared over 16 end style end fraction
space space space space space space space space space space equals fraction numerator 4 open parentheses log begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses squared over denominator open parentheses log begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses end fraction plus fraction numerator 32 over denominator straight pi squared plus 16 end fraction equals fraction numerator 4 over denominator log space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction plus fraction numerator 32 over denominator straight pi squared plus 16 end fraction
space space space space space space space space space space equals fraction numerator 4 over denominator log space 1 minus log space 2 to the power of begin display style 1 half end style end exponent end fraction plus fraction numerator 32 over denominator straight pi squared plus 16 end fraction equals fraction numerator 4 over denominator negative begin display style 1 half end style log space 2 end fraction plus fraction numerator 32 over denominator straight pi squared plus 16 end fraction equals negative fraction numerator 8 over denominator log space 2 end fraction plus fraction numerator 32 over denominator straight pi squared plus 16 end fraction
    Question 515
    CBSEENMA12035326

    Differentiate space
open parentheses log subscript cos space straight x end subscript space sin space straight x close parentheses open parentheses log subscript sin space straight x end subscript space cos space straight x close parentheses plus cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses space straight w. straight r. straight t. straight x space at space straight x equals straight pi over 4.

    Solution
    Let space space space straight y equals open parentheses log subscript cos space straight x end subscript space sin space straight x close parentheses open parentheses log subscript sin space straight x end subscript space cos space straight x close parentheses plus cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
Put space space space straight u equals open parentheses log subscript cos space straight x end subscript space sin space straight x close parentheses open parentheses log subscript sin space straight x end subscript space cos space straight x close parentheses comma space straight v equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
therefore space space space space space space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals open parentheses log subscript cos space straight x end subscript space sin space straight x close parentheses open parentheses log subscript sin space straight x end subscript space cos space straight x close parentheses equals fraction numerator log space sin space straight x over denominator log space cos space straight x end fraction cross times fraction numerator log space cos space straight x over denominator log space sin space straight x end fraction equals 1
therefore space du over dx equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space straight v equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight v equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan squared space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses equals space space straight v equals cos to the power of negative 1 end exponent open parentheses cos space 2 straight theta close parentheses equals 2 straight theta equals 2 space tan to the power of negative 1 end exponent straight x
therefore space dv over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    From (1), (2), (3), we get,
    space space space space space space dy over dx equals 0 plus fraction numerator 2 over denominator 1 plus straight x squared end fraction
At space straight x equals straight pi over 4 comma space dy over dx equals fraction numerator 2 over denominator 1 plus open parentheses begin display style straight pi over 4 end style close parentheses squared end fraction equals fraction numerator 2 over denominator 1 plus begin display style straight pi squared over 16 end style end fraction equals fraction numerator 32 over denominator straight pi squared plus 16 end fraction
    Question 516
    CBSEENMA12035329

    Prove space that space straight d over dx open curly brackets fraction numerator 1 over denominator 4 square root of 2 end fraction log fraction numerator straight x squared plus straight x square root of 2 plus 1 over denominator straight x squared minus straight x square root of 2 plus 1 end fraction plus fraction numerator 1 over denominator 2 square root of 2 end fraction tan to the power of negative 1 end exponent fraction numerator straight x square root of 2 over denominator 1 minus straight x squared end fraction close curly brackets equals fraction numerator 1 over denominator 1 plus straight x to the power of 4 end fraction

    Solution
    straight L. straight H. straight S. equals straight d over dx open curly brackets fraction numerator 1 over denominator 4 square root of 2 end fraction log fraction numerator straight x squared plus straight x square root of 2 plus 1 over denominator straight x squared minus straight x square root of 2 plus 1 end fraction plus fraction numerator 1 over denominator 2 square root of 2 end fraction tan to the power of negative 1 end exponent fraction numerator straight x square root of 2 over denominator 1 minus straight x squared end fraction close curly brackets
equals straight d over dx open curly brackets fraction numerator 1 over denominator 4 square root of 2 end fraction log left parenthesis straight x squared plus straight x square root of 2 plus 1 right parenthesis minus log left parenthesis straight x squared minus straight x square root of 2 plus 1 right parenthesis plus fraction numerator 1 over denominator 2 square root of 2 end fraction tan to the power of negative 1 end exponent fraction numerator straight x square root of 2 over denominator 1 minus straight x squared end fraction close curly brackets
equals fraction numerator 1 over denominator 4 square root of 2 end fraction open square brackets fraction numerator 2 straight x plus square root of 2 over denominator straight x squared plus straight x square root of 2 plus 1 end fraction minus fraction numerator 2 straight x minus square root of 2 over denominator straight x squared minus straight x square root of 2 plus 1 end fraction close square brackets plus fraction numerator 1 over denominator 2 square root of 2 end fraction fraction numerator 1 over denominator 1 plus open parentheses begin display style fraction numerator straight x square root of 2 over denominator 1 minus straight x squared end fraction end style close parentheses squared end fraction. fraction numerator left parenthesis 1 minus straight x squared right parenthesis. square root of 2 minus straight x square root of 2 left parenthesis negative 2 straight x right parenthesis over denominator open parentheses 1 minus straight x squared close parentheses squared end fraction
equals fraction numerator 1 over denominator 4 square root of 2 end fraction open square brackets fraction numerator 2 straight x cubed minus 2 square root of 2 straight x squared plus 2 straight x plus square root of 2 straight x squared minus 2 straight x plus square root of 2 minus 2 straight x cubed minus 2 square root of 2 straight x squared minus 2 straight x plus square root of 2 straight x squared plus 2 straight x plus square root of 2 over denominator left parenthesis straight x squared plus straight x square root of 2 plus 1 right parenthesis left parenthesis straight x squared minus straight x square root of 2 plus 1 right parenthesis end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus fraction numerator 1 over denominator 2 square root of 2 end fraction fraction numerator left parenthesis 1 minus straight x squared right parenthesis squared over denominator left parenthesis 1 minus straight x squared right parenthesis squared plus 2 straight x squared end fraction cross times fraction numerator square root of 2 minus square root of 2 straight x squared plus 2 square root of 2 straight x squared over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction
equals fraction numerator 1 over denominator 4 square root of 2 end fraction open square brackets fraction numerator 2 square root of 2 minus 2 square root of 2 straight x squared over denominator left parenthesis straight x squared plus 1 right parenthesis squared minus 2 straight x squared end fraction close square brackets plus fraction numerator 1 over denominator 2 square root of 2 end fraction fraction numerator square root of 2 plus square root of 2 straight x squared over denominator left parenthesis 1 minus straight x squared right parenthesis squared plus 2 straight x squared end fraction equals 1 half cross times fraction numerator 1 minus straight x squared over denominator 1 plus straight x to the power of 4 end fraction plus 1 half cross times fraction numerator 1 plus straight x squared over denominator 1 plus straight x to the power of 4 end fraction
equals fraction numerator 1 over denominator 2 left parenthesis 1 plus straight x to the power of 4 right parenthesis end fraction left square bracket 1 minus straight x squared plus 1 plus straight x squared right square bracket equals fraction numerator 1 over denominator 2 left parenthesis 1 plus straight x to the power of 4 right parenthesis end fraction cross times 2
equals fraction numerator 1 over denominator 1 plus straight x to the power of 4 end fraction
equals straight R. straight H. straight S.
    Question 517
    CBSEENMA12035330
    Question 527
    CBSEENMA12035343

    If space straight x equals square root of straight a to the power of sin to the power of negative 1 end exponent straight t end exponent end root comma space straight y equals square root of straight a to the power of cos to the power of negative 1 end exponent straight t end exponent end root comma space show space that
dy over dx equals negative straight y over straight x.

    Solution
    straight x equals open parentheses straight a to the power of sin to the power of negative 1 end exponent straight t end exponent close parentheses to the power of 1 half end exponent comma space straight y equals open parentheses straight a to the power of cos to the power of negative 1 end exponent straight t end exponent close parentheses to the power of 1 half end exponent
therefore space log space straight x equals 1 half log space straight a to the power of sin to the power of negative 1 end exponent straight t end exponent equals 1 half sin to the power of negative 1 end exponent straight t. log space straight a equals 1 half loga space. sin to the power of negative 1 end exponent straight t
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space 1 over straight x dx over dt equals 1 half log space straight a. fraction numerator 1 over denominator square root of 1 minus straight t squared end root end fraction
therefore space space space space space space space space space dx over dt equals straight x open parentheses fraction numerator log space straight a over denominator 2 square root of 1 minus straight t squared end root end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Again space log space straight y equals 1 half log open parentheses straight a to the power of cos to the power of negative 1 end exponent straight t end exponent close parentheses equals 1 half cos to the power of negative 1 end exponent straight t. log space straight a
therefore space space space space space space space space log space straight y equals 1 half log space straight a. cos to the power of negative 1 end exponent straight t
space space space space space space space 1 over straight y dy over dt equals 1 half log space straight a fraction numerator negative 1 over denominator square root of 1 minus straight t squared end root end fraction
therefore space space space space space space space space space dy over dt equals negative straight y open parentheses fraction numerator log space straight a over denominator 2 square root of 1 minus straight t squared end root end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space space space space space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator negative straight y open parentheses begin display style fraction numerator log space straight a over denominator 2 square root of 1 minus straight t squared end root end fraction end style close parentheses over denominator straight x open parentheses begin display style fraction numerator log space straight a over denominator 2 square root of 1 minus straight t squared end root end fraction end style close parentheses end fraction space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis left square bracket because space of space left parenthesis 1 right parenthesis comma left parenthesis 2 right parenthesis right square bracket
therefore space space space space space space space space space space dy over dx equals negative straight y over straight x
    Question 528
    CBSEENMA12035345

    Find space fraction numerator straight d cubed straight y over denominator dx cubed end fraction space when space straight y equals fraction numerator log space straight x over denominator straight x end fraction.

    Solution
    straight y equals fraction numerator log space straight x over denominator straight x end fraction
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space dy over dx equals fraction numerator straight x. begin display style straight d over dx end style left parenthesis log space straight x right parenthesis minus log space straight x. begin display style straight d over dx end style left parenthesis straight x right parenthesis over denominator straight x squared end fraction equals fraction numerator straight x. begin display style 1 over straight x end style minus log space straight x.1 over denominator straight x squared end fraction
therefore space dy over dx equals fraction numerator 1 minus log space straight x over denominator straight x squared end fraction
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator straight x squared begin display style straight d over dx end style left parenthesis 1 minus log space straight x right parenthesis minus left parenthesis 1 minus log space straight x right parenthesis. begin display style straight d over dx end style left parenthesis straight x squared right parenthesis over denominator open parentheses straight x squared close parentheses squared end fraction
space space space space space space space space space equals fraction numerator straight x squared begin display style open parentheses negative 1 over straight x close parentheses end style minus left parenthesis 1 minus log space straight x right parenthesis.2 straight x over denominator straight x to the power of 4 end fraction equals fraction numerator negative straight x minus 2 straight x plus 2 straight x space log space straight x over denominator straight x to the power of 4 end fraction
space space space space space space space space space equals fraction numerator negative 3 straight x plus 2 xlog space straight x over denominator straight x to the power of 4 end fraction equals fraction numerator negative 3 plus 2 space log space straight x over denominator straight x cubed end fraction
fraction numerator straight d cubed straight y over denominator dx cubed end fraction equals fraction numerator straight x cubed open parentheses begin display style 2 over straight x end style close parentheses minus left parenthesis negative 3 plus 2 log space straight x right parenthesis.3 straight x squared over denominator open parentheses straight x cubed close parentheses squared end fraction equals fraction numerator 2 plus 9 minus 6 log space straight x over denominator straight x to the power of 4 end fraction equals fraction numerator 11 minus 6 log space straight x over denominator straight x to the power of 4 end fraction
    Question 529
    CBSEENMA12035348

    Find space fraction numerator straight d squared straight y over denominator dx squared end fraction comma space if space space straight y equals straight x cubed plus tan space straight x

    Solution
    space space space space space space space space space space space straight y equals straight x cubed plus tan space straight x
therefore space space dy over dx equals 3 space straight x squared plus sec squared space straight x equals 3 space straight x squared plus 1 plus tan squared space straight x
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 6 space straight x plus 0 plus 2 space tan space straight x. sec squared straight x
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 6 space straight x plus 2 space tan space straight x space sec squared space straight x
    Question 530
    CBSEENMA12035349

    <pre>uncaught exception: <b>Http Error #502</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #502')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #502')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #502')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #502')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #502')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Solution
    space space space space space space space space space space straight y equals straight x plus tan space straight x
therefore space dy over dx equals 1 plus sec squared space straight x
and space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 0 plus 2 space sec space straight x. space sec space straight x space tan space straight x equals 2 space sec squared space straight x space tan space straight x
straight L. straight H. straight S. space equals cos squared space straight x space fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight y plus 2 straight x
space space space space space space space space space space space space space equals cos squared space straight x. space 2 space sec squared space straight x space tan space straight x minus 2 left parenthesis straight x plus tan space straight x right parenthesis plus 2 straight x
space space space space space space space space space space space space space equals cos squared space straight x. fraction numerator 2 over denominator cos 2 space straight x end fraction. fraction numerator sin space straight x over denominator cos space straight x end fraction minus 2 straight x minus space 2 space tan space straight x plus 2 straight x
space space space space space space space space space space space space space equals 2 space tan space straight x minus 2 straight x minus 2 space tan space straight x plus 2 straight x
space space space space space space space space space space space space space equals 0 equals straight R. straight H. straight S.
    Question 531
    CBSEENMA12035350

    If space straight x equals log space straight theta comma space straight theta greater than 0 space and space straight y equals 1 over straight theta space then space show space that space fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx equals 0.

    Solution
    space space space space space space space space space space space straight x equals log space straight theta comma space space space straight y equals 1 over straight theta
therefore space dx over dθ equals 1 over straight theta comma space dy over dθ equals negative 1 over straight theta squared
space space space space space space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals negative 1 over straight theta squared cross times straight theta over 1 equals negative 1 over straight theta equals negative straight theta to the power of negative 1 end exponent
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative left parenthesis negative 1 right parenthesis straight theta to the power of negative 2 end exponent dθ over dx equals 1 over straight theta squared. straight theta equals 1 over straight theta
space space space space straight L. straight H. straight S equals fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx equals 1 over straight theta minus 1 over straight theta equals 0
space space space space space space space space space space space space space space space equals straight R. straight H. straight S.
    Question 532
    CBSEENMA12035359

    If space space straight y equals straight e to the power of straight x left parenthesis sin space straight x plus cos space straight x right parenthesis comma space prove space that space dy over dx minus 2 dy over dx plus 2 straight y equals 0

    Solution
    space space space space space space space space space space space space straight y equals straight e to the power of straight x left parenthesis sin space straight x plus cos space straight x right parenthesis
therefore space space dy over dx equals straight e to the power of straight x left parenthesis cos space straight x minus sin space straight x right parenthesis plus left parenthesis sin space straight x plus cos space straight x right parenthesis. straight e to the power of straight x
space space space space space space space space space space space space space space equals straight e to the power of straight x left parenthesis cos space straight x minus sin space straight x plus sin space straight x plus cos space straight x right parenthesis
therefore space space dy over dx equals 2 straight e to the power of straight x space cos space straight x
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 2 left square bracket straight e to the power of straight x left parenthesis negative sin space straight x right parenthesis plus cos space straight x. space straight e to the power of straight x right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 2 straight e to the power of straight x left parenthesis cos space straight x minus sin space straight x right parenthesis
straight L. straight H. straight S equals fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 dy over dx plus 2 straight y
space space space space space space space space space space space equals 2 e to the power of x left parenthesis cos space straight x minus sin space straight x right parenthesis minus 2 left parenthesis 2 e to the power of x space cos space straight x right parenthesis plus 2 e to the power of x left parenthesis sin space straight x plus cos space straight x right parenthesis
space space space space space space space space space space space equals 2 e to the power of x space cos space straight x minus 2 space e to the power of x space sin space straight x minus 4 space e to the power of x space cos space straight x plus 2 space e to the power of x space sin space straight x plus 2 space e to the power of x space cos space straight x
space space space space space space space space space space space equals 0 equals straight R. straight H. straight S.
    Question 533
    CBSEENMA12035360

    If space straight y equals 5 space cos space straight x minus 3 space sin space straight x comma space prove space that space fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight y equals 0.

