Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035872

Differentiate the following function w.r.t. x:

y = sinxx + sin-1x

Solution

Y =  sin x x + sin-1 xLet  u =  sin x x  and  v = sin-1 x 

Now y = u + v

dydx = dudx + dvdx                                       ......(i)Consider  u =  sin x x

Taking logarithms on both sides, we have,

log u = x log ( sin x )

Differentiating with respect to x, we have,

1u. dudx = log  sin x  + xsinx. cos x  dudx =   sin x x  log  sin x  + x cot x    ....(ii)Consider  v = sin-1xdvdx = 11 - x x 12x                                 ....(iii)

From (i), (ii)  and (iii)

We get, dydx =  sin x x logsin x + x cot x  + 12x . 1 - x

Some More Questions From Continuity and Differentiability Chapter