A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035046

Differentiate space straight x to the power of tan space straight x end exponent plus square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root straight w. straight r. straight t. straight x.

Solution
Let space space space space space space space space space space space straight y equals straight x to the power of tan space straight x end exponent plus square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root
Put space straight x to the power of tan space straight x end exponent equals straight u comma space square root of fraction numerator straight x squared plus 1 over denominator straight x end fraction end root equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space space space space space space space straight u equals straight x to the power of tan space straight x end exponent
therefore space space space space space space log space straight u equals log space space straight x to the power of tan space straight x end exponent
therefore space space space space space space log space straight u equals space tan space straight x. log space straight x
therefore space 1 over straight u du over dx equals left parenthesis tan space straight x right parenthesis. open parentheses 1 over straight x close parentheses plus left parenthesis log space straight x right parenthesis. sec squared straight x
therefore space space space space space space space du over dx equals straight u open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets
therefore space space space space space space space du over dx equals straight x to the power of tan space straight x end exponent open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space space space space space space space space straight v equals open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses to the power of 1 half end exponent
therefore space dv over dx equals 1 half open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses to the power of 1 half end exponent. straight d over dx open parentheses fraction numerator straight x squared plus 1 over denominator straight x end fraction close parentheses equals 1 half open parentheses fraction numerator straight x over denominator straight x squared plus 1 end fraction close parentheses to the power of 1 half end exponent. open square brackets fraction numerator straight x.2 straight x minus left parenthesis straight x squared plus 1 right parenthesis.1 over denominator straight x squared end fraction close square brackets
space space space space space space space space space space space space space equals 1 half fraction numerator straight x to the power of begin display style 1 half end style end exponent over denominator left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction cross times fraction numerator straight x squared minus 1 over denominator straight x squared end fraction
therefore space dv over dx equals fraction numerator straight x squared minus 1 over denominator 2 straight x to the power of begin display style 3 over 2 end style end exponent left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx equals straight x to the power of tan space straight x end exponent open square brackets fraction numerator tan space straight x over denominator straight x end fraction plus sec squared straight x. log space straight x close square brackets plus fraction numerator straight x squared minus 1 over denominator 2 straight x to the power of begin display style 3 over 2 end style end exponent left parenthesis straight x squared plus 1 right parenthesis to the power of begin display style 1 half end style end exponent end fraction

Some More Questions From Continuity and Differentiability Chapter