A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035185

Find space dy over dx space in space the space following space colon
space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses comma space minus fraction numerator 1 over denominator square root of 3 end fraction less than straight x less than fraction numerator 1 over denominator square root of 3 end fraction

Solution
Let space space space space straight y equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space space space space straight x equals tan space straight theta
therefore space space space space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses equals space tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis equals 3 straight theta space space space space rightwards double arrow space straight y equals 3 space tan to the power of negative 1 end exponent space straight x
therefore space dy over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction.

Some More Questions From Continuity and Differentiability Chapter