Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035377

If y = sin (log x), prove that straight x 2 fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx plus straight y equals 0.

Solution
space space space space space space space space space space space space space space space straight y equals sin left parenthesis log space straight x right parenthesis
therefore space space space space space dy over dx equals cos left parenthesis log space straight x.1 over straight x right parenthesis
therefore space space space space space dy over dx equals fraction numerator cos left parenthesis log space straight x right parenthesis over denominator straight x end fraction
therefore space space space straight x dy over dx equals cos left parenthesis log space straight x right parenthesis
Differentiating space both space sides space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space straight x 2 fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx.1 equals negative sin left parenthesis log space straight x right parenthesis.1 over straight x
therefore space space space straight x 2 fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx equals negative sin left parenthesis log space straight x right parenthesis
therefore space space space straight x 2 fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx equals negative straight y
therefore space space space straight x 2 fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x dy over dx plus straight y equals 0

Some More Questions From Continuity and Differentiability Chapter