Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035455

If y = em sin1 x , prove that (1 - x2) y2 - x y1 = m2 y.

Solution
straight y equals straight e to the power of acos to the power of negative 1 end exponent straight x end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space straight y equals straight e to the power of acos to the power of negative 1 end exponent end exponent. fraction numerator negative straight a over denominator square root of 1 minus straight x squared end root end fraction space space rightwards double arrow space square root of 1 minus straight x squared end root space straight y subscript 1 equals negative acos to the power of negative 1 end exponent straight x
rightwards double arrow space square root of 1 minus straight x squared end root space straight y subscript 1 equals negative straight a space straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
rightwards double arrow space left parenthesis 1 minus straight x squared right parenthesis straight y subscript 1 squared space equals straight a squared straight y squared

Differentiating both sides w.r.t. x, we get,

(1 - x2). 2 y1 y2 + y12 (-2 x) = 2 m2 y yi

Dividing both sides by 2 y1 , we get,

(1 - x2) y2 - x y1 = m2 y

Some More Questions From Continuity and Differentiability Chapter