Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035296

Differentiate the following w.r.t.x: straight x to the power of cos to the power of negative 1 end exponent straight x end exponent

Solution
space space space space space Let space straight y equals straight x to the power of cos to the power of negative 1 end exponent straight x end exponent
therefore space log space straight y equals log space straight x to the power of cos to the power of negative 1 end exponent straight x end exponent equals cos to the power of negative 1 end exponent straight x. log space straight x
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma space
1 over straight y dy over dx equals left parenthesis cos to the power of negative 1 end exponent straight x right parenthesis. open parentheses 1 over straight x close parentheses plus left parenthesis log space straight x right parenthesis open parentheses negative fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction close parentheses
therefore space dy over dx equals straight y open square brackets fraction numerator cos to the power of negative 1 end exponent straight x over denominator straight x end fraction minus fraction numerator log space straight x over denominator square root of 1 minus straight x squared end root end fraction close square brackets
therefore space dy over dx equals space straight x to the power of cos to the power of negative 1 end exponent straight x end exponent open square brackets fraction numerator cos to the power of negative 1 end exponent straight x over denominator straight x end fraction minus fraction numerator log space straight x over denominator square root of 1 minus straight x squared end root end fraction close square brackets

Some More Questions From Continuity and Differentiability Chapter