Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035907

Find all points of discontinuity of f, where f is defined as following:

f ( x ) =  x  + 3 ,   x -3                  - 2x       ,   -3 < x < 3           6x + 2   ,     x  3

Solution

Here, f ( x ) = x + 3 ,      x3-2 x        ,-3<x<3  6x + 2   ,   x  3

The function is defined on all the points and hence continuous

possible points of discontinuity are  3 and  -3 . We need to check the 

continuity of the function at two points  x = 3  and  x = - 3 .

 

Case 1:  For   x = - 3,  f ( - 3 ) = - ( - 3 ) + 3 = 6

 

LHL = limx  -3- f ( x ) = limh  0  - - 3 - h  + 3  = 6RHL = limx  -3+ f ( x ) = limh  0  - 2 - 3 + h   =  - 2  x  - 3  =6Since,  limx  -3- f ( x ) = limx  -3+ f ( x ) = f ( - 3 ) 

So, f is continuous at  x = -3

 

Case 2:  For  x =  3,  f ( 3 ) = 6 ( 3 ) + 2 = 20

 

LHL = limx  3- f ( x ) = limh  0  - 2  3 - h  = - 2 x 3 = - 6RHL = limx  3+ f ( x ) = limh  0  6  3 + h  + 2  = 6 x 3 = 20Since,  limx  3- f ( x )   limx  3+ f ( x )

Therefore, function  f  is not continuous at point  x = 3

Hence  x = 3 is the only point of discontinuity.

Some More Questions From Continuity and Differentiability Chapter