A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034817

If space space ax squared plus 2 hxy plus by squared space equals space 1 comma space verify space that space dy over dx cross times dx over dy equals 1

Solution
We space have space ax squared plus 2 hxy plus by squared equals 1... left parenthesis 1 right parenthesis
Differentiating space both space sides space of space left parenthesis 1 right parenthesis comma space straight w. straight r. straight t. straight x space regarding space straight y space as space straight a space function space of space straight x. space we space get comma
2 ax plus 2 straight h open parentheses straight x. dy over dx plus straight y.1 close parentheses plus straight b.2 straight y dy over dx equals 0
or space ax plus hx dy over dx plus hy plus by dy over dx equals 0
or space dy over dx equals negative fraction numerator ax plus hy over denominator hx plus by end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.. left parenthesis 2 right parenthesis space
Again Differentiating both sides of (1), w.r.t. y regarding x as a function of y, we get,
space space space space space 2 straight a. straight x dx over dy plus 2 straight h open parentheses straight x.1 plus straight y dx over dy close parentheses plus 2 by equals 0
or space ax plus dx over dy plus hx plus hy dx over dy plus by equals 0
therefore space dx over dy left square bracket ax plus hy right square bracket equals negative left parenthesis hx plus by right parenthesis space or space dy over dx equals negative fraction numerator hx plus bx over denominator ax plus hy end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
Multiplying space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma
dy over dx cross times dx over dy equals negative fraction numerator ax plus hy over denominator hx plus hy end fraction cross times negative fraction numerator hx plus bx over denominator ax plus hy end fraction equals 1

Some More Questions From Continuity and Differentiability Chapter