Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035877

If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0

Solution

y = 3 cos ( log x ) + 4 sin ( log x )

 

Differentiating the above function with respect to x, we have,

 

    dydx = - 3 cos  log x x + 4 cos  log x x x dydx = - 3 cos  log x  + 4 cos  log x 

 

Again differentiating the above function with respect to x, we have,

 

 xd2ydx2 + dydx = - 3 cos  log x x - 4 sin  log x x  x2d2ydx2 + xdydx = -  3 cos  log x  + 4 sin  log x     x2d2ydx2 + xdydx = - y   x2d2ydx2 + xdydx + y = 0

Some More Questions From Continuity and Differentiability Chapter