A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035427

If space straight y equals sin to the power of negative 1 end exponent straight x comma space then space show space that space open parentheses 1 minus straight x squared close parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx equals 0.

Solution
space space space space space space space space space space space space straight y equals sin to the power of negative 1 end exponent straight x
therefore space space space dy over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction space space space space space space space rightwards double arrow space space square root of 1 minus straight x squared end root dy over dx equals 0
therefore space left parenthesis 1 minus straight x squared right parenthesis open parentheses dy over dx close parentheses squared equals 0
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space left parenthesis 1 minus straight x squared right parenthesis.2 dy over dx fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared. left parenthesis negative 2 space straight x right parenthesis equals 0
Dividing space both space sides space by space 2 dy over dx comma space we space get comma
space left parenthesis 1 minus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight x dy over dx equals 0

Some More Questions From Continuity and Differentiability Chapter