A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12034839

If space straight y equals straight x to the power of straight y comma space prove space that space dy over dx equals fraction numerator straight y squared over denominator straight x left parenthesis 1 minus straight y space log space straight x right parenthesis end fraction.

Solution
Here space space space space space straight y equals straight x to the power of straight y
therefore space log space straight y equals log space straight x to the power of straight y space space space space space space space space space rightwards double arrow space log space straight y equals straight y space log space straight x
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
1 over straight y dy over dx equals straight y.1 over straight x plus log space straight x. dy over dx
therefore space open parentheses 1 over straight y minus log space straight x close parentheses dy over dx equals straight y over straight x space space space space rightwards double arrow space open parentheses fraction numerator 1 minus straight y space log space straight x over denominator straight y end fraction close parentheses dy over dx equals straight y over straight x
therefore space space space space space space space space space space space space space dy over dx equals fraction numerator straight y squared over denominator straight x left parenthesis 1 minus straight y space log space straight x right parenthesis end fraction.

Some More Questions From Continuity and Differentiability Chapter