Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035403

If y=cos(log x)+sin(log x), then prove that x2y2+x y1+y=0 where y1 and y2are first and second order derivatives.

Solution
space space space space space space space space space space space space space space space space space space space space straight y equals cos left parenthesis log space straight x right parenthesis plus sin left parenthesis log space straight x right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space space space space space space space space space space space straight y subscript 1 equals negative fraction numerator sin left parenthesis log space straight x right parenthesis over denominator straight x end fraction plus fraction numerator cos left parenthesis log space straight x right parenthesis over denominator straight x end fraction
rightwards double arrow space space space space space space space space space space space straight x space straight y subscript 1 equals negative sin left parenthesis log space straight x right parenthesis plus cos left parenthesis log space straight x right parenthesis
again space differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space space space space space space space space space space space straight x space straight y squared plus 1. straight y to the power of 1 equals negative fraction numerator cos left parenthesis log space straight x right parenthesis over denominator straight x end fraction minus fraction numerator sin left parenthesis log space straight x right parenthesis over denominator straight x end fraction
or space space space space space space space space space space space space space space space straight x squared straight y subscript 2 plus xy subscript 1 equals negative cos left parenthesis log space straight x right parenthesis minus sin left parenthesis log space straight x right parenthesis
or space space space space space space space space space straight x squared straight y subscript 2 plus xy subscript 1 plus straight y equals negative straight y space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
therefore space space space straight x squared straight y subscript 2 plus xy subscript 1 plus straight y plus straight y equals 0

Some More Questions From Continuity and Differentiability Chapter