A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035197

Differentiate space the space following space functions space by space substitutions space method space colon
cos to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses comma space minus fraction numerator 1 over denominator square root of 2 end fraction less than straight x less than fraction numerator 1 over denominator square root of 2 end fraction

Solution
Let space space straight y equals cos to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses
Put space space straight x equals sin space straight theta
therefore space space space space straight y equals cos to the power of negative 1 end exponent open parentheses 2 sin space straight theta square root of 1 minus sin squared space straight theta end root close parentheses equals cos to the power of negative 1 end exponent open parentheses 2 sin space straight theta space cos space straight theta close parentheses
space space space space space space space space space space equals cos to the power of negative 1 end exponent open parentheses sin space 2 straight theta close parentheses equals cos to the power of negative 1 end exponent open square brackets cos open parentheses straight pi over 2 minus 2 straight theta close parentheses close square brackets equals straight pi over 2 minus 2 straight theta
therefore space space space space space straight y equals straight pi over 2 minus 2 space sin to the power of negative 1 end exponent straight x
therefore space dy over dx equals 0 minus fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction equals negative fraction numerator 2 over denominator square root of 1 minus straight x squared end root end fraction

Some More Questions From Continuity and Differentiability Chapter