    Solution
    space space space space space space space space space space space space space space space space space space straight y equals 5 space cos space straight x minus 3 space sin space straight x
space space space space space space space space space space space space space dy over dx equals negative 5 space sin space straight x minus space 3 space cos space straight x
therefore space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative 5 space cos space straight x plus space 3 space sin space straight x
therefore space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative open parentheses 5 space cos space straight x minus space 3 space sin space straight x close parentheses
therefore space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative straight y
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight y equals 0
    Question 534
    CBSEENMA12035370

    Find space fraction numerator straight d squared straight y over denominator dx squared end fraction comma space if space straight y equals straight e to the power of straight x space sin end exponent space to the power of straight x.

    Solution
    space space space space space space space space space space space space space straight y equals straight e to the power of straight x space sin end exponent space to the power of straight x
therefore space space space dy over dx equals straight e to the power of straight x space sin end exponent space to the power of straight x. straight d over dx left parenthesis straight x space sin space straight x right parenthesis
rightwards double arrow space space dy over dx equals straight e to the power of straight x space sin end exponent space to the power of straight x. left parenthesis straight x space cos space straight x plus sin space straight x right parenthesis
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight e to the power of straight x space sin end exponent space to the power of straight x. left parenthesis negative straight x space sin space straight x plus cos space straight x plus cos space straight x right parenthesis plus left parenthesis straight x space cos space straight x plus sin space straight x right parenthesis. straight e to the power of straight x space sin end exponent space to the power of straight x. left parenthesis straight x space cos space straight x plus sin space straight x right parenthesis
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight e to the power of straight x space sin end exponent space to the power of straight x left square bracket negative straight x space sin space straight x plus 2 space cos space straight x plus left parenthesis straight x space cos space straight x plus sin space straight x right parenthesis squared right square bracket
    Question 535
    CBSEENMA12035371

    If space straight y space equals space cos to the power of negative 1 end exponent space straight x comma space find space fraction numerator straight d squared straight y over denominator dx squared end fraction space in space terms space of space straight y space alone.

    Solution
    space space space space space space space space space space straight y space equals space cos to the power of negative 1 end exponent space straight x space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space dy over dx equals negative fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction equals negative open parentheses 1 minus straight x squared close parentheses to the power of negative 1 half end exponent
therefore space dy over dx equals 1 half open parentheses 1 minus straight x squared close parentheses to the power of 3 over 2 end exponent left parenthesis negative 2 straight x right parenthesis equals negative straight x over open parentheses 1 minus straight x squared close parentheses to the power of 3 over 2 end exponent equals negative fraction numerator cos space straight y over denominator open parentheses 1 minus cos squared close parentheses to the power of 3 over 2 end exponent end fraction space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
space space space space space space space space space space space space space equals negative fraction numerator cos space straight y over denominator open parentheses 1 minus cos squared close parentheses to the power of 3 over 2 end exponent end fraction equals negative fraction numerator cos space straight y over denominator sin cubed space straight y end fraction equals negative fraction numerator cos space straight y over denominator sin space straight y end fraction. fraction numerator 1 over denominator sin squared space straight y end fraction equals negative cot space straight y space cosec squared space straight y.
    Question 536
    CBSEENMA12035376
    Question 537
    CBSEENMA12035377
    Question 538
    CBSEENMA12035380
    Question 539
    CBSEENMA12035386
    Question 540
    CBSEENMA12035388
    Question 541
    CBSEENMA12035390
    Question 542
    CBSEENMA12035391

    If space straight y space equals straight A space straight e to the power of straight m space straight x end exponent plus straight B space straight e to the power of straight n space straight x end exponent comma space show space that space dy over dx minus left parenthesis straight m plus straight n right parenthesis dy over dx plus straight m space straight n space straight y equals 0

    Solution
    straight y space equals straight A space straight e to the power of straight m space straight x end exponent plus straight B space straight e to the power of straight n space straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space dy over dx equals straight A space straight m space straight e to the power of straight m space straight x end exponent plus straight B space straight n space straight e to the power of straight n space straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
and space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight A space straight m squared space straight e to the power of straight m space straight x end exponent plus straight B space straight n squared space straight e to the power of straight n space straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
straight L. straight H. straight S. space equals fraction numerator straight d squared straight y over denominator dx squared end fraction minus left parenthesis straight m plus straight n right parenthesis dy over dx plus straight m space straight n space straight y
space space space space space space space space space space space space space equals left parenthesis straight A space straight m squared space straight e to the power of straight m space straight x end exponent plus straight B space straight n squared space straight e to the power of straight n space straight x end exponent right parenthesis minus left parenthesis straight m plus straight n right parenthesis space left parenthesis straight A space straight m space straight e to the power of straight m space straight x end exponent plus straight B space straight n space straight e to the power of straight n space straight x end exponent right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus straight m space straight n left parenthesis straight A space straight m space straight e to the power of straight m space straight x end exponent plus straight B space straight n space straight e to the power of straight n space straight x end exponent right parenthesis space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis comma space left parenthesis 3 right parenthesis right square bracket
space space space space space space space space space space space space space equals straight A space straight m squared space straight e to the power of straight m space straight x end exponent plus straight B space straight n squared space straight e to the power of straight n space straight x end exponent minus straight A space straight m squared space straight e to the power of straight m space straight x end exponent minus straight B space straight m space straight n space straight e to the power of straight n space straight x end exponent minus straight A space straight m space straight n space straight e to the power of straight m space straight x end exponent
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space minus straight B space straight n squared space straight e to the power of straight n space straight x end exponent plus straight A space straight m space straight n space straight e to the power of straight m space straight x end exponent plus straight B space straight m space straight n space straight e to the power of straight n space straight x end exponent
space space space space space space space space space space space space space equals 0
space space space space space space space space space space space space space equals straight R. straight H. straight S.
    Question 543
    CBSEENMA12035394

    If space straight y equals straight a space straight e to the power of mx plus straight b space straight e to the power of negative mx end exponent comma space prove space that space fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight m squared space straight y equals 0

    Solution
    space space space space straight y equals straight a space straight e to the power of mx plus straight b space straight e to the power of negative mx end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space dy over dx equals straight a space straight e to the power of mx space. straight m plus straight b space straight e to the power of negative mx end exponent left parenthesis negative straight m right parenthesis equals straight m left parenthesis straight a space straight e to the power of mx minus straight b space straight e to the power of negative mx end exponent right parenthesis
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight m left square bracket straight a space straight e to the power of mx. straight m minus straight b space straight e to the power of negative mx end exponent left parenthesis negative straight m right parenthesis right square bracket equals straight m squared space left square bracket straight a space straight e to the power of mx plus straight b space straight e to the power of negative mx end exponent right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight m squared straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space 1 right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight m squared straight y equals 0
    Question 544
    CBSEENMA12035397

    If space straight y equals 500 space straight e to the power of 7 straight x end exponent plus 600 space straight e to the power of negative 7 straight x end exponent comma space show space that space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 49 space straight y.

    Solution
    space space space space space space space space space space space space space straight y equals 500 space straight e to the power of 7 straight x end exponent plus 600 space straight e to the power of negative 7 straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space dy over dx equals 3500 space straight e to the power of 7 straight x end exponent minus 4200 space straight e to the power of negative 7 straight x end exponent
space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 24500 space straight e to the power of 7 straight x end exponent plus 29400 space straight e to the power of negative 7 straight x end exponent
rightwards double arrow space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 49 left parenthesis 500 space straight e to the power of 7 straight x end exponent plus 600 space straight e to the power of negative 7 straight x end exponent right parenthesis
rightwards double arrow space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 49 space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space 1 right square bracket
    Question 545
    CBSEENMA12035399

    If space straight e to the power of straight y left parenthesis straight x plus 1 right parenthesis equals 1 comma space show space that space fraction numerator straight d squared straight y over denominator dx squared end fraction equals open parentheses dy over dx close parentheses squared

    Solution
    Here space space space straight e to the power of straight y left parenthesis straight x plus 1 right parenthesis equals 1
therefore space space space log left square bracket straight e to the power of straight y left parenthesis straight x plus 1 right parenthesis right square bracket equals log space 1
therefore space space space log space straight e to the power of straight y left parenthesis straight x plus 1 right parenthesis equals 0
therefore space space space space space space space space space space straight y space log space straight e equals negative log left parenthesis straight x plus 1 right parenthesis
therefore space space space space space space space space space space space space space space space space space space space space straight y equals negative log left parenthesis straight x plus 1 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space loge equals 1 right square bracket
therefore space space space space space space space space space space space space space space dy over dx equals negative fraction numerator 1 over denominator straight x plus 1 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space space space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative open square brackets fraction numerator left parenthesis straight x plus 1 right parenthesis. begin display style straight d over dx end style left parenthesis 1 right parenthesis minus 1. begin display style straight d over dx end style left parenthesis straight x plus 1 right parenthesis over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction close square brackets equals negative open square brackets fraction numerator left parenthesis straight x plus 1 right parenthesis.0 minus 1.1 over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 1 over denominator left parenthesis straight x plus 1 right parenthesis squared end fraction equals open parentheses negative fraction numerator 1 over denominator straight x plus 1 end fraction close parentheses squared
therefore space space space space space space space space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals open parentheses dy over dx close parentheses squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
    Question 546
    CBSEENMA12035401

    If y=sin -1x, prove that

    dy over dx equals straight x over open parentheses 1 minus straight x squared close parentheses to the power of begin display style 3 over 2 end style end exponent

    Solution
    Here space space straight y equals sin to the power of negative 1 end exponent space straight x
therefore space space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction equals left parenthesis 1 minus straight x squared right parenthesis to the power of negative 1 half end exponent
therefore space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative 1 half left parenthesis 1 minus straight x squared right parenthesis to the power of negative 3 over 2 end exponent left parenthesis negative 2 straight x right parenthesis equals fraction numerator straight x over denominator left parenthesis 1 minus straight x squared right parenthesis to the power of 3 over 2 end exponent end fraction
    Question 547
    CBSEENMA12035402
    Question 550
    CBSEENMA12035406
    Question 551
    CBSEENMA12035408

    If y=ea xsin bx, prove thatfraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight a dy over dx plus left parenthesis straight a squared plus straight b squared right parenthesis straight y equals 0

    Solution
    Let space space space space space straight y equals straight e to the power of straight a space straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space dy over dx equals straight e to the power of straight a space straight x end exponent left parenthesis straight b space cos space bx right parenthesis plus sin space bx. left parenthesis straight a space straight e to the power of straight a space straight x end exponent right parenthesis
therefore space dy over dx equals straight e to the power of straight a space straight x end exponent left parenthesis straight a space sin space bx plus straight b space cos space straight x space bx right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight e to the power of straight a space straight x end exponent left parenthesis straight a space straight b space cos space bx minus straight b squared space sin space bx right parenthesis plus left parenthesis straight a space sin space bx plus straight b space cos space bx right parenthesis space straight a space straight e to the power of straight a space straight x end exponent
space space space space space space space space space space space space space space space equals straight e to the power of straight a space straight x end exponent left square bracket straight a space straight b space cos space bx minus straight b squared space sin space bx plus space straight a squared space sin space bx plus straight a space straight b space cos space bx right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight e to the power of straight a space straight x end exponent left square bracket 2 space straight a space straight b space cos space bx plus straight a squared space sin space bx minus straight b squared space sin space bx right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
space space space space space space straight L. straight H. straight S equals fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight a dy over dx plus left parenthesis straight a squared plus straight b squared right parenthesis straight y
space space space space space space space space space space space space space space space space space equals straight e to the power of straight a space straight x end exponent left square bracket 2 space straight a space straight b space cos space bx plus straight a squared space sin space bx minus straight b squared space sin space bx right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space minus 2 space straight e to the power of straight a space straight x end exponent left parenthesis straight a space sin space bx plus straight b space cos space straight x space bx right parenthesis plus left parenthesis straight a squared plus straight b squared right parenthesis. straight e to the power of straight a space straight x end exponent space sin space bx
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis comma space left parenthesis 3 right parenthesis right square bracket
space space space space space space space space space space space space space space space space space equals straight e to the power of straight a space straight x end exponent left square bracket 2 space straight a space straight b space cos space bx plus straight a squared space sin space bx minus straight b squared space sin space bx minus 2 straight a 2 space sin space bx
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space minus space 2 straight a space straight b space cos space bx plus straight a squared space sin space bx plus straight b squared space sin space bx right square bracket
space space space space space space space space space space space space space space space space space equals straight e to the power of straight a space straight x end exponent left parenthesis 0 right parenthesis equals 0 equals straight R. straight H. straight S.
    Question 552
    CBSEENMA12035414

    If space straight y equals straight x space log open parentheses fraction numerator straight x over denominator straight a plus straight b space straight x end fraction close parentheses comma space prove space that space straight x cubed fraction numerator straight d squared straight y over denominator dx squared end fraction equals open parentheses straight x dy over dx minus straight y squared close parentheses.

    Solution
    Here space space space straight y equals straight x space log open parentheses fraction numerator straight x over denominator straight a plus straight b space straight x end fraction close parentheses
therefore space space space space space straight y over straight x equals log space straight x minus log left parenthesis straight a plus straight b space straight x right parenthesis
Differentaiting space straight w. straight r. tx comma space we space get comma
space space space space space fraction numerator straight x begin display style dy over dx end style minus straight y.1 over denominator straight x squared end fraction equals 1 over straight x minus fraction numerator straight b over denominator straight a plus straight b space straight x end fraction
space space space space space space space straight x dy over dx minus straight y equals straight x minus straight b space straight x squared straight a plus straight b space straight x
therefore space space space straight x dy over dx minus straight y equals fraction numerator straight a space straight x plus straight b space straight x squared minus straight b space straight x squared over denominator straight a plus straight b space straight x end fraction
therefore space space space straight x dy over dx minus straight y equals fraction numerator straight a space straight x over denominator straight a plus straight b space straight x end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Again space differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space straight x fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx.1 minus dy over dx equals fraction numerator left parenthesis straight a plus straight b space straight x right parenthesis. straight a space minus straight a space straight x. space straight b over denominator left parenthesis straight a plus straight b space straight x right parenthesis squared end fraction
therefore space space space space straight x fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator straight a squared over denominator left parenthesis straight a plus straight b space straight x right parenthesis squared end fraction
rightwards double arrow space space straight x cubed fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator straight a squared straight x squared over denominator left parenthesis straight a plus straight b space straight x right parenthesis squared end fraction
rightwards double arrow space space straight x cubed fraction numerator straight d squared straight y over denominator dx squared end fraction equals open parentheses straight x dy over dx minus straight y close parentheses squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
    Question 553
    CBSEENMA12035415

    If space straight x equals tan open parentheses 1 over straight a log space straight y close parentheses comma space show space that space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus left parenthesis 2 space straight x minus straight a right parenthesis dy over dx equals 0.

    Solution
    Here space space space straight x equals tan open parentheses 1 over straight a log space straight y close parentheses
therefore space tan to the power of negative 1 end exponent straight x equals 1 over straight a log space straight y space space or space space log space straight y equals straight a space tan to the power of negative 1 end exponent straight x
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space space space fraction numerator 1 over denominator space straight y end fraction dy over dx equals fraction numerator straight a over denominator 1 plus straight x squared end fraction
or space space space left parenthesis 1 plus straight x squared right parenthesis dy over dx equals straight a space straight y
Again space differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx space 2 space straight x equals straight a dy over dx
therefore space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus left parenthesis 2 space straight x minus straight a right parenthesis dy over dx equals 0.
    Question 554
    CBSEENMA12035417

    If y=xx, prove that fraction numerator straight d squared straight y over denominator dx squared end fraction minus 1 over straight y open parentheses dy over dx close parentheses squared minus straight y over straight x equals 0.

    Solution

    Here y=xx
    ∴ log y=log xx ⇒log y=x.log x
    Differentiating w.r.t.x, we get,
    space 1 over straight y dy over dx equals straight x.1 over straight x plus log space straight x.1 comma space or space space dy over dx equals straight y left parenthesis 1 plus log space straight x right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight y. dy over dx left parenthesis 1 plus log space straight x right parenthesis plus left parenthesis 1 plus log space straight x right parenthesis. dy over dx
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight y.1 over straight x plus left parenthesis 1 plus log space straight x right parenthesis. straight y left parenthesis 1 plus log space straight x right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight y over straight x plus straight y left parenthesis 1 plus log space straight x right parenthesis squared
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight y over straight x plus straight y. open parentheses 1 over straight y dy over dx close parentheses squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight y over straight x plus 1 over straight y open parentheses dy over dx close parentheses squared
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals 1 over straight y open parentheses dy over dx close parentheses squared minus straight y over straight x equals 0

    Question 555
    CBSEENMA12035419

    If space space space space straight y equals left parenthesis straight a plus straight b space straight t right parenthesis space straight e to the power of straight n space straight t end exponent comma space prove space that space fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight n dy over dx plus straight n squared straight y equals 0.

