Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034444

Test the continuity of the function at x = 3, where
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space comma space space straight x not equal to 3 end cell row cell space space space space space space space 0 space space space space space space space space space comma space space straight x equals 3 end cell end table close

Solution
We have
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space comma space space straight x not equal to 3 end cell row cell space space space space space space 0 space space space space space space space space space space comma space space space straight x equals 3 end cell end table close
space Lt with straight x rightwards arrow 3 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 3 to the power of minus below fraction numerator open vertical bar straight x minus 3 close vertical bar over denominator straight x left parenthesis straight x minus 3 right parenthesis end fraction space space space space space space space space space space space space left square bracket Put space straight x equals 3 minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow 3 to the power of minus right square bracket
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar 3 minus straight h minus 3 close vertical bar over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis 3 minus straight h minus 3 right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator open vertical bar negative straight h close vertical bar over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis negative straight h right parenthesis end fraction equals space Lt with straight h rightwards arrow 0 below fraction numerator straight h over denominator left parenthesis 3 minus straight h right parenthesis left parenthesis negative straight h right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below fraction numerator 1 over denominator straight h minus 3 end fraction equals fraction numerator 1 over denominator 0 minus 3 end fraction equals negative 1 third
Also space straight f left parenthesis 3 right parenthesis space equals 0
therefore space Lt with straight x rightwards arrow 3 to the power of minus below space straight f left parenthesis straight x right parenthesis not equal to straight f left parenthesis 3 right parenthesis
∴ f(x) is discontinuous at x = 3.

Some More Questions From Continuity and Differentiability Chapter