Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034608

Find the value of k so that the function f is continuous at the indicated point
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight k space straight x squared space comma space straight x greater or equal than 2 end cell row cell space space 3 space space space comma space straight x less than 2 end cell end table close
at space straight x equals 2

Solution
Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight k space straight x squared space comma space straight x greater or equal than 2 end cell row cell space space 3 space space space comma space straight x less than 2 end cell end table close
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis straight k space straight x squared right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space equals space Lt with straight h rightwards arrow 0 below left curly bracket straight k left parenthesis 2 minus straight h right parenthesis squared right curly bracket equals straight k space Lt with straight h rightwards arrow 0 below left parenthesis straight h squared minus 4 straight h plus 4 right parenthesis equals straight k left parenthesis 0 minus 0 plus 4 right parenthesis equals 4 straight k
space space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 2 to the power of plus below 3 equals 3
Since space straight f left parenthesis straight x right parenthesis space is space continous space at space straight x equals 2
therefore Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis
rightwards double arrow space 4 straight k equals 3 space space space space space rightwards double arrow space straight k equals 3 over 4

Some More Questions From Continuity and Differentiability Chapter