Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034430

Show that the function defined by g(x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x

Solution

g(x) = x – [x]
Let a be any integer.
.Lt with straight x rightwards arrow straight a to the power of minus below straight g left parenthesis straight x space right parenthesis space equals Lt with straight x rightwards arrow straight a to the power of minus below space open curly brackets straight x minus left square bracket straight x right square bracket close curly brackets space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x minus space straight a minus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a to the power of minus
space space space space space space space space space space space space space space space space space space space equals stack Lt space space with straight x rightwards arrow 0 below space space open curly brackets left parenthesis straight a minus straight h right parenthesis minus left square bracket straight a minus straight h right square bracket close curly brackets equals space Lt with straight h rightwards arrow 0 below space open curly brackets left parenthesis straight a minus straight h right parenthesis minus left parenthesis straight a minus 1 right parenthesis close curly brackets
space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space left parenthesis straight a minus straight h minus straight a plus 1 right parenthesis equals straight a minus 0 minus straight a plus 1 equals 1
Lt with straight x rightwards arrow straight a to the power of plus below space straight g left parenthesis straight x space right parenthesis equals space Lt with straight x rightwards arrow straight a to the power of plus below open curly brackets straight x minus left square bracket straight x right square bracket space close curly brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Put space straight x equals straight a plus straight h comma space straight h greater than 0 space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a to the power of plus right square bracket
space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space space open curly brackets left parenthesis straight a plus straight h right parenthesis minus left square bracket straight a plus straight h right square bracket close curly brackets equals space Lt with straight h rightwards arrow 0 below space open curly brackets left parenthesis straight a plus straight h right parenthesis minus straight a close curly brackets equals space Lt with straight h rightwards arrow 0 below space left parenthesis straight h right parenthesis
space space space space space space space space space space space space space space space space space space space equals 0
therefore space Lt with straight x rightwards arrow straight a to the power of minus below space straight f left parenthesis straight x right parenthesis not equal to space Lt with straight x rightwards arrow straight a to the power of plus below space straight f left parenthesis straight x right parenthesis
∴ f is discontinuous at x = a
But a is any integral point.
∴ f is discontinuous at all integral points.

Some More Questions From Continuity and Differentiability Chapter