A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035254

Differentiate space colon space cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses

Solution
Let space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses
Put space space space space space straight x equals tan space straight theta
therefore space space space space space space space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan squared space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
space space space space space space space space space space space space space equals cos to the power of negative 1 end exponent left parenthesis cos space 2 straight theta right parenthesis equals 2 straight theta
therefore space space space space space space space straight y equals 2 tan to the power of negative 1 end exponent space straight x
therefore space space dy over dx equals fraction numerator 2 over denominator 1 plus straight x squared end fraction
Also space space space space straight u equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space space space space space space space straight x equals space tan space straight theta
therefore space space space space space space space space space space space straight u equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses
space space space space space space space space space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis equals 3 straight theta
therefore space space space space space space space space space space space straight u equals 3 space tan to the power of negative 1 end exponent space straight x
therefore space space space space space du over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 2 over denominator 1 plus straight x squared end fraction cross times fraction numerator 1 plus straight x squared over denominator 3 end fraction
therefore space dy over dx equals 2 over 3

Some More Questions From Continuity and Differentiability Chapter