Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035908

Find  dydx,  if  y =  cosxx +  sinx 1x

Solution

y =  cosx x +  sinx 1xFor simplication, Let us consider  y = A + B  such that  A =   cosx xand  B =   sinx 1x Then,   dydx = dAdx + dBdx                                      .........(i)A =   cosx x

Taking logarithms on both the sides, we have,

log A = x log ( cosx )

1AdAdx = ddx  x log cosx  dAdx = Addx  x log cosx             =  cosx x  xddx   log  cosx  +log cosx  ddx  x              =   cosx x  x1cosx  - sinx  + log  cosx   1             =   cosx x  - x tanx + log  cosx            ........(ii)Now,  B =  sinx 1x B =  sinx 1x

Taking logarithms on both the sides, we have,

Log B = 1x log  sinx 1BdBdx = ddx  1x log  sinx   dBdx = Bddx  1x log  sinx              =  sinx 1x 1xddx  log  sinx +log  sinx  ddx  1x             =   sinx 1x 1x1sinx  cosx +log  sinx   -1x2             =   sinx 1x  1x cotx - -1x2 log  sinx              =   sinx 1x  x cotx -log  sinx  x2                .......(iii)

Now, on substituting  (ii) and (iii) in (i) we get

dydx =  cosx x  - x tanx + log  cosx  +  sinx 1x   x cotx - log  sinx x2

Some More Questions From Continuity and Differentiability Chapter