A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034753

If space straight y equals fraction numerator 3 minus straight u over denominator 2 plus straight u end fraction comma straight u equals fraction numerator 4 straight x over denominator 1 minus straight x squared end fraction space find space dy over dx

Solution
Here space straight y equals fraction numerator 3 minus straight u over denominator 2 plus straight u end fraction
therefore space dy over dx equals fraction numerator left parenthesis 2 plus straight u right parenthesis begin display style straight d over du end style left parenthesis 3 minus straight u right parenthesis minus left parenthesis 3 minus straight u right parenthesis begin display style straight d over du end style left parenthesis 2 plus straight u right parenthesis over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction equals fraction numerator left parenthesis 2 plus straight u right parenthesis left parenthesis negative 1 right parenthesis minus left parenthesis 3 minus straight u right parenthesis.1 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction
space space space space space space space space space space space space equals fraction numerator 2 minus straight u minus 3 plus straight u over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction
therefore space dy over dx equals negative fraction numerator 5 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also space straight u equals fraction numerator 4 straight x over denominator 1 minus straight x squared end fraction equals 4 open square brackets fraction numerator straight x over denominator 1 minus straight x squared end fraction close square brackets
therefore space du over dx equals 4 open curly brackets fraction numerator left parenthesis 1 minus straight x squared right parenthesis begin display style straight d over dx end style left parenthesis straight x right parenthesis minus straight x. begin display style straight d over dx end style left parenthesis 1 minus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close curly brackets
space space space space space space space space space space space space space equals 4 open square brackets fraction numerator left parenthesis 1 minus straight x squared right parenthesis.1 minus straight x. left parenthesis negative 2 straight x right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close square brackets equals 4 open square brackets fraction numerator 1 minus straight x squared plus 2 straight x squared over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction close square brackets
therefore space du over dx equals fraction numerator 4 left parenthesis 1 minus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space dy over dx equals dy over du. du over dx equals negative fraction numerator 5 over denominator left parenthesis 2 plus straight u right parenthesis squared end fraction. fraction numerator 4 left parenthesis 1 plus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis right square bracket
space space space space space space space space space space space space space space space space space equals fraction numerator negative 5 left parenthesis 1 minus straight x squared right parenthesis squared over denominator 4 left parenthesis 1 plus 2 straight x minus straight x squared right parenthesis squared end fraction. fraction numerator 4 left parenthesis 1 plus straight x squared right parenthesis over denominator left parenthesis 1 minus straight x squared right parenthesis squared end fraction equals negative fraction numerator 5 left parenthesis 1 minus straight x squared right parenthesis squared over denominator left parenthesis 1 plus 2 straight x minus straight x squared right parenthesis squared end fraction

Some More Questions From Continuity and Differentiability Chapter