Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034554

Prove that the function defined by f(x) = tan x is a continuous function

Solution
Let f(x) = tan x
straight D subscript straight f equals straight R space except space od space multiples space of space straight pi over 2.
Let space straight a space be space any space real space number space element of space straight D subscript straight f
space space space space space space space space space space space space space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow straight a below tan space straight x space left square bracket Put space straight x equals straight a plus straight h space so space that space straight h rightwards arrow 0 space as space straight x rightwards arrow straight a right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below space tan left parenthesis straight a plus straight h right parenthesis equals Lt with straight h rightwards arrow 0 below fraction numerator sin left parenthesis straight a plus straight h right parenthesis over denominator cos space left parenthesis straight a plus straight h right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below fraction numerator sin space straight a space cos space straight h plus cosa space sin space straight h over denominator cos space acos space straight h minus sin space straight a space sin space straight h end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator sin space straight a.1 plus cos space straight a.0 over denominator cos space straight a.1 minus sin space straight a.0 end fraction equals fraction numerator sin space straight a over denominator cos space straight a end fraction equals tan space straight a
Also space space space space straight f left parenthesis straight a right parenthesis equals tan space straight a
therefore space Lt with straight x rightwards arrow straight a below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis straight a right parenthesis equals tan space straight a
∴ f is continuous at x = a
But a is any member of Df
∴ f is continuous at every point of the domain,
∴ tan x is continuous at every point of the domain.

Some More Questions From Continuity and Differentiability Chapter