Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034549

Examine the following functions for continuity :
straight f left parenthesis straight x right parenthesis equals fraction numerator straight x squared minus 25 over denominator straight x minus 5 end fraction

Solution
straight f left parenthesis straight x right parenthesis equals fraction numerator straight x squared minus 25 over denominator straight x minus 5 end fraction
For f to be defined,
x + 5 ≠  0, i.e. x ≠ – 5
∴Df = Set of all real numbers except – 5 = R - {- 5}
Let c≠– 5 be any real number.
therefore space straight f left parenthesis straight c right parenthesis equals fraction numerator straight c squared minus 25 over denominator straight c plus 25 end fraction equals fraction numerator left parenthesis straight c minus 5 right parenthesis left parenthesis straight c plus 5 right parenthesis over denominator straight c plus 5 end fraction equals straight c minus 5
Also space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below fraction numerator straight x squared minus 25 over denominator straight x plus 5 end fraction equals Lt with straight x rightwards arrow straight c below fraction numerator left parenthesis straight x minus 5 right parenthesis left parenthesis straight x plus 5 right parenthesis over denominator straight x plus 5 end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight x rightwards arrow straight c below left parenthesis straight x minus 5 right parenthesis equals straight c minus 5
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
∴ f is continuous at x = c.
But c ≠ – 5 is any real number.
∴ f is continuous at every real number c ∈ Df.
∴ f is continuous function.

Some More Questions From Continuity and Differentiability Chapter