    Solution
    Let space space space space space space space space space space straight y equals left parenthesis straight a plus straight b space straight t right parenthesis space straight e to the power of straight n space straight t end exponent
therefore space space space space space space dy over dt equals left parenthesis straight a plus space straight b space straight t right parenthesis left parenthesis straight e to the power of straight n space straight t end exponent right parenthesis plus straight e to the power of straight n space straight t end exponent. straight b space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space space dy over dt equals straight e to the power of straight n space straight t end exponent left square bracket straight a space straight n plus straight b space straight n space straight t plus straight b right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
and space fraction numerator straight d squared straight y over denominator dt squared end fraction equals straight e to the power of straight n space straight t end exponent left square bracket straight b space straight n right square bracket plus left parenthesis straight a space straight n plus straight b space straight n space straight t plus straight b right parenthesis. left parenthesis straight n space straight e to the power of straight n space straight t end exponent right parenthesis
therefore space space space space fraction numerator straight d squared straight y over denominator dt squared end fraction equals straight e to the power of straight n space straight t end exponent left square bracket straight b space straight n plus straight a space straight n squared plus straight b space straight n squared space straight t plus straight b space straight n right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
space space space straight L. straight H. straight S equals fraction numerator straight d squared straight y over denominator dt squared end fraction minus 2 space straight n space dy over dt plus straight n squared space straight y
space space space space space equals straight e to the power of straight n space straight t end exponent left square bracket straight b space straight n plus straight a space straight n squared plus straight b space straight n squared plus straight b space straight n right square bracket minus 2 space straight n. straight e to the power of straight n space straight t end exponent left parenthesis straight a space straight b plus straight b space straight n space straight t plus straight b right parenthesis plus straight n squared. left parenthesis straight a space straight b space straight t right parenthesis straight e to the power of straight n space straight t end exponent
space space space space space equals straight e to the power of straight n space straight t end exponent left square bracket straight b space straight n plus straight a space straight n squared plus straight b space straight n squared plus straight b space straight n minus 2 space straight a space straight n squared minus 2 space straight b space straight n squared space straight t minus 2 space straight b space straight n plus space straight a space straight n squared plus straight b space straight n squared space straight t right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis comma space left parenthesis 3 right parenthesis right square bracket
space space space space space equals straight e to the power of straight n space straight t end exponent left parenthesis 0 right parenthesis equals 0 equals straight R. straight H. straight S.
    Question 556
    CBSEENMA12035421

    If space straight y equals fraction numerator straight a space straight x plus straight b over denominator straight c space straight x plus straight d end fraction comma space prove space that space 2 straight y subscript 1 space straight y subscript 3 equals 3 space straight y subscript 2 squared.

    Solution
    Here space space straight y equals fraction numerator straight a space straight x plus straight b over denominator straight c space straight x plus straight d end fraction
therefore space space space space space straight y subscript 1 equals fraction numerator left parenthesis straight c space straight x plus straight d right parenthesis. straight a minus left parenthesis straight a space straight x plus straight b right parenthesis. straight c over denominator left parenthesis straight c space straight x plus straight d right parenthesis squared end fraction equals fraction numerator straight a space straight d minus straight b space straight c over denominator left parenthesis straight c space straight x plus straight d right parenthesis squared end fraction
therefore space space space space space straight y to the power of 1 equals left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space straight y subscript 2 equals negative 2 space straight c left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 3 end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space space space space space space space straight y subscript 3 equals 6 space straight c squared left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 4 end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
straight L. straight H. straight S. equals 2 space straight y subscript 1 space straight y subscript blank cubed end subscript
space space space space space space space space space equals 2 cross times left square bracket left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 2 end exponent right square bracket cross times left square bracket 6 space straight c squared left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 4 end exponent right square bracket
space space space space space space space space space equals 12 space straight c squared left parenthesis straight a space straight d minus straight b space straight c right parenthesis squared left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 6 end exponent
space space space space space space space space space equals 3 cross times left square bracket negative 2 space straight c left parenthesis straight a space straight d minus straight b space straight c right parenthesis left parenthesis straight c space straight x plus straight d right parenthesis to the power of negative 3 end exponent right square bracket squared equals 3 space straight y subscript 2 squared space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 2 right parenthesis right square bracket
space space space space space space space space space equals straight R. straight H. straight S.
    Question 557
    CBSEENMA12035423

    If space straight y equals log space left parenthesis 1 plus cos space straight x right parenthesis comma space prove space that space straight y subscript 1 space straight y subscript 2 plus straight y subscript 3 equals 0.

    Solution
    Here space straight y equals log space left parenthesis 1 plus cos space straight x right parenthesis
therefore space space space space straight y subscript 1 equals fraction numerator 1 over denominator 1 plus cos space straight x end fraction cross times left parenthesis negative sin space straight x right parenthesis equals negative fraction numerator sin space straight x over denominator 1 plus cos space straight x end fraction equals negative fraction numerator 2 space sin begin display style straight x over 2 end style cos begin display style straight x over 2 end style over denominator 2 space cos squared begin display style straight x over 2 end style end fraction equals negative tan straight x over 2
therefore space space space space straight y subscript 2 equals negative sec squared straight x over 2 cross times 1 half equals negative 1 half sec squared straight x over 2
therefore space space space space straight y subscript 3 equals 1 half. open parentheses 2 space sec straight x over 2. sec straight x over 2 tan straight x over 2.1 half close parentheses equals 1 half sec squared straight x over 2 tan straight x over 2
straight L. straight H. straight S equals straight y subscript 1 plus straight y subscript 2 plus straight y subscript 3
space space space space space space space space space space space equals open parentheses negative tan straight x over 2 close parentheses open parentheses negative 1 half sec squared straight x over 2 close parentheses plus open parentheses negative 1 half sec squared straight x over 2 tan straight x over 2 close parentheses
space space space space space space space space space space space equals 1 half sec squared straight x over 2 tan straight x over 2 minus 1 half sec squared straight x over 2 tan straight x over 2
space space space space space space space space space space space equals 0 equals straight R. straight H. straight S.
    Question 558
    CBSEENMA12035425

    If space 2 space straight y equals straight x open parentheses 1 plus dy over dx close parentheses comma space show space that space fraction numerator straight d squared straight y over denominator dx squared end fraction space is space constant space.

    Solution
    Here space space space 2 space straight y equals straight x open parentheses 1 plus dy over dx close parentheses
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space 2 dy over dx equals straight x open parentheses 0 plus fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses plus open parentheses 1 plus dy over dx close parentheses plus 1
or space space space space space 2 dy over dx equals straight x fraction numerator straight d squared straight y over denominator dx squared end fraction plus 1 plus dy over dx
or space space space space space space space dy over dx equals straight x fraction numerator straight d squared straight y over denominator dx squared end fraction plus 1
Again space differentiating space both space sides space straight w. straight r. straight t. straight x comma
space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals straight x fraction numerator straight d cubed straight y over denominator dx cubed end fraction plus fraction numerator straight d squared straight y over denominator dx squared end fraction.1 plus 0
rightwards double arrow space straight x fraction numerator straight d cubed straight y over denominator dx cubed end fraction equals 0 space space space space space space space space space space space space rightwards double arrow space fraction numerator straight d cubed straight y over denominator dx cubed end fraction equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight x not equal to 0 right square bracket
rightwards double arrow fraction numerator straight d over denominator space dx end fraction open parentheses fraction numerator straight d cubed straight y over denominator dx cubed end fraction close parentheses equals 0 space space rightwards double arrow fraction numerator straight d squared straight y over denominator dx squared end fraction equals space constant. space space space space space space open square brackets because space straight d over dx left parenthesis straight c right parenthesis equals 0 close square brackets
    Question 560
    CBSEENMA12035427

    If space straight y equals sin to the power of negative 1 end exponent straight x comma space then space show space that space open parentheses 1 minus straight x squared close parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx equals 0.

    Solution
    space space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent straight x
therefore space space space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction space space space space space space space rightwards double arrow space space square root of 1 minus straight x squared end root dy over dx equals 0
therefore space left parenthesis 1 minus straight x squared right parenthesis open parentheses dy over dx close parentheses squared equals 0
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space left parenthesis 1 minus straight x squared right parenthesis.2 dy over dx fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared. left parenthesis negative 2 space straight x right parenthesis equals 0
Dividing space both space sides space by space 2 dy over dx comma space we space get comma
space left parenthesis 1 minus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx equals 0
    Question 561
    CBSEENMA12035429

    If space straight y equals log open parentheses straight x plus square root of 1 plus straight x squared end root close parentheses comma space show space that space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx equals 0.

    Solution
    space space space space space space space space space space space space space space straight y equals log open parentheses straight x plus square root of 1 plus straight x squared end root close parentheses
therefore space space space space space dy over dx equals fraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction cross times straight d over dx open parentheses straight x plus square root of 1 plus straight x squared end root close parentheses
rightwards double arrow space space space space space dy over dx equals fraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction cross times open parentheses 1 plus fraction numerator 2 space straight x over denominator 2 square root of 1 plus straight x squared end root end fraction close parentheses
rightwards double arrow space space space space space dy over dx equals fraction numerator 1 over denominator straight x plus square root of 1 plus straight x squared end root end fraction cross times fraction numerator square root of 1 plus straight x squared end root plus straight x over denominator square root of 1 plus straight x squared end root end fraction
rightwards double arrow space space space space space dy over dx equals fraction numerator 1 over denominator square root of 1 plus straight x squared end root end fraction space space space space space space space rightwards double arrow space square root of 1 plus straight x squared end root. dy over dx equals 1
rightwards double arrow space space space space space open parentheses 1 straight x plus squared close parentheses. open parentheses dy over dx close parentheses squared equals 1
    Differentiating space both space sides space straight w. straight r. straight t. straight x comma
space space space space space space space space left parenthesis 1 plus straight x squared right parenthesis.2 space dy over dx fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared.2 straight x equals 0
Dividing space both space sides space by space 2 space dy over dx comma
space space space space space space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx equals 0
    Question 562
    CBSEENMA12035431

    If space straight y equals fraction numerator sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction comma space prove space that space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 minus 3 space straight x space straight y subscript 1 minus straight y equals 0.

    Solution
    straight y equals fraction numerator sin to the power of negative 1 end exponent straight x over denominator square root of 1 minus straight x squared end root end fraction space space space space space rightwards double arrow space square root of 1 minus straight x squared end root space straight y equals sin to the power of negative 1 end exponent straight x
Diff. space straight w. straight r. straight t. straight x. space space straight y subscript 1 plus straight y. fraction numerator negative 2 space straight x over denominator 2 square root of 1 minus straight x squared end root end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
or space space space square root of 1 minus straight x squared end root space straight y subscript 1 minus fraction numerator straight x space straight y over denominator square root of 1 minus straight x squared end root end fraction equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
or space space space space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 minus straight x space straight y equals 1.
again space differentiating space straight w. straight r. straight t. straight x comma space
left parenthesis 1 minus straight x squared right parenthesis. straight y subscript 2 plus straight y subscript 1 left parenthesis negative 2 straight x right parenthesis minus space xy subscript 1 minus straight y subscript 1 equals 0
or space left parenthesis 1 minus straight x squared right parenthesis. straight y subscript 2 minus 3 space straight x space minus straight y equals 0
    Question 563
    CBSEENMA12035433

    If space space space straight x equals straight a left parenthesis straight ө plus sin space straight ө right parenthesis comma space straight y equals straight a left parenthesis 1 minus cos space straight ө right parenthesis comma space find space dy over dx space at space straight theta equals straight pi over 2.

    Solution
    space space space space space space space space space space space straight x equals straight a left parenthesis straight ө plus sin space straight ө right parenthesis
therefore space dx over dθ equals straight a left parenthesis 1 plus cos space straight theta right parenthesis
Also space straight y equals straight a left parenthesis 1 minus cos space straight ө right parenthesis
therefore space dy over dθ equals straight a space sin space straight theta
Now space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator straight a space sin space straight theta over denominator straight a left parenthesis 1 plus cos space straight theta right parenthesis end fraction equals fraction numerator sin space straight theta over denominator 1 plus cos space straight theta end fraction equals fraction numerator 2 space sin begin display style straight theta over 2 end style cos begin display style straight theta over 2 end style over denominator 2 space cos squared begin display style straight theta over 2 end style end fraction
therefore space dy over dx equals tan straight theta over 2
Again space differentiating space straight w. straight r. straight t. straight x comma
fraction numerator straight d squared straight y over denominator dx squared end fraction equals sec squared straight theta over 2.1 half dθ over dx equals 1 half sec squared straight theta over 2. fraction numerator 1 over denominator straight a left parenthesis 1 plus cos space straight theta right parenthesis end fraction
space space space space space space space space space space equals fraction numerator 1 over denominator 2 space straight a end fraction sec squared straight theta over 2 fraction numerator 1 over denominator 2 space cos squared end fraction equals fraction numerator 1 over denominator 4 straight a end fraction sec to the power of 4 straight theta over 2
When space straight theta equals straight pi over 4 comma space fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator 1 over denominator 4 straight a end fraction sec to the power of 4 straight theta over 2 equals fraction numerator 1 over denominator 4 straight a end fraction open parentheses square root of 2 close parentheses to the power of 4 equals fraction numerator 1 over denominator 4 straight a end fraction cross times 4 equals 1 over straight a
    Question 564
    CBSEENMA12035435

    If space space straight x equals straight a left parenthesis cos space straight t plus straight t space sin space straight t right parenthesis comma space straight y equals straight a left parenthesis sin space straight t space minus straight t space cos space straight t right parenthesis comma space evaluate space fraction numerator straight d squared straight y over denominator dx squared end fraction space at space straight t equals straight pi over 4

    Solution
    space space space space space space space space space space space space space space space straight x equals straight a left parenthesis cos space straight t plus straight t space sin space straight t right parenthesis comma space space space space space straight y equals straight a left parenthesis sin space straight t space minus straight t space cos space straight t right parenthesis
therefore space space space space space dy over dt equals straight a left parenthesis negative sin space straight t plus straight t space cos space straight t plus sin space straight t right parenthesis equals straight a space straight t space cos space straight t
and space space dy over dt equals straight a left parenthesis cos space straight t plus straight t space sin space straight t minus cos space straight t right parenthesis equals straight a space straight t space sin space straight t
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator straight a space straight t space sin space straight t over denominator straight a space straight t space cos space straight t end fraction equals tan space straight t
therefore space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals sec squared space straight t. dt over dx equals sec squared space straight t. fraction numerator 1 over denominator straight a space straight t space cos space straight t end fraction equals fraction numerator 1 over denominator straight a space straight t end fraction sec cubed space straight t
At space space space space straight t equals straight pi over 4 comma space fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator 1 over denominator straight a. begin display style straight pi over 4 end style end fraction sec cubed space straight pi over 4 equals fraction numerator 4 over denominator straight a space straight pi end fraction cross times left parenthesis square root of 2 right parenthesis cubed equals fraction numerator 8 square root of 2 over denominator straight a space straight pi end fraction
    Question 565
    CBSEENMA12035437

    If space straight x equals 3 space sin space straight t minus sin space 3 straight t comma space straight y equals 3 space cos space straight t minus cos space 3 space straight t comma space find space dy over dx space at space straight t equals straight pi over 3.

