A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035263

Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses space straight w. straight r. straight t. space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction close parentheses

Solution
Let space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 tan squared space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis
space space space space space space space space space equals 3 space straight theta
therefore space space space straight y equals 3 space tan to the power of negative 1 end exponent straight x
therefore space dy over dx equals fraction numerator 3 over denominator 1 plus straight x squared end fraction
Also space straight u equals tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction close parentheses
Put space straight x equals sin space straight theta
therefore space space space straight u equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator square root of 1 minus sin squared space straight theta end root end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses
space space space space space space space space space equals tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis
space space space space space space space space space equals straight theta
therefore space straight u equals sin to the power of negative 1 end exponent straight x
therefore space du over dx equals fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
Now space dy over dx equals fraction numerator begin display style dy over dx end style over denominator begin display style du over dx end style end fraction equals fraction numerator 3 over denominator 1 plus straight x squared end fraction cross times fraction numerator square root of 1 plus straight x squared end root over denominator 1 end fraction equals fraction numerator 3 square root of 1 plus straight x squared end root over denominator 1 plus straight x squared end fraction

Some More Questions From Continuity and Differentiability Chapter