A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035311

Find space dy over dx space when space straight y equals left parenthesis sin space straight x right parenthesis to the power of straight x plus sin to the power of negative 1 end exponent square root of straight x.

Solution
Here space straight y equals left parenthesis sin space straight x right parenthesis to the power of straight x plus sin to the power of negative 1 end exponent square root of straight x
Put space space left parenthesis sin space straight x right parenthesis to the power of straight x equals straight u comma space sin to the power of negative 1 end exponent square root of straight x equals straight v
therefore space straight y equals straight u plus straight v space
therefore space dy over dx equals du over dx plus dv over dx
Now space straight u equals left parenthesis sin space straight x right parenthesis to the power of straight x space rightwards double arrow space log space straight u equals log left parenthesis sin space straight x right parenthesis to the power of straight x
rightwards double arrow space log space straight u equals straight x. space log space sin space straight x.
Differentiating space both space sides space straight w. straight r. straight t. straight x.
1 over straight u du over dx equals straight x. open parentheses fraction numerator 1 over denominator sin space straight x end fraction cross times cos space straight x close parentheses plus left parenthesis log space sin space straight x right parenthesis.1
rightwards double arrow space du over dx equals straight u left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket
rightwards double arrow space du over dx equals left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket
Also space space space space straight v equals sin to the power of negative 1 end exponent square root of straight x
therefore space space dv over dx equals fraction numerator 1 over denominator square root of 1 minus open parentheses square root of straight x close parentheses squared end root end fraction cross times straight d over dx left parenthesis square root of straight x right parenthesis equals fraction numerator 1 over denominator square root of 1 minus straight x end root end fraction cross times fraction numerator 1 over denominator 2 square root of straight x end fraction
therefore space space dv over dx equals fraction numerator 1 over denominator 2 square root of straight x left parenthesis 1 minus straight x right parenthesis end root end fraction
From space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get.
dy over dx equals left parenthesis sin space straight x right parenthesis to the power of straight x left square bracket straight x space cot space straight x plus log space sin space straight x right square bracket plus fraction numerator 1 over denominator 2 square root of straight x left parenthesis 1 minus straight x right parenthesis end root end fraction

Some More Questions From Continuity and Differentiability Chapter