Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035876

Find dydx if (x2 + y2)2 = xy.

Solution

x2 + y22 = xy            ............(i)

Differentiating with respect to x, we have,

2  x2 + y2   2x + 2y dydx = xdydx + y 2 x2 + 2y2    2x + 2y dydx = xdydx + y 4x3 + 4x2y dydx + 4xy2 + 4y3 dydx = xdydx + y 4x2y dydx +  4y3 dydx -  xdydx = y -  4x3 -  4xy2  4x2y  +  4y3 - x   dydx =  y -  4x3 -  4xy2 dydx =   y -  4x3 -  4xy2 4x2y  +  4y3 - x 

Some More Questions From Continuity and Differentiability Chapter