    Solution
    space space space space space space space space space space space straight x equals 3 space sin space straight t minus sin space 3 straight t comma space space space space space straight y equals 3 space cos space straight t minus cos space 3 space straight t
therefore space dx over dt equals 3 space cos space straight t minus 3 space cos space 3 straight t comma space dy over dt equals negative 3 space sin space straight t plus 3 space sin space 3 straight t
Now space dy over dx equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals fraction numerator negative 3 space sin space straight t plus 3 space sin space 3 straight t over denominator 3 space cos space straight t minus 3 space cios space 3 straight t end fraction equals fraction numerator sin space 3 straight t minus sin space straight t over denominator cos space straight t minus cos space 3 straight t end fraction equals fraction numerator 2 space cos begin display style fraction numerator 3 straight t plus straight t over denominator 2 end fraction end style sin begin display style fraction numerator 3 straight t minus straight t over denominator 2 end fraction end style over denominator 2 space sin space begin display style fraction numerator 3 straight t plus straight t over denominator 2 end fraction end style sin begin display style fraction numerator 3 straight t minus straight t over denominator 2 end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator cos space 2 straight t over denominator sin space 2 straight t end fraction equals cos space 2 straight t
At space straight t equals straight pi over 3 comma space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative 2 over 3 fraction numerator cosec squared space begin display style fraction numerator 2 straight pi over denominator 3 end fraction end style over denominator cos begin display style straight pi over 3 end style minus cos space straight pi end fraction equals negative 2 over 3 fraction numerator cosec squared space begin display style straight pi over 3 end style over denominator cos begin display style straight pi over 3 end style minus cos space straight pi end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals negative 2 over 3. fraction numerator open parentheses begin display style fraction numerator 2 over denominator square root of 3 end fraction end style close parentheses squared over denominator begin display style 1 half end style plus 1 end fraction equals negative 2 over 3. fraction numerator begin display style 4 over 3 end style over denominator begin display style 3 over 2 end style end fraction equals negative 2 over 3 cross times 2 over 3 cross times 4 over 3 equals negative 16 over 27
    Question 566
    CBSEENMA12035439

    If space space space straight x equals 2 space cos space straight ө minus cos space 2 straight ө space and space straight y equals 2 space sin space straight ө minus sin space 2 straight ө comma space find space open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses subscript straight theta equals straight pi over 2 end subscript

    Solution
    space space space space space space space space space space space space space space space space space space space straight x equals 2 space cos space straight ө minus cos space 2 straight ө comma space space space straight y equals 2 space sin space straight ө minus sin space 2 straight ө
therefore space space space space space space space space dx over dθ equals negative 2 space sin space straight theta plus 2 space sin space straight theta comma space dy over dθ equals 2 space cos space straight theta minus 2 space cos space 2 straight theta
Now space space space space dy over dx equals fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction equals fraction numerator 2 space cos space straight theta minus 2 space cos space 2 straight theta over denominator negative 2 sin space straight theta plus 2 space sin space 2 straight theta end fraction equals fraction numerator cos space straight theta minus cos space 2 straight theta over denominator sin space 2 straight theta minus sin space straight theta end fraction
space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 2 space sin begin display style fraction numerator 3 straight theta over denominator 2 end fraction end style sin begin display style straight theta over 2 end style over denominator 2 space cos space begin display style fraction numerator 3 straight theta over denominator 2 end fraction end style sin begin display style straight theta over 2 end style end fraction equals tan fraction numerator 3 straight theta over denominator 2 end fraction
therefore space space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals open parentheses sec squared fraction numerator 3 straight theta over denominator 2 end fraction close parentheses. open parentheses 3 over 2 close parentheses dθ over dx equals 3 over 2 sec squared straight theta over 2 open parentheses fraction numerator 1 over denominator negative 2 sin space straight theta plus 2 space sin space 2 straight theta end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 3 over denominator 4 space cos squared begin display style straight theta over 2 end style end fraction cross times fraction numerator 1 over denominator sin space 2 straight theta minus sin space straight theta end fraction
open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses subscript straight theta equals straight pi over 2 end subscript equals fraction numerator 3 over denominator 4 space cos squared begin display style straight theta over 2 end style end fraction cross times fraction numerator 1 over denominator sin space straight pi minus sin begin display style straight pi over 2 end style end fraction equals fraction numerator 3 over denominator 4 cross times begin display style 1 half end style end fraction cross times fraction numerator 1 over denominator 0 minus 1 end fraction equals 3 over 2 cross times left parenthesis negative 1 right parenthesis equals negative 3 over 2
    Question 567
    CBSEENMA12035440

    If space straight x to the power of 1 half end exponent plus straight y to the power of 1 half end exponent equals straight a to the power of 1 half end exponent comma space find space the space value space of space fraction numerator straight d squared straight y over denominator dx squared end fraction space at space straight x equals straight a.

    Solution
    We space have space straight x to the power of 1 half end exponent plus straight y to the power of 1 half end exponent equals straight a to the power of 1 half end exponent
Differentiating space both space sides space of space left parenthesis 1 right parenthesis space straight w. straight r. straight t comma space we space get comma
1 half straight x to the power of negative 1 half end exponent plus 1 half straight y to the power of negative 1 half end exponent equals 0 space space space space space space space space or space dy over dx equals negative straight x to the power of negative 1 half end exponent over straight y to the power of negative 1 half end exponent equals negative straight y to the power of 1 half end exponent over straight x to the power of 1 half end exponent space space space space space space space space space... left parenthesis 2 right parenthesis
Differentiating space again comma space we space get comma
space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative fraction numerator straight x to the power of 1 half end exponent. begin display style 1 half end style straight y to the power of negative 1 half end exponent. begin display style dy over dx end style minus straight y to the power of negative 1 half end exponent. begin display style 1 half end style straight x to the power of negative 1 half end exponent over denominator open parentheses straight x to the power of 1 half end exponent close parentheses squared end fraction
space space space space space space space space space space space space space space space space equals negative 1 half. fraction numerator begin display style straight x to the power of 1 half end exponent over straight y to the power of 1 half end exponent end style open square brackets negative begin display style straight y to the power of 1 half end exponent over straight x to the power of 1 half end exponent end style close square brackets minus begin display style straight y to the power of 1 half end exponent over straight x to the power of 1 half end exponent end style over denominator straight x end fraction space space space space space space space space open square brackets Putting space the space value space of space dy over dx from space left parenthesis 2 right parenthesis close square brackets
space space space space space space space space space space space space space space space space equals 1 half fraction numerator 1 plus begin display style straight y to the power of 1 half end exponent over straight x to the power of 1 half end exponent end style over denominator straight x end fraction equals 1 half. fraction numerator straight x to the power of 1 half end exponent plus straight y to the power of 1 half end exponent over denominator straight x to the power of 3 over 2 end exponent end fraction equals 1 half. straight a to the power of 1 half end exponent over straight x to the power of 3 over 2 end exponent space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
Putting space straight x equals straight a comma space the space value space of space equals fraction numerator straight d squared straight y over denominator dx squared end fraction equals 1 half straight a to the power of 1 half end exponent over straight a to the power of 3 over 2 end exponent equals fraction numerator 1 over denominator 2 space straight a end fraction
    Question 568
    CBSEENMA12035442

    If space straight x squared over straight a squared plus straight y squared over straight b squared equals 1 comma space show space that space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative fraction numerator straight b 4 over denominator straight a squared straight y cubed end fraction.

    Solution
    We space have space straight x squared over straight a squared plus straight y squared over straight b squared equals 1
Differentiating space botth space sides space of space left parenthesis 1 right parenthesis space straight w. straight r. straight t. straight x comma space we space get comma space
fraction numerator 2 straight x over denominator straight a squared end fraction plus fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx equals 0 comma space space space therefore space fraction numerator 2 straight y over denominator straight b 2 end fraction dy over dx equals negative fraction numerator 2 straight x over denominator straight a squared end fraction
therefore space dy over dx equals negative straight b squared over straight a squared. straight x over straight y
Again space differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space eget comma space
space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative straight b squared over straight a squared open square brackets fraction numerator straight y.1 minus straight x. begin display style dy over dx end style over denominator straight y squared end fraction close square brackets equals negative fraction numerator straight b squared over denominator straight a squared straight y squared end fraction open square brackets straight y minus straight x dy over dx close square brackets
space space space space space space space space space space space space space space equals negative fraction numerator straight b squared over denominator straight a squared straight y squared end fraction open square brackets straight y minus straight x. open parentheses negative straight b squared over straight a squared straight x over straight y close parentheses close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 2 right parenthesis right square bracket
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals fraction numerator straight b squared over denominator straight a squared straight y squared end fraction open square brackets straight y plus straight b squared over straight a squared straight x squared over straight y close square brackets equals negative fraction numerator straight b squared over denominator straight a squared straight y squared end fraction. straight b squared over straight y open square brackets straight y squared over straight b squared plus straight x squared over straight a squared close square brackets equals negative fraction numerator straight b to the power of 4 over denominator straight a squared straight y cubed end fraction.1
therefore space fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative fraction numerator straight b to the power of 4 over denominator straight a squared straight y cubed end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 2 right parenthesis right square bracket
    Question 569
    CBSEENMA12035443

    If space straight y equals tan to the power of negative 1 end exponent space straight x comma space show space that space open parentheses 1 plus straight x squared close parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction plus 2 space straight x dy over dx equals 0

    Solution
    straight y equals tan to the power of negative 1 end exponent space straight x space space space rightwards double arrow space space dy over dx equals fraction numerator 1 over denominator 1 plus straight x squared end fraction space space space rightwards double arrow space left parenthesis 1 plus straight x squared right parenthesis dy over dx equals 0
Again space differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get.
space space space space space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus 2 space straight x dy over dx equals 0
    Question 570
    CBSEENMA12035446

    If space straight y equals left parenthesis tan to the power of negative 1 end exponent space straight x right parenthesis squared comma space show space that space left parenthesis straight x squared space plus space 1 right parenthesis 2 space straight y subscript 2 plus 2 space straight x left parenthesis straight x squared plus 1 right parenthesis space straight y to the power of 1 equals 2.

    Solution
    space space space space space space straight y equals left parenthesis tan to the power of negative 1 end exponent space straight x right parenthesis squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space space dy over dx equals 2 space tan to the power of negative 1 end exponent space straight x. fraction numerator 1 over denominator 1 plus straight x squared end fraction
rightwards double arrow space space space space space space space open parentheses 1 plus straight x squared close parentheses dy over dx equals 2 space tan to the power of negative 1 end exponent straight x
rightwards double arrow space space space space space space space open parentheses 1 plus straight x squared close parentheses open parentheses dy over dx close parentheses squared equals 4 open parentheses tan to the power of negative 1 end exponent straight x close parentheses squared
rightwards double arrow space space space space space space space open parentheses 1 plus straight x squared close parentheses squared open parentheses dy over dx close parentheses squared equals 4 space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space space space space space open parentheses 1 plus straight x squared close parentheses squared.2 dy over dx fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared.2 left parenthesis 1 plus straight x squared right parenthesis.2 straight x equals 4 dy over dx
Differentiating space both space sides space by space 2 dy over dx comma space we space get comma
space space space space space space space space space space space space open parentheses 1 plus straight x squared close parentheses squared. fraction numerator straight d squared straight y over denominator dx squared end fraction plus 2 straight x left parenthesis 1 plus straight x squared right parenthesis dy over dx equals 2
Or space space space space space space space space left parenthesis straight x squared plus 1 right parenthesis straight y subscript 2 plus 2 straight x left parenthesis straight x squared plus 1 right parenthesis straight y subscript 1
    Question 571
    CBSEENMA12035448

    If space straight y equals left parenthesis cos to the power of negative 1 end exponent space straight x right parenthesis squared comma space prove space that space left parenthesis 1 minus straight x squared right parenthesis space straight y subscript 2 minus straight x space straight y subscript 1 minus 2 equals 0.

    Solution
    space space space space space space space space space space space space space straight y equals left parenthesis cos to the power of negative 1 end exponent space straight x right parenthesis squared space space space space space space space space space space space space space space space space space rightwards double arrow space space straight y subscript 1 equals 2 space cos to the power of negative 1 end exponent straight x. fraction numerator negative 1 over denominator square root of 1 minus straight x squared end root end fraction
therefore space space square root of 1 minus straight x squared end root space straight y subscript 1 equals negative 2 space cos to the power of negative 1 end exponent straight x space space space space space rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals 4 left parenthesis cos to the power of negative 1 end exponent straight x right parenthesis squared
therefore space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals 4 space straight y
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
left parenthesis 1 minus straight x squared right parenthesis. space 2 space straight y subscript 1 space straight y subscript 2 space plus space straight y subscript 1 squared left parenthesis negative 2 space straight x right parenthesis equals 4 space straight y subscript 1
Dividing space both space sides space by space 2 space straight y 1 comma space we space get comma space
space left parenthesis 1 minus straight x squared right parenthesis space straight y subscript 2 minus straight x space straight y subscript 1 equals 2 space or space left parenthesis 1 minus space straight x squared right parenthesis straight y subscript 2 minus space straight x space straight y subscript 1 minus 2 equals 0
    Question 572
    CBSEENMA12035449

    If space space space straight y equals left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis squared comma space prove space that space left parenthesis 1 minus straight x 2 right parenthesis straight y subscript 2 minus straight x space straight y subscript 1 minus 2 equals 0. space

    Solution
    space straight y equals left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis squared space space space space rightwards double arrow space space straight y subscript 1 equals 2 space sin to the power of negative 1 end exponent straight x. space fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
therefore space square root of 1 minus straight x squared end root space straight y subscript 1 equals 2 space sin to the power of negative 1 end exponent straight x space space space rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals 4 left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis squared

therefore space space space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals 4 space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight y equals left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis squared right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
left parenthesis 1 minus straight x squared right parenthesis. space 2 space straight y subscript 1 space straight y subscript 2 plus straight y 1 squared left parenthesis negative 2 space straight x right parenthesis equals 4 space straight y subscript 1 space
space Dividing space both space sides space by space 2 space straight y 1 comma space we space get comma space
left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 minus straight x space straight y subscript 1 equals 2 space or space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 space minus straight x space straight y subscript 1 minus 2 equals 0
    Question 573
    CBSEENMA12035450

    If space space straight y equals open square brackets log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses close square brackets squared comma space prove space that space left parenthesis 1 space plus space straight x squared right parenthesis straight y subscript 2 space plus space straight x space straight y subscript 1 space equals space 2.

    Solution
    space straight y equals open square brackets log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses close square brackets squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space straight y subscript 1 equals 2 space log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses. fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction. open parentheses 1 plus fraction numerator 2 straight x over denominator 2 square root of straight x squared plus 1 end root end fraction close parentheses
space space space space space space space space space equals 2 space log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses. fraction numerator 1 over denominator straight x plus square root of straight x squared plus 1 end root end fraction. fraction numerator straight x plus square root of straight x squared plus 1 end root over denominator square root of straight x squared plus 1 end root end fraction
therefore space straight y subscript 1 equals fraction numerator 2 over denominator square root of straight x squared plus 1 end root end fraction log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses space space rightwards double arrow space space square root of 1 plus straight x squared end root. straight y subscript 1 equals 2 space log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses
rightwards double arrow space open parentheses square root of 1 plus straight x squared end root. close parentheses straight y subscript 1 squared equals 4 open square brackets log open parentheses straight x plus square root of straight x squared plus 1 end root close parentheses close square brackets squared
rightwards double arrow space open parentheses square root of 1 plus straight x squared end root. close parentheses straight y subscript 1 squared equals 4 straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma space
left parenthesis 1 plus straight x squared right parenthesis. space 2 space straight y subscript 1 space straight y subscript 2 plus straight y subscript 1 squared space. space 2 space straight x space equals space 4 space straight y subscript 1 space
space Dividing space both space sides space by space 2 space straight y 1 comma space we space get comma
left parenthesis 1 plus straight x squared right parenthesis space straight y subscript 2 plus straight x space straight y subscript 1 equals 2
    Question 574
    CBSEENMA12035453

    If space space straight y equals sin left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis comma space prove space that space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 minus straight x space straight y subscript 1 plus straight m squared space straight y equals 0.

    Solution
    space straight y equals sin left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis
therefore space straight y 1 equals cos left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis. fraction numerator straight m over denominator square root of 1 minus straight x squared end root end fraction space space rightwards double arrow space square root of 1 minus straight x squared end root. straight y 1 equals straight m space cos left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis
rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals straight m squared space cos squared left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis space space rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals straight m squared left square bracket 1 minus sin squared left parenthesis straight m space sin to the power of negative 1 end exponent straight x right parenthesis right square bracket
therefore space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals straight m squared left parenthesis 1 minus straight y squared right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
left parenthesis 1 space straight x squared right parenthesis. space 2 space straight y subscript 1 space straight y subscript 2 space plus straight y subscript 1 squared left parenthesis negative 2 space straight x right parenthesis equals straight m squared left parenthesis negative 2 space straight y space straight y subscript 1 right parenthesis
Dividing space both space sides space by space 2 space straight y subscript 1 comma space get comma
left parenthesis 1 minus straight x squared right parenthesis space straight y subscript 2 minus straight x space straight y subscript 1 equals negative straight m squared straight y space or space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 space minus straight x space straight y subscript 1 plus straight m squared space straight y equals 0
    Question 575
    CBSEENMA12035455

    If y = em sin1 x , prove that (1 - x2) y2 - x y1 = m2 y.

