Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034623

Find all points of discontinuity of f, where f is defined by
straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell open vertical bar straight x close vertical bar plus 3 comma space if space straight x less or equal than negative 3 end cell row cell negative 2 straight x comma if space minus 3 less than straight x greater than 3 end cell row cell 6 straight x plus 2 space space comma space if space straight x greater or equal than 3 end cell end table close

Solution
Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table row cell open vertical bar straight x close vertical bar plus 3 comma space if space straight x less or equal than negative 3 end cell row cell negative 2 straight x comma if space minus 3 less than straight x greater than 3 end cell row cell 6 straight x plus 2 space space comma space if space straight x greater or equal than 3 end cell end table close
Function f is defined for all points of the real line.
Let c be any real number.
Five cases arise :    
Case I: c < –3

space space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis open vertical bar straight x close vertical bar plus 3 right parenthesis equals open vertical bar straight c close vertical bar plus 3
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals open vertical bar straight c close vertical bar plus 3
therefore space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
∴ f is continuous at all point x < – 3
Case II: c = –3

Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of minus below left parenthesis open vertical bar straight x close vertical bar plus 3 right parenthesis equals open vertical bar negative 3 close vertical bar plus 3 equals 3 plus 3 equals 6
Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below left parenthesis negative 2 straight x right parenthesis equals 6
Also space straight f left parenthesis straight c right parenthesis equals straight f left parenthesis negative 3 right parenthesis equals open vertical bar negative 3 close vertical bar plus 3 equals 3 plus 3 plus equals 6
therefore space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis equals 6
∴ f  is continuous at x = – 3
Case III: – 3 < c < 3
f(x) = – 2 x is a continuous function as it is a polynomial.
Case IV : c = 3

space space space space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of minus below left parenthesis negative 2 straight x right parenthesis equals negative 6
space space space space space Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c to the power of plus below left parenthesis 6 straight x plus 2 right parenthesis equals 18 plus 2 equals 20
therefore space space Lt with straight x rightwards arrow straight c to the power of minus below straight f left parenthesis straight x right parenthesis not equal to Lt with straight x rightwards arrow straight c to the power of plus below straight f left parenthesis straight x right parenthesis
∴ f is discontinuous at x = 3.
Case V ; c > 3

space space space space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight c below left parenthesis 6 straight x plus 2 right parenthesis equals 6 straight c plus 2
Also space space space space space space space straight f left parenthesis straight c right parenthesis equals 6 straight c plus 2
therefore space space space space space Lt with straight x rightwards arrow straight c below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight c right parenthesis
∴ f is continuous at all points x > 3.

Some More Questions From Continuity and Differentiability Chapter