A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035147

Prove space that space straight d over dx open square brackets straight x over 2 square root of straight a squared minus straight x squared end root plus straight a squared over 2 sin to the power of negative 1 end exponent straight x over straight a close square brackets equals square root of straight a squared minus straight x squared end root

Solution
straight L. straight H. straight S. space equals straight d over dx open square brackets straight x over 2 square root of straight a squared minus straight x squared end root plus straight a squared over 2 sin to the power of negative 1 end exponent straight x over straight a close square brackets
space space space space space space space space space space space space space equals 1 half straight d over dx open parentheses straight x square root of straight a squared minus straight x squared end root close parentheses plus straight a squared over 2 straight d over dx open parentheses sin to the power of negative 1 end exponent straight x over straight a close parentheses
space space space space space space space space space space space space space equals 1 half open square brackets straight x. fraction numerator negative 2 straight x over denominator 2 square root of straight a squared minus straight x squared end root end fraction plus square root of straight a squared minus straight x squared end root.1 close square brackets plus straight a squared over 2. fraction numerator 1 over denominator square root of 1 minus open parentheses begin display style straight x over straight a end style close parentheses squared end root end fraction.1 over straight a
space space space space space space space space space space space space space equals 1 half open square brackets negative fraction numerator straight x squared over denominator square root of straight a squared minus straight x squared end root end fraction plus fraction numerator square root of straight a squared minus straight x squared end root over denominator 1 end fraction close square brackets plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction
space space space space space space space space space space space space space equals 1 half open square brackets fraction numerator negative straight x squared plus straight a squared minus straight x squared over denominator square root of straight a squared minus straight x squared end root end fraction close square brackets plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals fraction numerator straight a squared minus 2 straight x squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction plus fraction numerator straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction
space space space space space space space space space space space space space equals fraction numerator straight a squared minus 2 straight x squared plus straight a squared over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals fraction numerator 2 left parenthesis straight a squared minus straight x squared right parenthesis over denominator 2 square root of straight a squared minus straight x squared end root end fraction equals square root of straight a squared minus straight x squared end root equals straight R. straight H. straight S

Some More Questions From Continuity and Differentiability Chapter