    Solution
    straight y equals straight e to the power of acos to the power of negative 1 end exponent straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space straight y equals straight e to the power of acos to the power of negative 1 end exponent end exponent. fraction numerator negative straight a over denominator square root of 1 minus straight x squared end root end fraction space space rightwards double arrow space square root of 1 minus straight x squared end root space straight y subscript 1 equals negative acos to the power of negative 1 end exponent straight x
rightwards double arrow space square root of 1 minus straight x squared end root space straight y subscript 1 equals negative straight a space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared space equals straight a squared straight y squared

    Differentiating both sides w.r.t. x, we get,

    (1 - x2). 2 y1 y2 + y12 (-2 x) = 2 m2 y yi

    Dividing both sides by 2 y1 , we get,

    (1 - x2) y2 - x y1 = m2 y

    Question 576
    CBSEENMA12035459

    If y = ea cos-1 x , show that
    left parenthesis 1 minus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx minus straight a squared straight y equals 0.

    Solution
    space space straight y equals straight e to the power of straight m space sin to the power of negative 1 end exponent straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space straight y subscript 1 equals space space straight y equals straight e to the power of straight m space sin to the power of negative 1 end exponent straight x end exponent. fraction numerator straight m over denominator square root of 1 minus straight x squared end root end fraction space space rightwards double arrow space space square root of 1 minus straight x squared end root. straight y subscript 1 equals straight m space straight e to the power of straight m space sin to the power of negative 1 end exponent straight x end exponent
rightwards double arrow space square root of 1 minus straight x squared end root. straight y subscript 1 equals straight m space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared equals straight m squared straight y squared

    Differentiating both sides w.r.t. x, we get

    (1-x2)·2 y1 y2+y12 (-2 x)=a2·2 y y1

    Dividing both sides by 2 y1 , we get,

    left parenthesis 1 minus straight x squared right parenthesis straight y subscript 2 minus straight x space straight y subscript 1 equals straight a squared straight y space space or space space left parenthesis 1 minus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx minus straight a squared straight y equals 0.
    Question 577
    CBSEENMA12035461

    If space space straight f left parenthesis straight x right parenthesis equals vertical line straight x vertical line cubed comma space show space that space straight f " left parenthesis straight x right parenthesis space exists space for space all space real space straight x space and space find space it.

    Solution
    We space have space
straight f left parenthesis straight x right parenthesis equals open vertical bar straight x close vertical bar cubed equals open curly brackets table attributes columnalign left columnspacing 1.4ex end attributes row cell space space space straight x cubed end cell cell comma space straight x greater or equal than 0 end cell row cell negative straight x cubed end cell cell comma space straight x less than 0 end cell end table close space space space space space space space space space space space space space space space space space left square bracket because space open vertical bar straight x close vertical bar equals negative straight x space for space straight x less than 0 right square bracket
because space straight f apostrophe left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left columnspacing 1.4ex end attributes row cell space space 3 space straight x cubed end cell cell comma space straight x greater or equal than 0 end cell row cell negative 3 straight x cubed end cell cell comma space straight x less than 0 end cell end table close
space space space space space straight f apostrophe apostrophe left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left columnspacing 1.4ex end attributes row cell space space 6 space straight x cubed end cell cell comma space straight x greater or equal than 0 end cell row cell negative 6 straight x cubed end cell cell comma space straight x less than 0 end cell end table close
Hence space the space result
    Question 579
    CBSEENMA12035470

    If space left parenthesis straight x minus straight a right parenthesis squared space plus left parenthesis straight y minus straight b right parenthesis squared space equals straight c squared space comma space prove space that space space fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 3 over 2 end style end exponent over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction space is space straight a space constant space independent space of space straight a space and space straight b.

    Solution
    The space given space equation space is space left parenthesis straight x minus straight a right parenthesis squared space plus left parenthesis straight y minus straight b right parenthesis squared space equals straight c squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Differentiating space it space straight w. straight r. straight t. straight x space successively space two space times comma
2 left parenthesis straight x minus straight a right parenthesis plus 2 left parenthesis straight y minus straight b right parenthesis dy over dx equals 0
or space left parenthesis straight x minus straight a right parenthesis plus left parenthesis straight y minus straight b right parenthesis dy over dx equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
rightwards double arrow space 1 plus left parenthesis straight y minus straight b right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 3 right parenthesis comma space left parenthesis straight y minus straight b right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction equals negative open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets comma space space therefore space straight y minus straight b equals negative fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 3 over 2 end style end exponent over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction space space space space space space... left parenthesis 4 right parenthesis
    Putting space this space value space of space straight y minus straight b space in space left parenthesis 2 right parenthesis comma space we space get comma
left parenthesis straight x minus straight a right parenthesis minus fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 2 end style end exponent over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction. dy over dx equals 0 comma space space therefore space straight x minus straight a equals fraction numerator 1 plus open parentheses begin display style dy over dx end style close parentheses squared over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction. dy over dx space space space space space space space space space space space space space space space space space space space space space... left parenthesis 5 right parenthesis
    Putting space values space of space straight x minus straight a comma space straight y minus straight b space from space left parenthesis 5 right parenthesis space and space left parenthesis 4 right parenthesis space in space left parenthesis 1 right parenthesis comma space we space get.
fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 2 end style end exponent over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction. open parentheses dy over dx close parentheses squared plus fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 2 end style end exponent over denominator begin display style open parentheses fraction numerator begin display style straight d squared straight y end style over denominator begin display style dx squared end style end fraction close parentheses squared end style end fraction equals straight c squared
or space space space open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets squared open parentheses dy over dx close parentheses squared plus open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets squared equals straight c squared open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses squared
or space space space open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets squared open square brackets open parentheses dy over dx close parentheses squared plus 1 close square brackets equals straight c squared open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses
or space space space open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets cubed equals straight c squared open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses squared
therefore space space open square brackets 1 plus open parentheses dy over dx close parentheses squared close square brackets to the power of 3 over 2 end exponent equals straight c fraction numerator straight d squared straight y over denominator dx squared end fraction space comma space space therefore space fraction numerator open square brackets 1 plus open parentheses begin display style dy over dx end style close parentheses squared close square brackets to the power of begin display style 3 over 2 end style end exponent over denominator begin display style fraction numerator straight d squared straight y over denominator dx squared end fraction end style end fraction equals straight c
which space is space straight a space constant space independent space of space straight a space and space straight b.
    Question 580
    CBSEENMA12035472

    Verify space Rolle apostrophe straight s space theorem space for space the space function
straight f left parenthesis straight x right parenthesis equals fraction numerator 8 straight x squared over denominator 3 end fraction minus 2 straight x comma space straight x element of open square brackets 0 comma 3 over 4 close square brackets

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals fraction numerator 8 straight x squared over denominator 3 end fraction minus 2 straight x
This space is space straight a space polynomial space in space straight x
left parenthesis straight i right parenthesis space since space every space polynomial space in space straight x space continuous space for space all space straight x
therefore space straight f left parenthesis straight x right parenthesis space is space continuous space in space open square brackets 0 comma 3 over 4 close square brackets
left parenthesis ii right parenthesis space straight f apostrophe left parenthesis straight x right parenthesis equals fraction numerator 16 space straight x over denominator 3 end fraction minus 2 comma space which space exists space in space open parentheses 0 comma 3 over 4 close parentheses
therefore space straight f left parenthesis straight x right parenthesis space is space derivable space in space open parentheses 0 comma 3 over 4 close parentheses.
left parenthesis iii right parenthesis space straight f left parenthesis 0 right parenthesis equals 0 minus 0 equals 0 comma space straight f open parentheses 3 over 4 close parentheses equals 8 over 3 cross times 9 over 16 minus 2 cross times 3 over 4 equals 3 over 2 minus 3 over 2 equals 0
therefore space straight f left parenthesis 0 right parenthesis equals straight f open parentheses 3 over 4 close parentheses
therefore space straight f left parenthesis straight x right parenthesis space satisfies space all space the space conditions space of space Rolle apostrophe straight s space Theorem.
therefore space there space exists space at space least space one space value space straight c space of space straight x space such space that space straight f apostrophe left parenthesis straight c right parenthesis equals 0 comma space where space 0 less than straight c less than 3 over 4.
Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space fraction numerator 16 straight c over denominator 3 end fraction minus 2 equals 0 space space space rightwards double arrow space straight c equals 3 over 8 element of space open parentheses 0 comma 3 over 4 close parentheses
therefore space Rolle apostrophe straight s space theorem space is space verified.
    Question 582
    CBSEENMA12035474

    Verify Rolle's Theorem for the function x2 + 2 x - 8 in [-4, 2]

    Solution

     f(x)=x2 + 2 x - 8
    This is polynomial in x.
    (i) Sisce every polynomial in x is continuous function for all x.
    ∴ f is continuous in [-2, 2]
    (ii) f'(x) = 2 x + 2, which exists in (-4, 2)
    ∴ f is differentiable in (-4, 2)
    (iii) f(-4) = (-4)2 + 2(-4)-8 = 16 - 8 - 8 = 0
    f(2) = (2)2 + 2 (2) - 8 = 4 + 4 - 8 = 0
    ∴ f(-4) = f(2).
    ∴ f satisfies all the conditions of Rolle's Theorem.
    ∴ there exists at least one value c of x such that f'(c) = 0, where - 4 < c < 2.
    Now    f'(c) = 0 gives us 2 c + 2 = 0 or 2 c = -2
    ∴ c = - 1 ∈ (- 4, 2)
    ∴ Rolle's Theorem is verified.

    Question 583
    CBSEENMA12035476

    Verify Rolle's Theorem for the function f(x) = x(x - 1)2 in [0, 1]. 

    Solution

    Here f(x) = x(x - 1)2 = x3 - 2 x2 + x
    It is a polynomial in x.
    (i) Since every polynomial in x is a continuous function for every value of x.
    ∴ f(x) is continuous in [0, 1].
    (ii) f'(x) = 3 x2 - 4 x + 1, which existsyn (0, 1)
    ∴ f(x) is derivable in (0, 1).
    (iii) f(0) = 0, f(1) = 0
    ∴ f(0) = f(1)
    ∴ f(x) satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c of x such that
    f'(c) = 0 where 0 < c 1.
    Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space 3 straight c squared minus 4 straight c plus 1 equals 0
therefore space space space space space straight c equals fraction numerator 4 plus-or-minus square root of 16 minus 12 end root over denominator 6 end fraction equals fraction numerator 4 plus-or-minus 2 over denominator 6 end fraction equals 1 comma 1 third
Now space 1 not an element of left parenthesis 0 comma 1 right parenthesis comma space but space 1 third element of left parenthesis 0 comma 1 right parenthesis
therefore space space Rolle apostrophe straight s space Theorem space is space verified

    Question 584
    CBSEENMA12035477

    Verily space Rolle apostrophe straight s space theorem space for space the space function
straight f left parenthesis straight x right parenthesis equals straight x cubed over 3 minus fraction numerator 5 straight x squared over denominator 3 end fraction plus 2 straight x comma space straight x element of left square bracket 0 comma 3 right square bracket

    Solution
    Here space space straight f left parenthesis straight x right parenthesis equals straight x cubed over 3 minus fraction numerator 5 straight x squared over denominator 3 end fraction plus 2 straight x
This space is space straight a space polynomial space in space straight x space
left parenthesis straight i right parenthesis space since space every space polynomial space in space straight x space is space continuous space for space all space straight x.
therefore space straight f left parenthesis straight x right parenthesis space is space continuous space in space left square bracket 0 comma space 3 right square bracket
left parenthesis ii right parenthesis space straight f apostrophe left parenthesis straight x right parenthesis space equals straight x squared minus fraction numerator 10 space straight x over denominator 3 end fraction plus 2 comma space which space is space exists space in space left parenthesis 0 comma 3 right parenthesis
therefore space straight f left parenthesis straight x right parenthesis space is space derivable space in space left parenthesis 0 comma space 3 right parenthesis
left parenthesis iii right parenthesis space straight f left parenthesis 0 right parenthesis equals 0 minus 0 plus 0 equals 0
straight f left parenthesis 3 right parenthesis equals 27 over 3 minus 45 over 3 plus 6 equals 9 minus 15 plus 6 equals 0
therefore space straight f left parenthesis 0 right parenthesis equals straight f left parenthesis 3 right parenthesis
therefore space straight f left parenthesis straight x right parenthesis space satisfies space all space the space conditions space of space Rolle apostrophe straight s space theroem.
therefore space there space exists space at space least space one space value space straight c space of space straight x space such space that space straight f apostrophe left parenthesis straight c right parenthesis equals 0 comma space where space 0 less than straight c less than 3.
Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space given space us space straight c squared minus fraction numerator 10 space straight c over denominator 3 end fraction plus 2 equals 0
therefore space 3 straight c squared minus 10 straight c plus 6 equals 0
therefore space straight c equals fraction numerator 10 plus-or-minus square root of 100 minus 72 end root over denominator 6 end fraction equals fraction numerator 10 plus-or-minus square root of 28 over denominator 6 end fraction equals fraction numerator 10 plus-or-minus 5.2 over denominator 6 end fraction comma space fraction numerator 4.8 over denominator 6 end fraction equals 2.53 comma space 0.8 element of left parenthesis 0 comma space 3 right parenthesis
therefore space Rolle apostrophe straight s space theorem space is space verified.
    Question 585
    CBSEENMA12035479

    Verily space Rolle apostrophe straight s space theorem space for space the space function space straight f left parenthesis straight x right parenthesis equals 8 straight x minus straight x squared space in space left square bracket 0 comma space 8 right square bracket

    Solution

    It is a polynomial in x.
    (i) since every polynomial in x is a continuous function for every value of x
    ∴ f(x) is continuous in [0, 8]
    (ii) f'(x) = 8 - 2 x, which exists in (0, 8)
    ∴ f(x) is derivable in (0, 8)
    (iii) f(0) = 0 - 0 = 0
    f(8) = 8 (8) - (8)2 = 64 - 64 = 0
    ∴ f(0) = f(8)
    ∴ f(x) satisfies all the conditions of Rolle's theorem.
    ∴ there must exist at least one value c of x such that f'(c) = 0 where 0 < c < 8.
    Now f'(c) = 0 gives 8 - 2 c = 0 ⇒ c = 4 ∈ (0, 8)
    ∴ Rolle's theorem is verified.

    Question 586
    CBSEENMA12035480

    Verify Rolle's Theorem for the function :f(x) = x2 in the interval [- 1, 1]

    Solution

    Here f(x) = x2
    This is a polynomial in x
    (a)    Since every polynomial in x is continuous for all x
    ∴ f(x) is continuous in [- 1, 1].
    (b)    f'(x) = 2 x, which exists in (- 1, 1)
    ∴ f(x) is derivable in (- 1, 1).
    (c)    f(-1) = (-1)2 =1, f(1) = (1)2 = 1
    ∴ f(-1) = f(1)
    ∴ f(x) satisfies all the conditions of Rolle's Theorem.
    ∴ there exists at least one value c of x such that f'(c) = 0 , where - 1 < c < 1
    Now f'(c) = 0 gives us 2 c = 0
    ∴ c = 0 ∈ (-1, 1)    ⇒ Rolle's Theorem is verified.

    Question 587
    CBSEENMA12035481

    Verify Rolle's Theorem for the function : f(x) = x2 - 1 in the interval [- 1, 1]

    Solution

    Let f(x) = x2 - 1
    It is a polynomial in x
    (a)    Since every polynomial is a continuous function for every value of x
    ∴ f is continuous in [-1, 1]
    (b)    f'(x) = 2 x, which exists on (-1, 1)
    ∴ f is derivable in (-1, 1)
    (c)    f(-1) = (-1)2 - 1 = 1 - 1 = 0
    f(1) = (1)2 - 1 = 1 - 1 = 0
    ∴ f(-1) = f(1)
    ∴ f satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c of x such that f'(c) = 0 where - 1 < c 1.
    Now f'(c) = 0 gives us 2 c = 0 or c = 0
    Now c = 0 lies in the open interval (-1, 1)
    ∴ Rolle's Theorem is verified

    Question 588
    CBSEENMA12035482

    Verify Rolle's Theorem for the function :f(x)= x2 - 4 x + 3 in the interval 1 ≤ x ≤ 3.

