A PHP Error was encountered

Severity: Notice

Message: Undefined variable: temp_qds

Filename: Questions_Page/Ncert_Question.php

Line Number: 320

Backtrace:

File: /home/wiredfa1/public_html/application/views/final/Questions_Page/Ncert_Question.php
Line: 320
Function: _error_handler

File: /home/wiredfa1/public_html/application/controllers/Home.php
Line: 235
Function: view

File: /home/wiredfa1/public_html/index.php
Line: 315
Function: require_once

Sponsor Area

Continuity And Differentiability

Question
CBSEENMA12035415

If space straight x equals tan open parentheses 1 over straight a log space straight y close parentheses comma space show space that space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus left parenthesis 2 space straight x minus straight a right parenthesis dy over dx equals 0.

Solution
Here space space space straight x equals tan open parentheses 1 over straight a log space straight y close parentheses
therefore space tan to the power of negative 1 end exponent straight x equals 1 over straight a log space straight y space space or space space log space straight y equals straight a space tan to the power of negative 1 end exponent straight x
Differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space space space space fraction numerator 1 over denominator space straight y end fraction dy over dx equals fraction numerator straight a over denominator 1 plus straight x squared end fraction
or space space space left parenthesis 1 plus straight x squared right parenthesis dy over dx equals straight a space straight y
Again space differentiating space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx space 2 space straight x equals straight a dy over dx
therefore space space space left parenthesis 1 plus straight x squared right parenthesis fraction numerator straight d squared straight y over denominator dx squared end fraction plus left parenthesis 2 space straight x minus straight a right parenthesis dy over dx equals 0.

Some More Questions From Continuity and Differentiability Chapter