Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034939

Differentiate the following functions w.r.t.x: straight e to the power of sin space straight x end exponent. sine to the power of straight x

Solution
Let space space space space space straight y equals straight e to the power of sin space straight x end exponent. sine to the power of straight x
therefore space dy over dx equals straight e to the power of sin space straight x end exponent. straight d over dx left square bracket sine to the power of straight x right square bracket plus sin space straight e to the power of straight x. straight d over dx left parenthesis straight e space to the power of sin space straight x end exponent right parenthesis
space space space space space space space space space space space space space equals straight e to the power of sin space straight x end exponent. cose to the power of straight x straight d over dx left parenthesis straight e to the power of straight x right parenthesis plus sin space straight e to the power of straight x. straight e to the power of sin space straight x end exponent. straight d over dx left parenthesis sin space straight x right parenthesis
space space space space space space space space space space space space space equals straight e to the power of sin space straight x end exponent. cos space straight e to the power of straight x. ex plus sin space straight e to the power of straight x. straight e to the power of sin space straight x end exponent. cos space straight x
space space space space space space space space space space space space space equals straight e to the power of sin space straight x end exponent left square bracket straight e to the power of straight x space cos space straight e to the power of straight x plus sin space straight e to the power of straight x. cos space straight x right square bracket

Some More Questions From Continuity and Differentiability Chapter