    Solution

    Here f(x) = x2 - 4 x + 3
    It is a polynomial in x.
    (a) Since every polynomial is a continuous function for every value of x
    ∴ f(x) is continuous in 1 ≤ x ≤ 3.
    (b) f'(x) = 2 x, - 4, which exists in 1 < y < 3
    ∴ f(x) is derivable in 1 < x < 3.
    (c) f(i) = (1)2 - 4 × 1 + 3 = 1 - 4 + 3 = 0
    f(3) = (3)2 - 4 × 3 + 3 = 9 - 12 + 3 = 0
    ∴ f(1) = f(3)
    ∴ f(x) satisfies all the conditions of Rolle's Theorem.
    ∴ there must exist at least one value c of x such that f'(c) = 0, where 1 < c < 3.
    Now f'(c) = 0 gives us 2 c - 4 = 0 or, c = 2
    Now c = 2 lies in the open interval (1, 3)
    ∴ Rolle's Theorem is verified

    Question 589
    CBSEENMA12035484

    Verify Rolle's Theorem for the function : x2 - 5 x + 4 on [1, 4]

    Solution

    Let f(x) = x2 - 5 x + 4
    (a)    Since every polynomial is a continuous function for every value of x
    ∴ f is continuous in [1, 4]
    (b)    f'(x) = 2 x - 5, which exists in (1, 4)
    ∴ f is derivable in (1, 4)
    (c)    f(1) = 1 - 5 + 4 = 0
    f(4) = 16 - 20 + 4 = 0
    ∴ f(1) = f(4)
    ∴ f satisfies all the condition of Rolle's Theorem
    ∴ there must exist at least one value c of x such that f'(c) = 0 where 1 < c < 4
    Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space 2 straight c minus 5 equals 0 space or space straight c equals 5 over 2 element of left parenthesis 1 comma space 4 right parenthesis
    ∴ Rolle's theorem is verified.

    Question 590
    CBSEENMA12035485

    Verify Rolle's Theorem for the function f(x) = x (x2-4) in the interval [-2, 2].

    Solution

     Here f(x) = x (x2-4) = x3-4 x
    It is a polynomial in x
    (i) Since every polynomial in x is a continuous function for every value of x
    ∴ f(x) is continuous in [-2, 2]
    (ii) f'(x) = 3 x2-4, which exists in (-2, 2)
    ∴ f(x) is derivable in (-2, 2)
    (iii) f(-2) = 0, f(2) = 0
    ∴ f(-2) = f(2)
    ∴ f(x) satisfies all the conditions of Rolle's Theorem.
    ∴ there must exist at least one real value of c such that f'(c) = 0 where - 2 < c < 2
    Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space given space us space 3 straight c squared minus 4 equals 0
therefore space straight c squared equals 4 over 3 space space space rightwards double arrow space straight c equals plus-or-minus fraction numerator 2 over denominator square root of 3 end fraction equals plus-or-minus fraction numerator 2 square root of 3 over denominator 3 end fraction equals plus-or-minus fraction numerator 2 left parenthesis 1.7 right parenthesis over denominator 3 end fraction equals plus-or-minus fraction numerator 3.4 over denominator 3 end fraction equals plus-or-minus space 1.13 element of left parenthesis negative 2 comma space 2 right parenthesis
    ∴ Rolle's Theorem is verified.

    Question 591
    CBSEENMA12035487

    Verify Roll's Theorem for the function :f(x) = x (x - 3)2 in 0 ≤ x ≤ 3

    Solution

    f(x) = x (x - 3)2 = x (x2 - 6x + 9) = x3 - 6 x2 + 9 x.
    It is a polynomial in x.
    (a)    Since every polynomial in x is a continuous function for every value of x.
    ∴ f(x) is continuous in [0, 3].
    (b)    f'(x) = 3 x2 - 12 x + 9, which exists in (0, 3)
    ∴ f(x) is derivable in (0, 3).
    (c)    f(0) = 0, f(3) = 0
    ∴ f(0) = f(3)
    ∴ f(x) satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c of x such that f'(c) = 0 where 0 < c < 3.
    f'(c) = 0 gives us 3 c2 - 12 c + 9 = 0 or c2 - 4 c + 3 = 0, i.e., (c - 1) (c - 3) = 0 i.e.. c = 1, 3
    Now 3 ∉ (0, 3), but 1 ∈ (0, 3)
    ∴ Rolle's Theorem is verified.

    Question 592
    CBSEENMA12035489

    Verify Roll's Theorem for the function :f(x) = (x2 - 1) (x - 2) in [-1, 2]

    Solution

    Let f (x) = (x2 - 1) (x - 2) = x3 - 2 x2 - x + 2
    It is a polynomial in x
    (a)    Since every polynomial in x is a continuous function for every value of x.
    ∴ f(x) is continuous in [-1, 2].
    (b)    f'(x) = 3 x2 - 4 x - 1, which exists in (-1, 2)
    ∴ f is derivable in (-1, 2).
    (c)    f(-1) = (1 - 1) (-1 -2) = 0
    f(2) = (4 - 1) (2 - 1) (2 - 2) = 0
    ∴ f(-1) = f(2)
    ∴ f satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c ofx such that f'(c) = 0 where - 1 < c < 2.
    Now f'(c) = 0 gives us 3 c2 - 4 c - 1 = 0
    or space straight c equals fraction numerator 4 plus-or-minus square root of 16 plus 12 end root over denominator 6 end fraction equals fraction numerator 4 plus-or-minus 2 square root of 7 over denominator 6 end fraction equals fraction numerator 2 plus-or-minus square root of 7 over denominator 3 end fraction
Now space minus 1 less than fraction numerator 2 minus square root of 7 over denominator 3 end fraction less than fraction numerator 2 plus square root of 7 over denominator 3 end fraction less than 2
therefore space straight c equals fraction numerator 2 minus square root of 7 over denominator 3 end fraction space and space fraction numerator 2 plus square root of 7 over denominator 3 end fraction space both space lie space in space left parenthesis negative 1 comma space 2 right parenthesis
    ∴ Rolle's Theorem is verified.

    Question 593
    CBSEENMA12035490

    Verify Roll�s Theorem for the function :f{x) = e1 - x2 in [-1, 1]

    Solution

    Let f(x) = e1 - x2
    (a)    Since e1 - x2 is continuous in [-1, 1]
    ∴ f is continuous in [-1, 1]
    (b)    f'(x) = e1 - x2 (- 2 x) = - 2 x e1 - x2 , which exists in (-1, 1)
    ∴ is derivable in (-1, 1)
    (c)    f(-1) = e1 - 1 = e0 = 1
    f(1) = e1 - 1 = e0 = 1
    ∴ f(-1) = f(1)
    ∴ satifies all the conditions of Rolle's Theorem.
    ∴ there must exist at least one value c of x such f' (c) = 0 where - 1 < c < 1
    Now f' (c) = 0 gives us - 2 c e1-c2 = 0
    ⇒ c = 0 ∈ (-1, 1)
    ∴ Rolle's Theorem is verified.

    Question 594
    CBSEENMA12035491

    Verify Roll�s Theorem for the function :f(x) = log (x2 + 2) - log 3 in [-1, 1]

    Solution

    Let f(x) = log (x2 + 2) - log 3
    (a) Since log (x2 + 2) and log 3 are both continuous in [-1, 1]
    ∴ 1og (x2 + 2) - log 3 is continuous in [-1, 1] ⇒ f is continuous in [-1, 1]
    straight f apostrophe left parenthesis straight x right parenthesis equals fraction numerator 2 space straight x over denominator straight x squared plus 2 end fraction comma space which space exists space in space left parenthesis negative 1 comma space 1 right parenthesis
    ∴ f is derivable in (-1, 1).
    (c) f(-1) = log (1 + 2) - log 3 = 0
    f(1) = log (1 + 2) - log 3 = 0
    ∴ f(-1) = f(1)
    ∴ f satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c of x such that f'(c) = 0 where - 1 < c < 1
    Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space fraction numerator 2 space straight c over denominator straight c squared plus 2 end fraction equals 0
or space straight c equals 0 comma space element of left parenthesis negative 1 comma space 1 right parenthesis
    ∴ Rolle's Theorem is verified.

    Question 595
    CBSEENMA12035496

    Verify the truth of Rolle's Theorem for the function
    straight f left parenthesis straight x right parenthesis equals space sin space 3 straight x comma space straight x element of open square brackets 0 comma space straight pi over 3 close square brackets

    Solution
    Here space straight f left parenthesis straight x right parenthesis equals sin space 3 straight x
left parenthesis straight i right parenthesis space Since space sine space curve space is space continuous space
therefore space straight f left parenthesis straight x right parenthesis space is space continuous space function space in space open square brackets 0 comma space straight pi over 3 close square brackets
left parenthesis ii right parenthesis space straight f apostrophe left parenthesis straight x right parenthesis equals 3 space cos space 3 straight x comma space which space exists space in space open parentheses 0 comma space straight pi over 3 close parentheses
therefore space straight f left parenthesis straight x right parenthesis space is space derivable space in space open parentheses 0 comma space straight pi over 3 close parentheses
left parenthesis iii right parenthesis straight f left parenthesis 0 right parenthesis equals sin space 0 equals 0 comma space straight f open parentheses straight pi over 3 close parentheses equals sin space straight pi equals 0
therefore space straight f left parenthesis 0 right parenthesis equals straight f open parentheses straight pi over 3 close parentheses
therefore space straight f left parenthesis straight x right parenthesis space satisfies space all space the space conditions space of space Rolle apostrophe straight s space theorem. space
therefore space there space must space exist space at space least space one space value space straight c space of space straight x space such space that space straight f apostrophe left parenthesis straight c right parenthesis space equals space 0 space where
straight c element of space open parentheses 0 comma space straight pi over 3 close parentheses.
Now space straight f apostrophe left parenthesis straight c right parenthesis equals 3 space cos space 3 straight c
therefore space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space 3 space cos space 3 straight c equals 0 space straight i. straight i. comma space cos space 3 space straight c equals 0
therefore space space space 3 space straight c equals straight pi over 2 comma space fraction numerator 3 straight pi over denominator 2 end fraction comma space fraction numerator 5 straight pi over denominator 2 end fraction comma...
therefore space space space space space space straight c equals straight pi over 6 comma space fraction numerator 3 straight pi over denominator 2 end fraction comma space fraction numerator 5 straight pi over denominator 6 end fraction comma...
space Now space straight c equals straight pi over 6 space lies space in space open parentheses 0 comma space straight pi over 3 close parentheses
    ∴ Rolle's Theorem is verified.
    Question 596
    CBSEENMA12035498

    Verify Rolle's Theorem for the function f(x) = sin2 x in [0, straight pi].

    Solution

    Here f(x) = sin2 x
    (i) We know that sin x is continuous in [0, straight pi]
    Now sin2x, being the product of two continuous function sin x and sin x, is continuous in [0, straight pi].
    (ii) f'(x) = 2 sin x cos x, which exists in (0, straight pi)
    ∴ f(x) is derivable in (0, π).
    (iii) f(0) = sin2 0 = 0, f(straight pi) = sin2 π = 0
    ∴ f(0) = f(straight pi)
    ∴ f{x) satisfies all the conditions of Rolle's Theorem
    ∴ there must exist at least one value c of x such that
    f'(c) = 0 where 0 < c < straight pi.
    Now space straight f apostrophe left parenthesis straight c right parenthesis equals 0 space gives space us space 2 space sin space straight c space cos space straight c equals 0
therefore space cos space straight c equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space sin space straight c not equal to 0 space in space left parenthesis 0 comma space straight pi right parenthesis right square bracket
therefore space straight c equals straight pi over 2 element of left parenthesis 0 comma space straight pi right parenthesis
therefore space Rolle apostrophe straight s space Theorem space is space verified.

    Question 597
    CBSEENMA12035499
    Question 598
    CBSEENMA12035503
    Question 599
    CBSEENMA12035505
    Question 600
    CBSEENMA12035506
    Question 601
    CBSEENMA12035508
    Question 603
    CBSEENMA12035635

    if space cos space left parenthesis straight a plus straight y right parenthesis space equals space cos space straight y space then space prove space that space dy over dx space equals fraction numerator cos squared left parenthesis straight a plus straight y right parenthesis over denominator sin space straight a end fraction
Hence space show space that space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction plus sin space 2 space left parenthesis straight a plus straight y right parenthesis dy over dx equals 0

    Solution
    Given space that comma

straight x space cos space left parenthesis straight a plus straight y right parenthesis space equals space cos space straight y space.... space left parenthesis straight i right parenthesis

rightwards double arrow space straight x space equals space fraction numerator cos space straight y over denominator cos space left parenthesis straight a space plus space straight y right parenthesis end fraction space... space left parenthesis ii right parenthesis

Differentiating space both space sides space of space the space equation space left parenthesis straight i right parenthesis comma space we space have comma

straight x space left parenthesis negative sin space left parenthesis straight a space plus space straight y right parenthesis right parenthesis space dy over dx equals space minus space cos space left parenthesis straight a plus straight y right parenthesis space equals negative sin space straight y space dy over dx

rightwards double arrow space space open square brackets sin space straight y minus space straight x space sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx space equals space minus cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space open square brackets sin space straight y space minus fraction numerator cos space straight y over denominator cos space left parenthesis straight a plus straight y right parenthesis end fraction sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx space space equals negative cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space open square brackets fraction numerator cos space left parenthesis straight a space plus space straight y right parenthesis space space straight x space space sin space straight y space minus space cos space straight y space sin space left parenthesis straight a space plus space straight y right parenthesis over denominator cos space left parenthesis straight a plus straight y right parenthesis end fraction close square brackets dy over dx space equals space minus space cos left parenthesis straight a space plus space straight y right parenthesis space

rightwards double arrow space open square brackets cos space left parenthesis straight a space plus space straight y right parenthesis space straight x space sin space straight y space minus space cosy space space straight x space space sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx equals negative cos left parenthesis straight a space plus space straight y right parenthesis space space straight x space space cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space space open square brackets sin space left parenthesis straight a space plus space straight y space minus space straight y right parenthesis close square brackets dy over dx space space equals space minus cos squared left parenthesis straight a space plus space straight y right parenthesis space space space space space open square brackets sin left parenthesis straight A minus straight B right parenthesis space equals space sinA space cos space straight B space minus space cosA space sinB close square brackets

rightwards double arrow left square bracket sina space right square bracket space dy over dx equals negative cos squared left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space dy over dx space equals fraction numerator negative cos squared left parenthesis straight a space plus space straight y right parenthesis over denominator sin space straight a space end fraction space space space space.. space left parenthesis iii right parenthesis

differentiating space once space again space with space respect space to space straight x space comma we space have comma

sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space 2 cos left parenthesis straight a space plus space straight y right parenthesis space sin space left parenthesis straight a space plus space straight y right parenthesis dy over dx

rightwards double arrow space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space 2 space cos space left parenthesis straight a space plus space straight y right parenthesis space sin space left parenthesis straight a space plus space straight y right parenthesis dy over dx equals 0

rightwards double arrow space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space sin space 2 space left parenthesis straight a space plus space straight y right parenthesis dy over dx equals 0

Hence space proved.
    Question 604
    CBSEENMA12035636

    Find space dy over dx space if space straight y equals sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x minus 4 square root of 1 minus 4 straight x squared end root over denominator 5 end fraction close square brackets

    Solution
    Given space that
straight y space equals space sin to the power of negative 1 end exponent space open square brackets fraction numerator 6 straight x minus 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

if space straight y space equals space sin to the power of negative 1 end exponent straight x comma space then space dy over dx space equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction

straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x minus 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space space straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x over denominator 5 end fraction minus fraction numerator 4 square root of 1 space minus space 4 straight x squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets fraction numerator 2 straight x.3 over denominator 3 end fraction space minus space fraction numerator 4 square root of 1 space minus space left parenthesis 2 straight x right parenthesis squared end root over denominator 5 end fraction close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets 2 straight x.3 over 5 minus 4 over 5 square root of 1 space minus space left parenthesis 2 straight x right parenthesis squared end root close square brackets

rightwards double arrow space straight y space equals space sin to the power of negative 1 end exponent open square brackets 2 straight x space square root of 1 minus open parentheses 4 over 5 close parentheses squared end root minus space 4 over 5 square root of 1 space minus left parenthesis 2 straight x right parenthesis squared end root close square brackets

we space know space that comma

sin to the power of negative 1 end exponent straight p space minus space sin to the power of negative 1 end exponent straight q space equals space sin to the power of negative 1 end exponent space left parenthesis straight p square root of 1 space minus space straight q squared end root minus straight q-th root of 1 space minus space straight p squared end root right parenthesis

Here comma space straight p space equals space 2 straight x space space and space straight q space equals 4 over 5

Differentiating space the space above space functions space with space respect space straight x comma space space we space have comma space

dy over dx space equals space fraction numerator 1 over denominator square root of 1 minus left parenthesis 2 straight x right parenthesis squared end root end fraction space straight x space 2 minus 0

rightwards double arrow space space dy over dx space equals space fraction numerator 2 over denominator square root of 1 minus 4 straight x squared end root end fraction
space
    Question 605
    CBSEENMA12035740

    Show that the function straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 3 close vertical bar comma space straight x element of bold R bold comma is  continuous but not differentiable at x=3. 

