A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034977

Find space dy over dx space when space sin left parenthesis straight x space straight y right parenthesis plus straight x over straight y equals straight x squared minus straight y.

Solution
space space space space space sin left parenthesis straight x space straight y right parenthesis plus straight x over straight y equals straight x squared minus straight y.
Differentiating space both space sides space straight w. straight r. straight t. space straight x comma
cos left parenthesis straight x space straight y right parenthesis. straight d over dx left parenthesis straight x space straight y right parenthesis plus fraction numerator straight y begin display style straight d over dx end style left parenthesis straight x right parenthesis minus straight x begin display style straight d over dx end style left parenthesis straight y right parenthesis over denominator straight y squared end fraction equals 2 straight x minus dy over dx
therefore space cos left parenthesis straight x space straight y right parenthesis cross times open square brackets straight x dy over dx plus straight y.1 close square brackets plus fraction numerator straight y.1 minus straight x begin display style dy over dx end style over denominator straight y squared end fraction equals 2 straight x minus dy over dx
therefore space straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis dy over dx plus straight y cubed cos left parenthesis straight x space straight y right parenthesis plus straight y minus straight x dy over dx equals 2 straight x space straight y squared minus straight y squared dy over dx
therefore space left square bracket straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis minus straight x plus straight y squared right square bracket dy over dx equals 2 space straight x space straight y squared minus straight y cubed space cos left parenthesis straight x space straight y right parenthesis minus straight y
therefore space dy over dx equals fraction numerator straight y left square bracket 2 space straight x space straight y minus straight y squared space cos left parenthesis straight x space straight y right parenthesis minus 1 right square bracket over denominator straight x space straight y squared cos left parenthesis straight x space straight y right parenthesis minus straight x plus straight y squared end fraction.

Some More Questions From Continuity and Differentiability Chapter