Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034723

Differentiate square root of a italic plus square root of a italic plus square root of a italic plus x to the power of italic 2 end root end root end root w.r.t x

Solution
Let space straight y equals square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root equals open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets to the power of begin inline style 1 half end style end exponent
therefore space dy over dx equals 1 half open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets to the power of negative 1 half end exponent straight d over dx open square brackets straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root close square brackets
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times straight d over dx open parentheses straight a plus square root of straight a plus straight x squared end root close parentheses to the power of begin inline style 1 half end style end exponent
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times 1 half open parentheses straight a plus square root of straight a plus straight x squared end root close parentheses to the power of begin inline style negative 1 half end style end exponent. straight d over dx left parenthesis straight a plus straight x squared right parenthesis to the power of begin inline style 1 half end style end exponent
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x squared end root end root end fraction cross times 1 half left parenthesis straight a plus straight x squared right parenthesis to the power of begin inline style negative 1 half end style end exponent straight d over dx left parenthesis straight a plus straight x squared right parenthesis
equals fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus square root of straight a plus straight x squared end root end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight a plus straight x squared end root end fraction cross times 2 straight x
equals fraction numerator 1 over denominator 4 square root of straight a plus straight x squared end root square root of straight a plus square root of straight a plus straight x squared end root end root square root of straight a plus square root of straight a plus square root of straight a plus straight x squared end root end root end root end fraction

Some More Questions From Continuity and Differentiability Chapter