    Solution
    straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 3 close vertical bar space equals space open vertical bar table row cell 3 minus straight x comma space space space straight x less than 3 end cell row cell straight x minus 3 comma space straight x greater or equal than 3 end cell end table close vertical bar
    Let c be a real number.
    Case I: c<3 Then f(c) = 3-c.
    limit as straight x rightwards arrow straight c of straight f left parenthesis straight x right parenthesis space equals space limit as straight x rightwards arrow straight c of left parenthesis 3 minus straight x right parenthesis space equals space 3 minus straight c.
Since comma space limit as straight x rightwards arrow straight c of straight f left parenthesis straight x right parenthesis space equals space straight f left parenthesis straight c right parenthesis comma space straight f space is space continous space at space all space negatives space real space numbers.
    CaseII: c = 3. Then f(c) = 3 - 3 = 0
    limit as straight x rightwards arrow straight c of straight f left parenthesis straight x right parenthesis space equals space limit as straight x rightwards arrow straight c of left parenthesis straight x minus 3 right parenthesis space equals space 3 minus 3 space equals space 0
    Since limit as straight x rightwards arrow straight c of straight f left parenthesis straight x right parenthesis space equals space straight f left parenthesis 3 right parenthesis comma space f is continuous at x = 3.
    Case III: C>3. Then f(c)  = c - 3
    limit as straight x rightwards arrow straight c of straight f left parenthesis straight x right parenthesis space equals space limit as straight x rightwards arrow straight c of left parenthesis straight x minus 3 right parenthesis space equals space straight c minus 3.
    Since, limit as straight x rightwards arrow straight c of left parenthesis straight x minus 3 right parenthesis space equals space straight c minus 3.
    Therefore, f is a continuous function. 
    Now, we need to show that straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 3 close vertical bar comma space straight x space element of space bold R bold space is space not space differentiable space at space straight x space equals space 3.
    Consider the left hand limit of f at x = 3
    limit as straight h rightwards arrow 0 to the power of minus of fraction numerator straight f left parenthesis 3 plus straight h right parenthesis minus straight f left parenthesis 3 right parenthesis over denominator straight h end fraction space equals space limit as straight h rightwards arrow 0 to the power of minus of fraction numerator open vertical bar 3 plus straight h minus 3 close vertical bar minus open vertical bar 3 minus 3 close vertical bar over denominator straight h end fraction equals limit as straight h rightwards arrow 0 to the power of minus of fraction numerator open vertical bar straight h close vertical bar minus 0 over denominator straight h end fraction equals limit as straight h rightwards arrow 0 to the power of minus of fraction numerator negative straight h over denominator straight h end fraction equals 1
left parenthesis straight h less than 0 space rightwards double arrow space open vertical bar straight h close vertical bar space equals space minus straight h right parenthesis
    Consider the right hand limit of f at x = 3
    limit as straight h rightwards arrow 0 to the power of plus of fraction numerator straight f left parenthesis 3 plus straight h right parenthesis minus straight f left parenthesis 3 right parenthesis over denominator straight h end fraction limit as straight h rightwards arrow 0 to the power of plus of fraction numerator open vertical bar 3 plus straight h minus 3 close vertical bar minus open vertical bar 3 minus 3 close vertical bar over denominator straight h end fraction space equals limit as straight h rightwards arrow 0 to the power of plus of fraction numerator open vertical bar straight h close vertical bar minus 0 over denominator straight h end fraction equals limit as straight h rightwards arrow 0 to the power of plus of straight h over straight h equals 1
    left parenthesis straight h greater than 0 space rightwards double arrow space open vertical bar straight h close vertical bar space equals space straight h right parenthesis
    Since the left and right hand limits are not equal, f is not differentiable at x = 3.
    Question 607
    CBSEENMA12035841

    For what value of k is the following function continuous at x = 2?

    f ( x )  =2x + 1     ;   x<2    k            ;   x = 2        3x - 1  ;   x>1       

    Solution

    The given function f(x) will be continuous  at x = 2, if

     

    limx2-f(x)  = limx2+f(x)   = f(2)limx2-f(x)  = limx2- 2x + 1                  = 2 x 2 + 1                 = 5limx2+f(x)  = limx2+ 3x - 1                  = 3 x 2 - 1                 = 5 f(2) = k  k =  5

    Thus, for k = 5,  the given function is continuous at x = 2.

    Question 608
    CBSEENMA12035872

    Differentiate the following function w.r.t. x:

    y = sinxx + sin-1x

    Solution

    Y =  sin x x + sin-1 xLet  u =  sin x x  and  v = sin-1 x 

    Now y = u + v

    dydx = dudx + dvdx                                       ......(i)Consider  u =  sin x x

    Taking logarithms on both sides, we have,

    log u = x log ( sin x )

    Differentiating with respect to x, we have,

    1u. dudx = log  sin x  + xsinx. cos x  dudx =   sin x x  log  sin x  + x cot x    ....(ii)Consider  v = sin-1xdvdx = 11 - x x 12x                                 ....(iii)

    From (i), (ii)  and (iii)

    We get, dydx =  sin x x logsin x + x cot x  + 12x . 1 - x

    Question 609
    CBSEENMA12035876

    Find dydx if (x2 + y2)2 = xy.

    Solution

    x2 + y22 = xy            ............(i)

    Differentiating with respect to x, we have,

    2  x2 + y2   2x + 2y dydx = xdydx + y 2 x2 + 2y2    2x + 2y dydx = xdydx + y 4x3 + 4x2y dydx + 4xy2 + 4y3 dydx = xdydx + y 4x2y dydx +  4y3 dydx -  xdydx = y -  4x3 -  4xy2  4x2y  +  4y3 - x   dydx =  y -  4x3 -  4xy2 dydx =   y -  4x3 -  4xy2 4x2y  +  4y3 - x 

    Question 610
    CBSEENMA12035877

    If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0

    Solution

    y = 3 cos ( log x ) + 4 sin ( log x )

     

    Differentiating the above function with respect to x, we have,

     

        dydx = - 3 cos  log x x + 4 cos  log x x x dydx = - 3 cos  log x  + 4 cos  log x 

     

    Again differentiating the above function with respect to x, we have,

     

     xd2ydx2 + dydx = - 3 cos  log x x - 4 sin  log x x  x2d2ydx2 + xdydx = -  3 cos  log x  + 4 sin  log x     x2d2ydx2 + xdydx = - y   x2d2ydx2 + xdydx + y = 0

    Question 611
    CBSEENMA12035907

    Find all points of discontinuity of f, where f is defined as following:

    f ( x ) =  x  + 3 ,   x -3                  - 2x       ,   -3 < x < 3           6x + 2   ,     x  3

    Solution

    Here, f ( x ) = x + 3 ,      x3-2 x        ,-3<x<3  6x + 2   ,   x  3

    The function is defined on all the points and hence continuous

    possible points of discontinuity are  3 and  -3 . We need to check the 

    continuity of the function at two points  x = 3  and  x = - 3 .

     

    Case 1:  For   x = - 3,  f ( - 3 ) = - ( - 3 ) + 3 = 6

     

    LHL = limx  -3- f ( x ) = limh  0  - - 3 - h  + 3  = 6RHL = limx  -3+ f ( x ) = limh  0  - 2 - 3 + h   =  - 2  x  - 3  =6Since,  limx  -3- f ( x ) = limx  -3+ f ( x ) = f ( - 3 ) 

    So, f is continuous at  x = -3

     

    Case 2:  For  x =  3,  f ( 3 ) = 6 ( 3 ) + 2 = 20

     

    LHL = limx  3- f ( x ) = limh  0  - 2  3 - h  = - 2 x 3 = - 6RHL = limx  3+ f ( x ) = limh  0  6  3 + h  + 2  = 6 x 3 = 20Since,  limx  3- f ( x )   limx  3+ f ( x )

    Therefore, function  f  is not continuous at point  x = 3

    Hence  x = 3 is the only point of discontinuity.

    Question 612
    CBSEENMA12035908

    Find  dydx,  if  y =  cosxx +  sinx 1x

    Solution

    y =  cosx x +  sinx 1xFor simplication, Let us consider  y = A + B  such that  A =   cosx xand  B =   sinx 1x Then,   dydx = dAdx + dBdx                                      .........(i)A =   cosx x

    Taking logarithms on both the sides, we have,

    log A = x log ( cosx )

    1AdAdx = ddx  x log cosx  dAdx = Addx  x log cosx             =  cosx x  xddx   log  cosx  +log cosx  ddx  x              =   cosx x  x1cosx  - sinx  + log  cosx   1             =   cosx x  - x tanx + log  cosx            ........(ii)Now,  B =  sinx 1x B =  sinx 1x

    Taking logarithms on both the sides, we have,

    Log B = 1x log  sinx 1BdBdx = ddx  1x log  sinx   dBdx = Bddx  1x log  sinx              =  sinx 1x 1xddx  log  sinx +log  sinx  ddx  1x             =   sinx 1x 1x1sinx  cosx +log  sinx   -1x2             =   sinx 1x  1x cotx - -1x2 log  sinx              =   sinx 1x  x cotx -log  sinx  x2                .......(iii)

    Now, on substituting  (ii) and (iii) in (i) we get

    dydx =  cosx x  - x tanx + log  cosx  +  sinx 1x   x cotx - log  sinx x2

    Question 613
    CBSEENMA12035946

    Find the value of ‘a’ for which the function f defined as

    f ( x ) =  a sin π2 ( x + 1 ),       x  0tan x - sin x x3,            x > 0 

    is continuous at x = 0.

    Solution

    f ( x ) =  a sin π2 ( x + 1 ),       x  0tan x - sin xx3,             x > 0The given function    f  is defined for all  x R.It is known that a function  f   is continuous at  x = 0,  if   limx  0- f ( x ) = limx  0+ f ( x ) = f ( 0 )limx  0- f ( x ) = limx  0  a sin π2( x + 1 )   =  a sin π2 = a ( 1 )  =  alimx  0+ f ( x )  = limx  0 tan x - sin xx3 = limx  0 sin xcos x -  sin xx3

     

     = limx  0  sin x ( 1 - cos x )x3  =  limx  0  sin x . 2 sin2 x2x3 cos x = 2 limx  0 1cos x  x limx  0 sin xx  x limx  0   sin x2x 2= 2 x 1 x 1 x 14 x limx2  0   sin x2x2 2= 2 x 1 x 1 x 14 x 1  =  12Now,  f ( 0 ) = a sin π2 ( 0 + 1 ) = a sin π2 =  a x 1 = aSince  f  is continuous at  x = 0,  a = 12 

    Question 614
    CBSEENMA12035947

    Differentiate  X x cos x +  x2 + 1x2 - 1  w.r.t. x

    Solution

    Let  y = xx cos x  and  z = x2 + 1x2 - 1Consider  y = xx cos x 

    Taking log on both sides,

    log y = log ( xx cos x

    log y = x cos x log x

    Differentiating with respect to x,

    1y dydx =  x cos x  1x + log x ddx  x cos x 1y dydx =  cos x + log x    cos x - x sin x dydx = y    cos x + log x    cos x - x sin x  dydx = xx cos x   cos x + log x    cos x - x sin x         .......(i)Consider  z = x2 + 1x2 - 1

    Differentiating with respect to x,

    dzdx =  x2 - 1  . ddx x2 + 1  -  x2 + 1  .  ddx x2 - 1   x2 + 1 2=  x2 - 1   2 x  -   x2 + 1   2 x   x2 + 1 2= 2 x3 - 2 x - 2 x3 - 2 x x2 + 1 2= - 4 x x2 + 1 2                                                   ............(ii)

    Adding (i)  and  (ii)

    ddx  xx cos x + x2 + 1x2 - 1  = dydx + dzdx=  xx cos x  cos x + log x  cos x - x sin x  - 4 x  x2 - 1 2

    Question 615
    CBSEENMA12035948

    If   x = a  θ - sin θ ,   y =  1 + cos θ ,    find d2ydx2

    Solution

    x = a  θ - sin θ ,    y = a  1 + cos θ Differentiating  x  and  y  w.r.t. θ,dx =  a  1 - cos θ            .........(i)dy = - a sin θ                  ..........(ii)Dividing  ( 2 )  by  ( 1 ),dydx =  - a sin θ a  1 - cos θ 

     dydx = - sinθ1 - cos θ  dydx = - 2 sin θ2 cos θ22 sin2 θ2 dydx =- cos θ2sin θ2 dydx = - cot θ2

    Differentiating w.r.t. x,

    ddx  dydx = d  dydx x dx d2ydx2 =  d  dydx x dx  d2ydx2 =  d  - cot θ2  x dx      ....[ From equation (iii) ]d2ydx2 = -  - cosec2 θ2 x 12  x dx         = 12 cosec2 θ2 x 1 dx 

    = 12 cosec2 θ2 x 1a  1 - cos θ     ........[From equation (i) ]= cosec2 θ22 a  1 - cos θ = cosec2 θ22 a  2 sin2 θ2 = 14a x cosec4 θ2

    Question 616
    CBSEENMA12036015

    limit as straight n rightwards arrow infinity of space open parentheses fraction numerator left parenthesis straight n plus 1 right parenthesis left parenthesis straight n plus 2 right parenthesis....3 straight n over denominator straight n to the power of 2 straight n end exponent end fraction close parentheses to the power of 1 divided by straight n end exponent is equal to
    • 18/e4

    • 27/e2

    • 9/e2

    • 3 log 3-2

    Solution

    B.

    27/e2

    Let space straight I space equals space limit as straight n stack rightwards arrow infinity with space on top of open parentheses fraction numerator left parenthesis straight n plus 1 right parenthesis. left parenthesis straight n plus 2 right parenthesis..... left parenthesis 3 straight n right parenthesis over denominator straight n to the power of 2 straight n end exponent end fraction close parentheses to the power of 1 over straight n end exponent
space equals space space limit as straight n stack rightwards arrow infinity with space on top of open parentheses fraction numerator left parenthesis straight n plus 1 right parenthesis. left parenthesis straight n plus 2 right parenthesis..... left parenthesis straight n plus 2 straight n right parenthesis over denominator straight n to the power of 2 straight n end exponent end fraction close parentheses to the power of 1 over straight n end exponent

equals space limit as straight n stack rightwards arrow infinity with space on top of open square brackets open parentheses fraction numerator straight n plus 1 over denominator straight n end fraction close parentheses plus open parentheses fraction numerator straight n plus 2 over denominator straight n end fraction close parentheses.... open parentheses fraction numerator straight n plus 2 straight n over denominator straight n end fraction close parentheses close square brackets to the power of 1 over straight n end exponent
    taking space log space on space both space sides space comma we space get
log space straight I space equals space limit as straight n stack rightwards arrow infinity with space on top of open square brackets log space open curly brackets open parentheses 1 plus 1 over straight n close parentheses open parentheses 1 plus 2 over straight n close parentheses.... open parentheses 1 plus fraction numerator 2 straight n over denominator straight n end fraction close parentheses close curly brackets close square brackets
rightwards double arrow space log space straight I space equals space limit as straight n stack rightwards arrow infinity with space on top of 1 over straight n open square brackets log open parentheses 1 plus 1 over straight n close parentheses plus space log space open parentheses 1 plus 2 over straight n close parentheses space plus..... plus space log space open parentheses 1 plus fraction numerator 2 straight n over denominator straight n end fraction close parentheses close square brackets
rightwards double arrow space log space straight I space equals limit as straight n stack rightwards arrow infinity with space on top of 1 over straight n sum from straight r space equals 1 to 2 straight n of space log space open parentheses 1 plus straight r over straight n close parentheses
    rightwards double arrow space log space straight I space equals space integral subscript 0 superscript 2 space log space left parenthesis 1 plus straight x right parenthesis space dx
rightwards double arrow space log space straight I space equals space open square brackets log space space left parenthesis 1 space plus straight x right parenthesis. straight x space minus space integral fraction numerator 1 over denominator 1 plus straight x end fraction. straight x space dx close square brackets subscript 0 superscript 2
rightwards double arrow space log space space straight I space equals space left square bracket log space left parenthesis 1 space plus straight x right parenthesis. straight x right square bracket subscript 0 superscript 2 space minus integral subscript 0 superscript 2 open parentheses 1 minus fraction numerator 1 over denominator 1 plus straight x end fraction close parentheses dx
rightwards double arrow space log space space straight I space equals space 2. space log space 3 space minus space left square bracket straight x minus log space vertical line 1 plus straight x vertical line subscript 0 superscript 2
rightwards double arrow space log space space straight I space equals space 3. space log space 3 space minus 2
rightwards double arrow space log space space straight I space equals space space log space 27 space minus 2
therefore comma space straight l space equals space straight e to the power of log space 27 minus 2 end exponent space equals space 27. straight e to the power of negative 2 end exponent space equals space 27 over straight e squared
    Question 617
    CBSEENMA12036016

