A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035132

Prove space that space cot to the power of negative 1 end exponent straight x space plus space cot minus 1 space 1 over straight x space is space constant.

Solution
Let space space space space space straight y equals cot to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent 1 over straight x
therefore space dy over dx equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction minus fraction numerator 1 over denominator 1 plus begin display style 1 over straight x squared end style end fraction. straight d over dx open parentheses 1 over straight x close parentheses equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction minus fraction numerator straight x squared over denominator 1 plus straight x squared end fraction cross times open parentheses negative 1 over straight x squared close parentheses
space space space space space space space space space space space space space equals negative fraction numerator 1 over denominator 1 plus straight x squared end fraction plus fraction numerator 1 over denominator 1 plus straight x squared end fraction
therefore space straight d over dx left parenthesis straight y right parenthesis equals 0 space rightwards double arrow space straight y equals constant
therefore space cot to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent 1 over straight x space space is space constant

Some More Questions From Continuity and Differentiability Chapter