    The area (in sq. units) of the regionopen curly brackets left parenthesis straight x comma straight y right parenthesis colon straight y squared space greater or equal than space 2 straight x space and space straight x squared space plus straight y squared space less or equal than 4 straight x comma space straight x space greater or equal than 0 comma space straight y greater or equal than 0 close curly brackets is

    • straight pi minus 4 over 3
    • straight pi minus 8 over 3
    • straight pi minus fraction numerator 4 square root of 2 over denominator 3 end fraction
    • straight pi over 2 minus fraction numerator begin display style 2 end style square root of 2 over denominator 3 end fraction

    Solution

    B.

    straight pi minus 8 over 3
    Given equations of curves are 
    y2 = 2x ...(i)
    which is a parabola with vertex (0,0) and parallel to X-axis and 
    x2 +y2 = 4x  ... (ii)
    which is a circle with centre (2,0) and radius = 2
    on Substituting y2 = 2x in Eq (ii) we get
    x2 + 2x = 4x
    ⇒ x2 +2x = 4x
    ⇒ x2 = 2x
    ⇒ x = 0 or x = 2
    y =0 or y =±2 (using equ (i)]
    Now, the required area is the area of shaded region, i.e,

    Required space area space equals space fraction numerator Area space of space straight a space circle over denominator 4 end fraction space minus space integral subscript 0 superscript 2 square root of 2 straight x end root space dx
equals fraction numerator straight pi left parenthesis 2 right parenthesis squared over denominator 4 end fraction minus square root of 2 integral subscript 0 superscript 2 straight x to the power of 1 divided by 2 end exponent space dx
equals space straight pi space minus space square root of 2 open square brackets fraction numerator straight x to the power of 3 divided by 2 end exponent over denominator 3 divided by 2 end fraction close square brackets subscript 0 superscript 2
equals space straight pi space minus fraction numerator 2 square root of 2 over denominator 3 end fraction left square bracket 2 square root of 2 minus 0 right square bracket
equals open parentheses straight pi minus 8 over 3 close parentheses space sq space units
    Question 618
    CBSEENMA12036017

    If a curve y=f(x) passes through the point (1, −1) and satisfies the differential equation, y(1+xy) dx=x dy, then f(-1/2) is equal to

    • -2/5

    • -4/5

    • 2/5

    • 4/5

    Solution

    D.

    4/5

    Given differential equation is
     y( 1+ xy) dx = xdy
    ⇒ ydx + xy2 dx = xdy
    fraction numerator xdy minus ydx over denominator straight y squared end fraction space equals space xdx
rightwards double arrow space minus fraction numerator left parenthesis ydx minus xdy right parenthesis over denominator straight y squared end fraction space equals space xdx
On space integrating space both space sides comma space we space get
fraction numerator negative straight x over denominator straight y end fraction space equals space straight x squared over 2 plus straight C
therefore comma space it space passes space through space left parenthesis 1 comma negative 1 right parenthesis
1 space equals 1 half space plus straight C
rightwards double arrow straight C space equals space 1 half
Now comma space from space eq space left parenthesis straight i right parenthesis comma
minus straight x over straight y space equals space straight x squared over 2 space plus space 1 half
rightwards double arrow space straight x squared space plus space 1 space equals space minus fraction numerator 2 straight x over denominator straight y end fraction
straight y equals space minus space fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction
therefore comma space straight f open parentheses negative fraction numerator begin display style 1 end style over denominator 2 end fraction close parentheses space equals space 4 over 5

    Question 619
    CBSEENMA12036050

    If f and ga re differentiable  functions in (0,1) satisfying f(0) =2= g(1), g(0) = 0 and f(1) = 6, then for some c ε] 0,1[

    • 2f'(c) = g'(c)

    • 2f'(c) = 3g'(c)

    • f'(c) = g'(c)

    • f'(c) = 2g'(c)

    Solution

    D.

    f'(c) = 2g'(c)

    Given, f(0) = 2 = g(1), g(0) and f(1) = 6
    f and g are differentiable in (0,1)
    Let h(x) = f(x)-2g(x)  .... (i)
    h(0) = f(0)-2g(0)
    h(0) = 2-0
    h(0) = 2
    and h(1) = f(1)-2g(1) = 6-2(2)
    h(1) = 2, h(0) = h(1) = 2
    Hence, using rolle's theorem 
    h'(c) = 0, such that cε (0,1)
    Differentiating Eq. (i) at c, we get
    f'(c) -2g'(c) = 0
    f'(c) = 2g'(c)

    Question 621
    CBSEENMA12036078

    Consider the function f(x) = |x – 2| + |x – 5|, x ∈ R.
    Statement 1: f′(4) = 0
    Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

    • Statement 1 is false, statement 2 is true

    • Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1

    • Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

    • Statement 1 is true, statement 2 is false

    Solution

    C.

    Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

    f(x) = 7 – 2x; x < 2
    = 3; 2 ≤ x ≤ 5
    = 2x – 7; x > 5
    f(x) is constant function in [2, 5]
    f is continuous in [2, 5] and differentiable in (2, 5) and f(2) = f(5)
    by Rolle’s theorem f′(4) = 0
    ∴ Statement 2 and statement 1 both are true and statement 2 is correct explanation for statement 1.

    Question 622
    CBSEENMA12036081

    fraction numerator straight d squared straight x over denominator dy squared end fraction equal to
    • open parentheses fraction numerator straight d squared straight x over denominator dy squared end fraction close parentheses to the power of negative 1 end exponent
    • negative open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses to the power of negative 1 end exponent open parentheses dy over dx close parentheses to the power of negative 3 end exponent
    • open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent
    • negative open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 3 end exponent

    Solution

    D.

    negative open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 3 end exponent dy over dx space equals space fraction numerator 1 over denominator begin display style dx over dy end style end fraction

fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space straight d over dx open parentheses fraction numerator 1 over denominator dx divided by dy end fraction close parentheses space
equals space fraction numerator begin display style straight d end style over denominator begin display style dx end style end fraction open parentheses fraction numerator begin display style 1 end style over denominator begin display style dx divided by dy end style end fraction close parentheses. fraction numerator begin display style straight d end style over denominator begin display style dx end style end fraction
equals space minus space space fraction numerator begin display style 1 end style over denominator begin display style open parentheses dx over dy close parentheses squared end style end fraction. fraction numerator begin display style fraction numerator straight d squared straight x over denominator dy squared end fraction end style over denominator begin display style dx over dy end style end fraction
space equals space fraction numerator begin display style negative fraction numerator straight d squared straight x over denominator dy squared end fraction end style over denominator begin display style open parentheses dx over dy close parentheses cubed end style end fraction
equals negative open parentheses fraction numerator begin display style straight d squared straight x end style over denominator begin display style dy squared end style end fraction close parentheses open parentheses fraction numerator begin display style dy end style over denominator begin display style dx end style end fraction close parentheses cubed
    Question 623
    CBSEENMA12036089

    The shortest distance between line y - x = 1 and curve x = y2 is

    • √3/4

    • 3√2 /8

    • 8/3√2

    • 4/√3

    Solution

    A.

    √3/4

    B.

    3√2 /8

    y - x = 1
    y2 = x
    2 straight y space dy over dx space equals space 1
dy over dx space equals space fraction numerator 1 over denominator 2 straight y end fraction space equals space 1
straight y space equals space 1 half
straight x space equals space 1 fourth
tangent space at space open parentheses 1 fourth comma 1 half close parentheses
1 half straight y space equals space 1 half open parentheses straight x space plus 1 fourth close parentheses
straight y space equals space straight x space plus space 1 fourth
distance space equals space open vertical bar fraction numerator 1 minus begin display style 1 fourth end style over denominator square root of 2 end fraction close vertical bar space equals space fraction numerator 3 over denominator 4 square root of 2 end fraction space equals space fraction numerator 3 square root of 2 over denominator 8 end fraction

    Question 624
    CBSEENMA12036094

    limit as straight x space rightwards arrow 2 of space open parentheses fraction numerator square root of 1 minus cos space open curly brackets 2 left parenthesis straight x minus 2 right parenthesis close curly brackets end root over denominator straight x minus 2 end fraction close parentheses
    • does not exist

    • equal square root of 2

    • equal negative square root of 2

    • equal fraction numerator 1 over denominator square root of 2 end fraction

    Solution

    A.

    does not exist

    stack lim space with straight x space rightwards arrow 2 below square root of 2 space fraction numerator vertical line sin space left parenthesis straight x minus 2 right parenthesis vertical line over denominator left parenthesis straight x minus 2 right parenthesis end fraction
    therefore does not exist
    Question 626
    CBSEENMA12036108

    The equation of the tangent to the curvestraight y equals straight x space plus space 4 over straight x squared, that is parallel to the x-axis, is

    • y = 0

    • y = 1

    • y = 3

    • y =2

    Solution

    C.

    y = 3

    space straight y space equals space straight x space plus space 4 over straight x squared
    On differentiating w.r.t, we get
    dy/dx = 1-8/x3
    since the tangent is parallel to X-axis, therefore
    ⇒ x3 = 8
    ⇒ x = 2 and y = 3
    Question 629
    CBSEENMA12036221

    Let f be differentiable for all x. If f(1) = - 2 and f′(x) ≥ 2 for x ∈ [1, 6] , then

    • f(6) ≥ 8

    • f(6) < 8

    • f(6) < 5

    • f(6) = 5

    Solution

    A.

    f(6) ≥ 8

    As f(1) = - 2 & f′(x) ≥ 2 ∀ x ∈ [1, 6]
    Applying Lagrange’s mean value theorem
    fraction numerator straight f left parenthesis 6 right parenthesis space minus straight f left parenthesis 1 right parenthesis over denominator 5 end fraction space equals space straight f apostrophe space left parenthesis straight c right parenthesis space greater or equal than 2
rightwards double arrow space straight f left parenthesis 6 right parenthesis space greater or equal than space 10 plus space straight f left parenthesis 1 right parenthesis
rightwards double arrow space straight f left parenthesis 6 right parenthesis space greater or equal than space 10 minus 2
rightwards double arrow space straight f left parenthesis 6 right parenthesis space greater or equal than space 8

    Question 630
    CBSEENMA12036222

    If f is a real-valued differentiable function satisfying |f(x) – f(y)| ≤ (x – y)2 , x, y ∈ R and f(0) = 0, then f(1) equals

    • -1

    • 0

    • 2

    • 1

    Solution

    B.

    0

    straight f apostrophe left parenthesis straight x right parenthesis space equals space limit as straight h rightwards arrow 0 of space fraction numerator straight f left parenthesis straight x plus straight h right parenthesis minus straight f left parenthesis straight x right parenthesis over denominator straight h end fraction
vertical line straight f apostrophe space left parenthesis straight x right parenthesis vertical line space equals space limit as straight h rightwards arrow 0 of open vertical bar fraction numerator straight f left parenthesis straight x plus straight h right parenthesis minus straight f left parenthesis straight x right parenthesis over denominator straight h end fraction space close vertical bar less or equal than space limit as straight h rightwards arrow 0 of open vertical bar fraction numerator left parenthesis straight h right parenthesis squared over denominator straight h end fraction close vertical bar
    ⇒ |f′(x)| ≤ 0
    ⇒ f′(x) = 0
    ⇒ f(x) = constant As
    f(0) = 0 ⇒ f(1) = 0
    Question 631
    CBSEENMA12036226

    If straight x dy over dx space equals space straight y space left parenthesis log space straight y space minus space log space straight x space plus 1 right parenthesis commathen the solution of the equation is

    • straight y space log space open parentheses straight x over straight y close parentheses space equals cx
    • space straight x space log space open parentheses straight y over straight x close parentheses space equals space cy
    • log space open parentheses straight y over straight x close parentheses space equals space cx
    • log space open parentheses x over y close parentheses space equals space cx

    Solution

    C.

    log space open parentheses straight y over straight x close parentheses space equals space cx fraction numerator straight x space dy over denominator dx end fraction space equals space straight y space left parenthesis log space straight y space minus space log space straight x plus 1 right parenthesis
dy over dx space equals space straight y over straight x open parentheses log open parentheses straight y over straight x close parentheses plus 1 close parentheses
put space straight y space equals vx
dy over dx space equals space straight v plus space xdv over dx
rightwards double arrow space straight v space plus xdv over dx space equals space straight v space left parenthesis log space straight v plus 1 right parenthesis
xdv over dx space equals space straight v space log space straight v
rightwards double arrow space fraction numerator dv over denominator straight v space log space straight v end fraction space equals space dx over straight x
put space log space straight v equals space straight z
1 over straight v space dv space equals space dz
rightwards double arrow dz over straight z space equals space dx over straight x
In space straight z space equals space In space straight x space plus In space straight c
straight z space equals cx
log space straight v space equals space cx
log space open parentheses straight y over straight x close parentheses space equals cx
    Question 633
    CBSEENMA12036256

    let straight f left parenthesis straight x right parenthesis space equals space fraction numerator 1 minus space tan space straight x over denominator 4 straight x minus straight pi end fraction space comma space straight x not equal to space straight pi over 4 space straight x space element of space open square brackets 0 comma space straight pi over 2 close square brackets . If f(x) is continuous in open square brackets 0 space comma space straight pi over 2 close square brackets comma then f (π/4) is

    • 1

    • -1/2

    • -1

    • 1/2

    Solution

    B.

    -1/2

    straight f left parenthesis straight x right parenthesis space space equals space fraction numerator 1 minus space tan space straight x over denominator 4 straight x space minus space straight pi end fraction
limit as straight x rightwards arrow space straight pi divided by 4 of space straight f left parenthesis straight x right parenthesis space equals stack space lim with straight x rightwards arrow straight pi divided by 4 below space open parentheses fraction numerator 1 minus tan space straight x over denominator 4 space straight x minus straight pi end fraction close parentheses
By space straight L apostrophe space Hospital space rule
limit as straight x rightwards arrow space straight pi divided by 4 of space open parentheses fraction numerator negative sec squared space straight x over denominator 4 end fraction close parentheses space equals space fraction numerator negative sec squared space straight pi divided by 4 over denominator 4 end fraction space equals space minus 2 over 4
rightwards double arrow space limit as straight x rightwards arrow straight pi divided by 4 of space straight f left parenthesis straight x right parenthesis space equals space minus space 1 divided by 2
    Also f(x) is continuous in [0, π/ 2] ,
    so f(x) will be continuous at π / 4 .
    ∴ Value of function = Value of limit ⇒ f(π/ 4) = −1/ 2
    Question 634
    CBSEENMA12036258

    A function y = f(x) has a second order derivative f″(x) = 6(x – 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x – 5, then the function is

    • (x-1)2

    • (x-1)3

    • (x+1)3

    • (x+1)2

    Solution

    B.

    (x-1)3

    f''(x) = 6(x - 1) f'(x) = 3(x - 1)2 + c ........ (i)
    At the point (2, 1) the tangent to graph is y = 3x - 5 Slope of tangent = 3
    ∴ f'(2) = 3(2 - 1)2 + c = 3
    3 + c = 3
    ⇒ c = 0
    ∴ From equation (i) f'(x) = 3(x - 1)2
    f'(x) = 3(x - 1)2 f(x) = (x - 1)3 + k ...... (ii)
    Since graph passes through (2, 1)
    ∴ 1 = (2 - 1)2 + k k = 0
    ∴ Equation of function is f(x) = (x - 1)3

    Question 636
    CBSEENMA12036269
    Question 637
    CBSEENMA12036297

    If i=19 (xi -5) = 9 and i = 19(xi - 5)2 = 45 then the
    standard deviation of the 9 items x1, x2, ...., x9 is

    • 3

    • 9

    • 4

    • 2

    Solution

    D.

    2

    Standard deviation of xi - 5 is 

    σ = i =19(xi-5)29- i =19(xi -5)92σ = 5-1 = 2

    As, standard deviation remains constant if observations are added/subtracted by a fixed quantity.

    so σ of xi is 2

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation