Mathematics Chapter 11 Constructions
  • Sponsor Area

    NCERT Solution For Class 9 About 2.html

    Constructions Here is the CBSE About 2.html Chapter 11 for Class 9 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 9 About 2.html Constructions Chapter 11 NCERT Solutions for Class 9 About 2.html Constructions Chapter 11 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 9 About 2.html.

    Question 1
    CBSEENMA9002835

    Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.



    Solution

    (i) ΔPDC and quadrilateral ABCD lie on the same base DC and between the same parallels DC and AB.
    (iii) ΔTRQ and parallelogram SRQP lie on the same base RQ and between the same parallels RQ and SP.

    (v) Quadrilaterals APCD and ABQD lie on the same base AD and between the same parallels AD and BQ.

    Question 2
    CBSEENMA9002836

    In figure, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD. 


    Solution

    ar(parallelogram ABCD) = AB x AE = 16 x 8 cm2
    = 128 cm2    ...(1)
    ar(parallelogram ABCD) = AD x CF
    = AD x 10 cm2    ...(2)
    From (1) and (2), we get
    AD X 10 = 128
    rightwards double arrow space space AD equals 128 over 10
    rightwards double arrow  ad = 12.8 cm

    Question 3
    CBSEENMA9002837

    If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that ar(EFGH) = 1 half ar(ABCD).

    Solution
    Given: E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD.

    To Prove: ar(EFGH) = 1 half

    ar(ABCD).
    Construction: Join OF, OG, OH and OE. Also, join AC and BD.
    Proof: In ΔBCD,
    ∵    F and G are the mid-points of BC and DC respectively.
    ∴ FG || BD    ...(1)
    In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side
    In ΔBAD,
    ∵ E and H are the mid-points of AB and AD respectively.
    EH || BD    ...(2)
    In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side
    From (1) and (2),
    EH || FG    ...(3)
    Similarly, we can prove that
    EF || HG    ...(4)
    From (3) and (4),
    Quadrilateral EFGH is a parallelogram
    | A quadrilateral is a parallelogram if its opposite sides are equal
    ∵    F is the mid-point of CB and O is the mid-point of CA
    FO || BA
    In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side and is half of it ⇒    FO || CG    ...(5)
    V BA || CD (opposite sides of a parallelogram are parallel)
    ∴ BA || CG
    and    FO equals 1 half BA
space space space space equals space 1 half CD space space

    ∵ Opposite sides of a parallelogram are equal = CG    ...(6)
    | ∵ G is the mid-point of CD In view of (5) and (6),
    Quadrilateral OFCG is a parallelogram
    ∵ A quadrilateral is a parallelogram if a pair of opposite sides are parallel and are of
    equal length
    ∵ OP = PC
    | ∵ Diagonals of a || gm bisect each other
    ∵ ΔOPF and ∵CPF have equal bases
    (∵ OP = PC) and have a common vertex F Their altitudes are also the same ar(ΔOPF) = ar(ΔCPF)
    Similarly, ar(ΔOQF) = ar(ΔBQF)
    Adding, we get
    ar(ΔOPF) + ar(ΔOQF) = ar(ΔCPF) + ar(ΔBQF) ⇒ ar(|| gm OQFP) = ar(ΔCPF) + ar(ΔBQF)                                                               ....(7)
    Similarly,
    ar(|| gm OPGS) = ar(⇒GPC) + ar(⇒DSG)                 ...(8)
    ar(|| gm OSHR) = ar(ΔDSH) + ar(ΔHAR)
    ar(|| gm OREQ) = ar(ΔARE) + ar(ΔEQB)                 ...(10)
    Adding the corresponding sides of (7), (8), (9) and (10), we get
    ar(|| gm EFGH) = {ar(ACPF} + ar(ΔGPC)}
    + {ar(ΔDSG) + ar(ΔDSH)} + {ar(ΔHAR) + ar(ΔARE)} + (ar(ΔBQF) + ar(ΔEQB)}
    = ar(ΔFCG) + ar(ΔGDH) + ar(ΔHAE) + ar(ΔEBF)

    Question 4
    CBSEENMA9002838

    P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar(ΔAPB) = ar{ΔBQC).

    Solution
    Given: P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD.

    To Prove: ar(ΔAPB) = ar(ΔBQC).
    Proof: ∵ ΔAPB and || gm ABCD are on the same base AB and between the same parallels AB and DC.
    therefore space space ar left parenthesis increment APB right parenthesis equals 1 half ar left parenthesis parallel to space gm space ABCD right parenthesis space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
    ∵ ΔBQC and || gm ABCD are on the same base BC and between the same parallels BC and AD.
    therefore space space ar left parenthesis increment BQC right parenthesis equals 1 half ar left parenthesis space parallel to space gm space ABCD right parenthesis space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2),
    ar(ΔAPB) = ar(ΔBQC).
    Question 5
    CBSEENMA9002839

    In figure, P is a point in the interior of a parallelogram ABCD. Show that:



    (1) ar(ar left parenthesis increment APB right parenthesis plus ar left parenthesis increment PCD right parenthesis equals 1 half ar left parenthesis space parallel to space gm space ABCD right parenthesis
    (ii) ar(ΔAPD) + ar(ΔPBC) = ar(ΔAPB) + ar(ΔPCD).    [CBSE 2012 (March)]

    [Hint. Through P, draw a line parallel to AB.] 



    Solution
    Given: P is a point in the interior of a parallelogram ABCD.
    To Prove : (i) ar left parenthesis increment APB right parenthesis plus ar left parenthesis increment PCD right parenthesis equals 1 half
    ar(|| gm ABCD)
    (ii) ar(ΔAPD) + ar(ΔPBC) = ar(ΔAPB) + ar(ΔPCD).
    Construction: Through P, draw a line EF parallel to AB.

    Proof: (i) EF || AB ...(1) | by construction
    ∵ AD || BC
    ∵ Opposite sides of a parallelogram are parallel
    ∴ AE || BF    ...(2)
    In view of (1) and (2),
    Quadrilateral ABFE is a parallelogram
    A quadrilateral is a parallelogram if its opposite sides are parallel
    Similarly, quadrilateral CDEF is a parallelogram
    ∵ ΔAPB and || gm ABFE are on the same base AB and between the same parallels AB and EF.
    therefore space space ar left parenthesis increment APB right parenthesis equals 1 half ar left parenthesis space parallel to space gm space ABFE right parenthesis space space space space space space space space space space space... left parenthesis 3 right parenthesis
    ∵ ΔPCD and || gm CDEF are on the same base DC and between the same parallels DC and EF.
    therefore space space space space space space ar left parenthesis increment PCD right parenthesis space equals space 1 half ar left parenthesis space parallel to space gm space CDEF right parenthesis space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis
    Adding (3) and (4), we get ar(ΔAPB) + ar(ΔPCD)
    equals space 1 half ar left parenthesis space parallel to space gm space ABFE right parenthesis plus 1 half ar space left parenthesis parallel to space gm space CDEF right parenthesis
equals space 1 half left square bracket space ar space parallel to space gm space ABFE right parenthesis plus ar space left parenthesis space parallel to space gm space CDEF right parenthesis right square bracket
equals space 1 half ar left parenthesis space parallel to space gm space ABCD right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 5 right parenthesis

    (ii) ar(ΔAPD) + ar(ΔPBC)
    = ar(|| gm ABCD) – [ar(ΔAPB) + ar(ΔPCD)] = 2 [ar(ΔAPB) + ar(ΔPCB)] – [ar(ΔAPB) + ar(ΔPCD)]
    = ar(ΔAPB) + ar(ΔPCD).


    Question 6
    CBSEENMA9002840

    In figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that: 



    (i) ar(|| gm PQRS) = ar(|| gm ABRS)

    (ii) ar left parenthesis increment AXS right parenthesis equals 1 half ar left parenthesis space parallel to space gm space PQRS right parenthesis.

    Solution

    Given: PQRS and ABRS are parallelograms and X is any point on side BR.
    To Prove: (i) ar(|| gm PQRS) = ar(|| gm ABRS)
    (ii) ar left parenthesis increment AXS right parenthesis equals 1 half ar left parenthesis space parallel to space gm space PQRS right parenthesis.

    Proof: (i) In ΔPSA and ΔQRB,
    ∠SPA = ∠RQB    ...(1)
    Corresponding angles from PS || QR and transversal PB
    ∠PAS = ∠QBR    ...(2)
    Corresponding angles from AS || BR and transversal PB
    ∠PSA = ∠QRB    ...(3)
    | Angle sum property of a triangle Also, PS = QR    ...(4)
    | Opposite sides of || gm PQRS In view of (1), (3) and (4),
    ΔPSA ≅ ΔQRB    ...(5)
    | By ASA Rule ∴ ar(ΔPSA) = ar(ΔQRB)    ...(6)
    | ∴ Congruent figures have equal areas Now, ar(|| gm PQRS) = ar(ΔPSA)
    + ar(|| gm AQRS) = ar(ΔQRB) + ar(|| gm AQRS)
    | Using (6)
    = ar(|| gm ABRS)
    (ii) ∵ ΔAXS and || gm ABRS are on the same base AS and between the same parallels AS and BR.

    therefore space space space ar left parenthesis increment AXS right parenthesis space equals space 1 half ar left parenthesis parallel to space gm space ABRS right parenthesis
equals space 1 half left parenthesis space ar space parallel to space gm space AQRS right parenthesis space plus space ar left parenthesis increment QRB right parenthesis right curly bracket
equals space 1 half left curly bracket ar left parenthesis space gm space parallel to space AQRS right parenthesis space plus space ar left parenthesis increment PSA right parenthesis right curly bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space Using space left parenthesis 6 right parenthesis
equals space 1 half ar left parenthesis space parallel to space gm space PQRS right parenthesis.

    Question 7
    CBSEENMA9002841

    A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

    Solution
    ∵ ΔAPQ, ΔAPS and ΔAQR lie between the same parallels

    ∴ Their altitudes are same. Let it be x. Then,
    a r left parenthesis increment A P Q right parenthesis equals fraction numerator left parenthesis P Q right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
a r left parenthesis increment A P S right parenthesis plus a r left parenthesis increment A Q R right parenthesis
space space space space space space space space space space space equals space fraction numerator left parenthesis A S right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis A R right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction
space space space space space space space space space space space equals space fraction numerator left parenthesis A S plus A R right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis S R right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction
space space space space space space space space space space space equals space fraction numerator left parenthesis P Q right parenthesis left parenthesis x right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

    ∵ SR = PQ (opposite sides of parallelogram are equal)
    Therefore, either the farmer should sow wheat in ΔAPQ and pulses in the other two triangles APS and AQR or pulses in ΔAPQ and wheat in the other two triangles APS and AQR.


    Question 8
    CBSEENMA9002842

    The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area. 

    Solution
    Given: The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q.

    To Prove: ar(□PDCQ) = ar(□PQBA). Proof: ∵ AC is a diagonal of || gm ABCD ∴ ar(ΔABC) = ar(ΔACD)
    equals space 1 half space ar left parenthesis space parallel to space gm space ABCD right parenthesis space space space space space space space space space... left parenthesis 1 right parenthesis

    In ΔAOP and ΔCOQ,
    AO = CO
    | ∵ Diagonals of a parallelogram bisect each other
    ∠AOP = ∠COQ
    | Vertically opposite angles ∠OAP = ∠OCQ
    | Alternate interior angles ∴ ΔAOP = ΔCOQ
    | By ASA Congruence Rule ∴ ar(ΔAOP) = ar(ΔCOQ)
    | ∵ Congruent figures have equal areas ⇒ ar(ΔAOP) + ar(□OPDC)
    = ar(ΔCOQ) + ar(□OPDC)
    ⇒ ar(ΔACD) = ar(□PDCQ)
    ⇒ 1/2 ar(|| gm ABCD) = ar(□PDCQ)
    | From (1) ⇒    ar(□PQBA) = ar(□PDCQ)
    ⇒    ar(□PDCQ) = ar(□PQBA).

    Question 9
    CBSEENMA9002843

    Prove that of all parallelograms of which the sides are given, the parallelogram which is a rectangle, has the greatest area.

    Solution

    Given: A parallelogram ABCD whose sides are given.
    To Prove: The area of the parallelogram ABCD is the greatest when it is a rectangle.

    Construction: Draw DE ⊥ AB.
    Proof: ar(|| gm ABCD)
    = Base x Corresponding altitude = AB x DE
    When parallelogram ABCD is a rectangle, then its area = AB x DA
    | ∵ Then ∠DAB = 90° as such DA will be the altitude
    In right triangle DEA,
    ∠DEA > ∠DAE
    DA > DE
    ∵ Side opposite to greater angle of a triangle is longer ∴ ar(rectangle ABCD) > ar(|| gm ABCD)
    i.e., the area of the parallelogram ABCD is the greatest when it is a rectangle.

    Question 10
    CBSEENMA9002844

    In the figure, diagonals AC and BD of a trapezium ABCD with AB || CD intersect each other at O. Show that ar(Δ AOD) = ar(Δ BOC).


    Solution

    Given: Diagonals AC and BD of a trapezium ABCD with AB || CD intersect each other at O.
    To Prove: ar(ΔAOD) = ar(ΔBOC)
    Proof: ∵ ΔADB and ΔACB are on the same base AB and between the same parallels AB and DC ∴ ar(ΔADB) = ar(ΔACB)
    ∵ Two triangles on the same base and between the same parallels are equal in area ⇒ ar(ΔADB) – ar(ΔAOB)
    = ar(ΔACB) – ar(ΔAOB)
    | Subtracting ar(ΔAOB) from both sides Δ ar(ΔAOD) = ar(ΔBOC)

    Question 11
    CBSEENMA9002845

    Parallelograms on the same base and between same parallels are equal in area. Prove this.

    Solution

    Given: Two parallelograms ABCD and EFCD, on the same base DC and between the same parallels AF and DC.
    To Prove: ar(ABCD) = ar(EFCD)

    Proof: In ΔADE and ΔBCF,
    ∠DAE = ∠CBF    ...(1)
    Corresponding angles
    (∵ AD || BC and a transversal AF intersects them)
    ∠AED = ∠BFC    ...(2)
    Corresponding angles (∵ ED || FC and a transversal AF intersects them)
    ∴ ∠ADE = ∠BCF    ...(3)
    | Angle sum property of a triangle Also AD = BC    ...(4)
    Opposite sides of the parallelogram ABCD
    ∴ ΔADE ≅ ΔBCF | By ASA congruence rule, using (1), (3) and (4) ∴ ar(ΔADE) = ar(ΔBCF)
    | ∵ Congruent figures have equal areas ⇒ ar(ΔADE) + ar(EDCB)
    = ar(ΔBCF) + ar(EDCB)
    | Adding ar(EDCB) to both sides ⇒ ar(ABCD) = ar(EFCD)
    So, parallelograms ABCD and EFCD are equal in area.

    Question 12
    CBSEENMA9002846

    In figure, AD is median of triangle ABC, E is the mid-point of AD and F is the mid-point of AE.
    Prove that ar open parentheses ABF close parentheses equals 1 over 8 ar left parenthesis ABC right parenthesis.

    Solution
    Given: AD is median of triangle ABC. E is the mid-point of AD and F is the mid-point of AE.
     T o space P r o v e space colon space space ar left parenthesis ABF right parenthesis equals 1 over 8 ar left parenthesis abc right parenthesis
    Proof : because space AD is a median of increment ABC
    therefore space space space ar left parenthesis increment ABD right parenthesis equals ar left parenthesis increment ACD right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis  

    V A median of a triangle divides it into two triangles of equal areas
    ∵ E is the mid-point of AD
    ∴ BE is a median of ΔABD
     ∴ ar(ΔBED) = ar(ΔBEA) = 1/2 ar(ΔABD)
    ∵ A median of a triangle divides it into two triangles of equal areas
    rightwards double arrow space ar left parenthesis increment BEA right parenthesis equals 1 half.1 half ar space open parentheses increment ABCD close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space space space space space equals space 1 fourth space ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    ∵ F is the mid-point of AE ∴ BF is a median of ΔABE
    therefore space space a r space open parentheses increment B E F close parentheses equals 1 half a r left parenthesis increment A B E right parenthesis
space space space space space space
                                   [ because A median of a triangle divides it into two triangles of equal areas]
    rightwards double arrow space space ar left parenthesis increment space ABF right parenthesis space equals space 1 half space ar left parenthesis increment space ABE right parenthesis
space space space space space space space space space space space space space space space space space space space space space equals space 1 half.1 fourth space ar left parenthesis increment ABC right parenthesis space space space vertical line space From space left parenthesis 2 right parenthesis
space space space space space space space space space space space space space space space space equals space 1 over 8 ar left parenthesis increment ABC right parenthesis space
                         



    Question 13
    CBSEENMA9002847

    ABCD is a quadrilateral and BD is one of its diagonals as shown in figure. Show that ABCD is a parallelogram and find its area.


    Solution

    Given: ABCD is a quadrilateral and BD is one of its diagonals.
    To Prove: ABCD is a parallelogram and to determine its area.
    Proof: ∠ABD = ∠BDC (= 90°) | Given But these angles form a pair of equal alternate
    interior angles for lines AB, DC and a transversal BD AB || DC
    Also, AD = DC (= 3 cm)    | Given
    Hence, quadrilateral ABCD is a parallelogram. A quadrilateral is a parallelogram if its one pair of opposite sides are parallel and equal Now,
    ar(||gm ABCD) = Base x corresponding altitude
    = 3x4 = 12 cm2

    Question 14
    CBSEENMA9002848

    In the given figure, AB | | DC. Show that ar(BDE) = ar(ACED).


    Solution

    Given: AB || DC in the given figure.
    To Prove: ar(BDE) = ar(ACED)
    Proof: ∵ ΔADC and ΔBDC are on the same base DC and between the same parallels AB and DC ∴ ar(ΔADC) = ar(ΔBDC)
    ⇒ ar(ΔADC) + ar(ΔDCE)
    = ar(ΔBDC) + ar(ΔDCE)
    | Adding ar(ΔDCE) to both sides ⇒ ar(ACED) = ar(BDE)
    ⇒ ar(BDE) = ar(ACED)

    Question 15
    CBSEENMA9002849

     In the given figure, ABED is a parallelogram in which DE = EC. Show that area (ABF) = area (BEC)

    Solution

    Given: ABCD is a parallelogram in which DE = EC To Prove: area (ABF) = area (BEC)
    Proof:    AB = DE
    | Opposite sides of a parallelogram DE = EC    | Given
    ∴ AB = EC Also, AB || DE
    | Opposite sides of a parallelogram ⇒ AB || DC
    Now, ΔABF and ΔBEC are on equal bases AB and EC and between the same parallels AB and DC
    ∴ ar(ΔABF) = ar(ΔBEC)

    Question 16
    CBSEENMA9002850

    Areas of triangles on the same bases and between the same parallels are equal in. Prove it. 

    Solution
    Let ABC and A‘BC be two triangles on the same base BC and between the same parallels PQ and RS.

    Draw BM ⊥ PQ. Then,
    ar left parenthesis increment ABC right parenthesis equals 1 half cross times Base space cross times space Corresponding space attitude
space space space space space space space space space space space space space equals 1 half cross times BC cross times BM space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
ar left parenthesis increment straight A apostrophe BC right parenthesis equals 1 half cross times space Base space cross times space Corresponding space attitude
space space space space space space space space space space space space space equals 1 half cross times BC cross times BM space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

    From (1) and (2), we get
    ar(AABC) = ar(ΔA'BC)
    Hence, ΔABC and ΔA'BC are equal in area.

    Question 17
    CBSEENMA9002851

    Prove that the area of a trapezium is equal to half of the product of its height and sum of parallel sides.  

    Solution
    Given: ABCD is a trapezium with AB || CD. AM is its height.

    To Prove: ar(trapezium ABCD)
    equals 1 half left parenthesis AB plus DC right parenthesis left parenthesis AM right parenthesis
    Construction: Join AC Proof: ar(trapezium ABCD)
        
    equals space ar space left parenthesis increment ADC right parenthesis plus ar left parenthesis increment ABC right parenthesis
equals space 1 half cross times DC cross times AM plus 1 half cross times AB cross times AM
equals space 1 half cross times left parenthesis DC plus AB right parenthesis cross times AM
equals space 1 half open parentheses AB plus DC close parentheses left parenthesis AM right parenthesis

    Sponsor Area

    Question 24
    CBSEENMA9002858
    Question 25
    CBSEENMA9002859

    If the area of parallelogram (shown in figure) is 80 cm2, then find area of ΔADP.


    Solution

    Solution not provided.
    Ans.   40 cm2

    Question 26
    CBSEENMA9002860

    In the figure, PS || QR. Show that ar(ΔROS) = ar(ΔPOQ).


    Solution

    Solution not provided.

    Question 27
    CBSEENMA9002861
    Question 29
    CBSEENMA9002863
    Question 34
    CBSEENMA9002868

    In figure, E is any point on median AD of a ΔABC. Show that ar(ΔABE) = ar(ΔACE).


    Solution

    Given: E is any point on median AD of a ΔABC.
    To Prove: ar(ΔABE) = ar(ΔACE).
    Proof: In ΔABC,
    ∵    AD is a median. ∴ ar(ΔABD) = ar(ΔACD)    ...(1)
    ∵ A median of a triangle divides it into two triangles of equal areas
    In ΔEBC,
    ∵    ED is a median.
    ∴ ar(ΔEBD) = ar(ΔECD)    ...(2)
    ∵ A median of a triangle divides it into two triangles of equal areas Subtracting (2) from (1), we get ar(ΔABD) – ar(ΔEBD)
    = ar(ΔACD) – ar(ΔECD)
    ⇒ ar(ΔABE) = ar(ΔACE).

    Question 35
    CBSEENMA9002869

    In a triangle ABC, E is the midpoint of median AD. Show that a r left parenthesis increment B E D right parenthesis space equals 1 fourth a r left parenthesis increment A B C right parenthesis

    Solution
    Given: In a triangle ABC, E is the midpoint of median AD.
     To space Prove space colon space ar left parenthesis increment BED right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis.
    Proof: In ΔABC,

    ∵ AD is a median.
    therefore space space ar left parenthesis increment ABD right parenthesis equals ar left parenthesis increment ACD right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

    (1)

    ∵ A median of a triangle divides it into two triangles of equal areas.
    In ΔABD,
    ∵ BE is a median.

    therefore space space ar left parenthesis increment BED right parenthesis equals ar left parenthesis increment BEA right parenthesis equals 1 half ar left parenthesis increment ABD right parenthesis
    ∵ A median of a triangle divides it into two triangles of equal areas
    rightwards double arrow space space ar left parenthesis increment BED right parenthesis equals 1 half ar left parenthesis increment ABD right parenthesis
space space space space space space space space space space space space space space equals 1 half.1 half space ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space vertical line space From space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space equals space 1 fourth ar space left parenthesis increment ABC right parenthesis.
    Question 36
    CBSEENMA9002870

    Show that the diagonals of a parallelogram divide it into four triangles of equal area.   

    Solution
    Given: ABCD is a parallelogram whose diagonals AC and BD intersecting at O divide it into four trianlges ΔOAB, ΔOBC, ΔOCD and ΔODA.

    To Prove: ar(ΔOAB) = ar(ΔOBC)
    = ar(ΔOCD) = ar(ΔODA). Construction: Draw BE ⊥ AC.
    Proof: ∵ ABCD is a parallelogram ∴ OA = OC and OB = OD
    | ∵ Diagonals of a parallelogram bisect each other
    Now,
    ar left parenthesis increment OAB right parenthesis equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis OA right parenthesis left parenthesis BE right parenthesis over denominator 2 end fraction
and space space space ar left parenthesis increment OBC right parenthesis equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis OC right parenthesis left parenthesis BE right parenthesis over denominator 2 end fraction

    But OA = OC
    ∴ ar(ΔOAB) = ar(ΔOBC)    ...(1)
    Similarly,
    ar(ΔOBC) = ar(ΔOCD)    ...(2)
    and, ar(ΔOCD) = ar(ΔODA)    ...(3)
    From (1), (2) and (3), ar(ΔOAB) = ar(ΔOBC)
    = ar(ΔOCD) = ar(ΔODA).

    Question 37
    CBSEENMA9002871

    In figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O. Show that ar(AABC) = ar(ΔABD).




    Solution

    Given: ABC and ABD are two triangles on the same base AB. Line segment CD is bisected by AB at O.
    To Prove: ar(ΔABC) = ar(ΔABD).
    Proof: ∵ Line segment CD is bisected by AB
    at O.
    ∴ OC = OD BO is a median of ΔBCD and AO is a median of ΔACD
    ∵    BO is a median of ΔBCD
    ∴ ar(ΔOBC) = ar(ΔOBD)    ...(1)
    ∵    A median of a triangle divides it into two triangles of equal areas
    ∵    AO is a median of ΔACD
    ∴ ar(ΔOAC) = ar(ΔOAD)    ...(2)
    ∵    A median of a triangle divides it into two triangles of equal areas
    Adding (1) and (2), we get ar(ΔOBC) + ar(ΔOAC)
    = ar(ΔOBD) + ar(ΔOAD)
    ⇒ ar(ΔABC) = ar(ΔABD).

    Question 38
    CBSEENMA9002872

    D, E and F are respectively the midpoints of the sides BC, CA and AB of a ΔABC. Show that:

    (i) BDEF is a parallelogram

    left parenthesis ii right parenthesis space ar left parenthesis increment DEF right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis square space space BDEF right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

    Solution

    Given: D, E and F are respectively the midpoints of the sides BC, CA and AB of a ΔABC.

    To Prove: (i) □BDEF is a parallelogram
    left parenthesis ii right parenthesis space ar left parenthesis increment DEF right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis square space space BDEF right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

    Proof: (i) In ΔABC,
    ∵    F is the mid-point of side AB and
    E is the mid-point of side AC.
    ∴ EF || BC
    ∵ In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side.

    ⇒    EF || BD    ...(1)

    Similarly, ED || BF    ...(2)
    In view of (1) and (2),
    □ BDEF is a parallelogram.
    ∵    A quadrilateral is a parallelogram
    if its opposite sides are parallel

    (ii) As in (i), we can prove that
    □AFDE and □FDCE are parallelograms.
    ∵    FD is a diagonal of || gm BDEF.
    ar(ΔFBD) = ar(ΔDEF) ...(3) Similarly, ar(ΔDEF) = ar(ΔFAE) ...(4) and,    ar(ΔDEF) = ar(ΔDCE) ...(5)
    From (3), (4) and (5), we have ar(ΔFBD) = ar(ΔDEF)
    = ar(ΔFAE) = ar(ΔDCE) ...(6)
    ∵    ΔABC is divided into four non-overlapping triangles ΔFBD, ΔDEF, ΔFAE and ΔDCE.
    ∴ ar(ΔABC) = ar(ΔFBD) + ar(ΔDEF) + ar(ΔFAE) + ar(ΔDCE) = 4 ar(ΔDEF) | From (6)
    ⇒ ar(ΔDEF) = 1/2 ar(ΔABC).    ...(7)
    4
    (iii) ar(□BDEF)
    = ar(ΔFBD) + ar(ΔDEF)
    = ar(ΔDEF) + ar(ΔDEF)
    | From (3)
    = 2 ar(ΔDEF)
    equals 2.1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 7 right parenthesis
equals space 1 half ar left parenthesis increment ABC right parenthesis

    Question 39
    CBSEENMA9002873

    In figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

    (i) ar(ΔDOC) = ar(ΔAOB)
    (ii) ar(ΔDCB) = ar(ΔACB)
    (iii) DA || CB or ABCD is a parallelogram.
    [Hint. From D and B, draw perpendiculars to AC.]

    Solution

    Given: Diagonals AC and BD of a quadrilateral ABCD intersect at O such that OB = OD. To Prove: If AB = CD, then

    (i) ar(ΔDOC) = ar(ΔAOB)
    (ii) ar(ΔDCB) = ar(ΔACB)
    (iii) DA || CB or ABCD is a parallelogram.

    Construction: Draw DE ⊥ AC and BF ⊥ AC.
    Proof: (iii) In ΔADB,
    ∵    AO is a median
    ∴ ar(ΔAOD) = ar(ΔAOB)    ...(1)
    ∵    A median of a triangle divides it into two triangles of equal areas
    In ΔCBD,
    ∵    CO is a median.
    ar(ΔCOD) = ar(ΔCOB)    ...(2)
    ∵    A median of a triangle divides it into two triangles of equal areas
    Adding (1) and (2), we get ar(ΔAOD) + ar(ΔCOD)
    = ar(ΔAOB) + ar(ΔCOB)
    ⇒ ar(ΔACD) = ar(ΔACB)
    rightwards double arrow space space space space space fraction numerator left parenthesis AC right parenthesis left parenthesis DE right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis AC right parenthesis left parenthesis BF right parenthesis over denominator 2 end fraction
space space space space space space space space space space space space space space space space because space space Area space of space straight a space triangle
space space space space space space space space space space space space space space space space space equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
rightwards double arrow space space space space DE plus BF space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    In right Δs DEC and BFA,
    Hyp. DC = Hyp. BA    | given
    DE = BF    | From (3)
    ∴ ΔDEC ⊥ ABFA    | R.H.S. Rule
    ∴ ∠DCE = ∠BAF    | C.P.C.T.
    But these angles form a pair of equal alternate interior angles.
    ∴ DC || AB    ...(4)
    ∵ DC = AB and DC || AB ∴ □ABCD is a parallelogram.
    ∵ A quadrilateral is a parallelogram if a pair of opposite sides are parallel and equal DA || CB
    | ∵ Opposite sides of a || gm are parallel (i) ∵ ABCD is a parallelogram
    ∴ OC = OA    ...(5)
    Diagonals of a parallelogram bisect each other
    ar left parenthesis increment DOC right parenthesis equals fraction numerator OC cross times DE over denominator 2 end fraction
ar left parenthesis increment AOB right parenthesis equals fraction numerator OA cross times BF over denominator 2 end fraction

    ∵ DE = BF    | From (3)

    and    OC = OA    | From (5)

    ∴ ar(ΔDOC) = ar(ΔAOB).

    (ii) From (i),
    ar(ΔDOC) = ar(ΔAOB)
    Δ ar(ΔDOC) + ar(ΔOCB)
    = ar(ΔAOB) + ar(ΔOCB)
    | Adding equal areas on both sides ⇒ ar(ΔDCB) = ar(ΔACB).

    Sponsor Area

    Question 40
    CBSEENMA9002874

    D and E are points on sides AB and AC respectively of ΔABC such that ar(ΔDBC) = ar(ΔEBC). Prove that DE || BC.

    Solution

    Given: D and E are points on sides AB and AC respectively of ΔABC such that ar(ΔDBC) = ar(ΔEBC).

    To Prove: DE || BC.
    Proof: ∵ ΔDBC and ΔEBC are on the same base BC and have equal areas.
    Their altitudes must be the same.
    ∴ DE || BC.

    Question 41
    CBSEENMA9002875

    8. XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that ar(ΔABE) = ar(ΔACF). 

    Solution

    Given: XY is a line parallel to side BC of a triangle ABC. BE || AC and CF || AB meet XY at E and F respectively.
    To Prove: ar(ΔABE) = ar(ΔACF).
    Proof: ∵ XY || BC    | given
    and    CF || BX | ∵ CF || AB (given)
    ∴ □BCFX is a || gm
    A quadrilateral is a parallelogram if its opposite sides are parallel

    ∴ BC = XF
    | Opposite sides of a parallelogram are equal ⇒ BC = XY + YF    ...(1)
    Again,
    ∵ XY || BC    | given
    and    BE || CY    | ∵ BE || AC (given)
    ∴ □BCYE is a parallelogram
    A quadrilateral is a parallelogram if its opposite sides are parallel
    ∴ BC = YE
    | Opposite sides of a parallelogram are equal
    ⇒ BC = XY + XE    ...(2)
    From (1) and (2),
    XY + YF = XY + XE
    ⇒ YF = XE
    ⇒ XE = YF    ...(3)
    ∵    ΔAEX and ΔAYF have equal bases (∵ XE = YF) on the same line EF and have a common vertex A.
    ∴ Their altitudes are also the same.
    ∴ ar(ΔAEX) = ar(ΔAFY)    ...(4)
    ∵    ΔBEX and ΔCFY have equal bases (∵ XE = YF) on the same line EF and are between the same parallels EF and BC (∵ XY || BC).
    ∴ ar(ΔBEX) = ar(ΔCFY)    ...(5)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    Adding the corresponding sides of (4) and (5), we get
    ar(ΔAEX) + ar(ΔBEX) = ar(ΔAFY) + ar(ΔCFY)
    ⇒    ar(ΔABE) = ar(⇒ACF).

    Question 42
    CBSEENMA9002876

    The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed. Show that ar(||gm ABCD) = ar(||gm PBQR).

    [Hint. Join AC and PQ. Now compare ar(ACQ) and ar(APQ)].


    Solution
    Given: The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed.

    To Prove: ar(|| gm ABCD) = ar(|| gm PBQR). Construction: Join AC and PQ.
    Proof: ∵ AC is a diagonal of || gm ABCD
    therefore space ar left parenthesis increment ABC right parenthesis equals 1 half ar left parenthesis parallel to space gm space ABCD right parenthesis space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    because  PQ is a diagonal of parallel togm BQRP
    therefore space space ar left parenthesis increment BPQ right parenthesis equals 1 half ar left parenthesis space parallel to space gm space BQRp right parenthesis space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

    ∵ ΔACQ and ΔAPQ are on the same base AQ and between the same parallels AQ and CP. ar(ΔACQ) = ar(ΔAPQ)
    ∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    ⇒ ar(ΔACQ) – ar(ΔABQ)
    = ar(ΔAPQ) – ar(ΔABQ)
    | Subtracting the same areas from both sides ⇒ ar(ΔABC) = ar(ΔBPQ)
    rightwards double arrow space 1 half ar left parenthesis space parallel to space gm space ABCD right parenthesis space equals space 1 half space ar left parenthesis space parallel to space gm space PBQR right parenthesis

    | From (1) and (2)
    ⇒ ar(|| gm ABCD) = ar(|| gm PBQR).

    Question 43
    CBSEENMA9002877

    Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that ar(ΔAOD) = ar(ΔBOC).

    Solution
    Given: Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O.

    To Prove: ar(ΔAOD) = ar(ΔBOC).
    Proof: ∵ ΔABD and ΔABC are on the same base AB and between the same parallels AB and DC.
    ∴ ar(ΔABD) = ar(ΔABC)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔABD) – ar(ΔAOB)
    = ar(ΔABC) – ar(ΔAOB)
    | Subtracting the same areas from both sides ⇒ ar(ΔAOD) = ar(ΔBOC).

    Question 44
    CBSEENMA9002878

    In figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
    (i) ar(ΔACB) = ar(ΔACF)
    (ii) ar(□AEDF) = ar(ABCDE).     

    Solution

    Given: ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F.
    To Prove: (i) ar(ΔACB) = ar(ΔACF)
    (ii) ar(□AEDF) = ar(ABCDE).
    Proof: (i) ∵ ΔACB and ΔACF are on the same base AC and between the same parallels AC and 
    BF. [∵ AC || BF (given)]
    ∴ ar(ΔACB) = ar(ΔACF)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    (ii) From (i),
    ar(ΔACB) = ar(ΔACF)
    ⇒ ar(ΔACB) + ar(□AEDC)
    = ar(ΔACF) + ar(□AEDC)
    | Adding the same areas on both sides ⇒ ar(ABCDE) = ar(□AEDF)
    ⇒ ar(□AEDF) = ar(ABCDE).

    Question 45
    CBSEENMA9002879

    A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the comers to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

    Solution

    Let ABCD be the plot of land of the shape of a quadrilateral. Let the portion ADE be taken over by the Gram Panchayat of the village from one comer D to construct a Health Centre.
    Join AC. Draw a line through D parallel to AC to meet BC produced in P. Then Itwaari must be given the land ECP adjoining his plot so as to form a triangular plot ABP as then
    ar(ΔADE) = ar(ΔPEC).

    Proof: ∵ ΔDAP and ΔDCP are on the same base DP and between the same parallels DP and AC.
    ∴ ar(ΔDAP) = ar(ΔDCP)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    ⇒ ar(ΔDAP) – ar(ΔDEP)
    = ar(ΔDCP) – ar(ΔDEP)
    | Subtracting the same areas from both sides
    ⇒    ar(ΔADE) = ar(ΔPCE)
    ⇒ ar(ΔDAE) + ar(□ABCE)
    = ar(ΔPCE) + ar(□ABCE)
    | Adding the same areas to both sides
    ⇒    ar(□ABCD) = ar(ΔABP).

    Question 46
    CBSEENMA9002880

    ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar(ΔADX) = ar(ΔACY).

    [Hint. Join CX.]

    Solution
    Given: ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y.

    To Prove: ar(ΔADX) = ar(ΔACY).
    Construction: Join CX.
    Proof: ∵ ΔADX and ΔACX are on the same base AX and between the same parallels AB and DC.
    ∴ ar(ΔADX) = ar(ΔACX) ...(1)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area ∵ ΔACX and ΔACY are on the same base AC and between the same parallels AC and XY.
    ∴ ar(ΔACX) = ar(ΔACY)    ...(2)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area From (1) and (2), we get ar(ΔADX) = ar(ΔACY).

    Question 47
    CBSEENMA9002881

    In figure, AP || BQ || CR. Prove that ar(ΔAQC) = ar(ΔPBR).


    Solution

    Given: AP || BQ || CR.
    To Prove: ar(ΔAQC) = ar(ΔPBR).
    Proof: #8757; ΔABAQ and ΔBPQ are on the same base BQ and between the same parallels BQ and AP. ∴ ar(ΔBAQ) = ar(ΔBPQ)    ...(1)
    V    Two triangles on the same base (or equal bases) and between the
    same parallels are equal in area ∵ ΔBCQ and ΔBQR are on the same base BQ and between the same parallels BQ and CR.
    ∴ ar(ΔBCQ) = ar(ΔBQR)    ...(2)
    V    Two triangles on the same base (or equal bases) and between the
    same parallels are equal in area Adding the corresponding sides of (1) and (2), we get
    ar(ΔBAQ) + ar(ΔBCQ)
    = ar(ΔBPQ) + ar(ΔBQR)
    ⇒ ar(ΔAQC) = ar(ΔPBR).

    Question 48
    CBSEENMA9002882

    Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(ΔAOD) = ar(ΔBOC). Prove that ABCD is a trapezium. 

    Solution
    Given: Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(ΔAOD) = ar(ΔBOC)

    To Prove: □ABCD is a trapezium.
    Proof: ar(ΔAOD) = ar(ΔBOC)
    ⇒ ar(ΔAOD) + ar(ΔAOB)
    = ar(ΔBOC) + ar(ΔAOB)
    | Adding the same areas on both sides
    ⇒ ar(ΔABD) = ar(ΔABC)
    But ΔABD amd ΔABC are on the same base
    AB.
    ∴ ΔABD and ΔABC will have equal corresponding altitudes.
    ΔABD and ΔABC will lie between the same parallels.
    ∴ AB || DC
    ∴ [□ABCD is a trapezium.
    A quadrilateral is a trapezium if exactly one pair of opposite sides is parallel

    Question 49
    CBSEENMA9002883

    Infigure, ar(ΔDRC) = ar(ΔDPC) and ar(ΔBDP) = ar(ΔARC). Show that both the quadrilateral ABCD and DCPR are trapeziums.


    Solution

    Given: ar(ΔDRC) = ar(ΔDPC) and ar(ΔBDP) = ar(ΔARC).
    To Prove: Both the quadrilaterals ABCD and DCPR are trapeziums.
    Proof: ar(ΔDRC) = ar(ΔDPC)    ...(1)
    | Given
    But ΔDRC and ΔDPC are on the same base DC.
    ∴ ΔDRC and ΔDPC will have equal corresponding altitudes.
    ∴ ΔDRC and ΔDPC will lie between the same parallels.
    ∴ DC || RP
    ∴ □ DCPR is a trapezium.
    A quadrilateral is a trapezium if exactly one pair of opposite sides are parallel Again. ar(ΔBDP) = ar(ΔARC)
    ⇒ ar(ΔBDC) + ar(ΔDPC)
    = ar(ΔADC) + ar(ΔDRC)
    ⇒ ar(ΔBDC) = ar(ΔADC) | Using (1) But ΔBDC and ΔADC are on the same base DC.
    ∴ ΔBDC and ΔADC will have equal corresponding altitudes.
    ∴ ΔBDC and ΔADC will lie between the same parallels.
    AB || DC
    ∴ □ABCD is a trapezium.
    A quadrilateral is a trapezium if exactly one pair of opposite sides is parallel

    Question 50
    CBSEENMA9002884

    Show that the area of a rhombus is half the product of the lengths of its diagonals.

    Or

    Prove that the area of a rhombus is equal to half the rectangle contained by its diagonals.

    Solution

    Let ABCD be a rhombus whose diagonals are AC and BD.
    Then,
    Area of rhombus ABCD
    = Area of ΔABD + Area of ΔCBD
    equals space fraction numerator left parenthesis BD right parenthesis left parenthesis AO right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis BD right parenthesis left parenthesis OC right parenthesis over denominator 2 end fraction
    ∵ Diagonals of a rhombus are perpendiculars to each other

    equals fraction numerator left parenthesis BD right parenthesis over denominator 2 end fraction left parenthesis AO plus OC right parenthesis equals fraction numerator left parenthesis BD right parenthesis left parenthesis AC right parenthesis over denominator 2 end fraction
equals space 1 half
    Product of the lengths of its diagonals.

    Question 51
    CBSEENMA9002885

    Given two points A and B and a positive real number k. Find the locus of a point P such that ar(ΔPAB) = k.

    Solution

    Given: Two points A and B and a positive real number k.
    To find: The locus of a point P such that ar(ΔPAB) = k.
    Construction: Draw PM ⊥ AB.
    Determination: Let PM = h
                   space space space space space space space space space space space space space space space space space space space space space ar left parenthesis increment PAB right parenthesis equals straight k space space space space space space space space space space space space space space space space space space space space vertical line Given
rightwards double arrow space space space space space space space space space space space space space space space 1 half left parenthesis AB right parenthesis left parenthesis PM right parenthesis equals straight k
rightwards double arrow space space space space space space space space space space space space space space space space 1 half left parenthesis AB right parenthesis left parenthesis straight h right parenthesis equals straight k
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space straight h space equals space fraction numerator 2 straight k over denominator AB end fraction

    ∵ Points A and B are given.
    ∴ AB is fixed.
    Also, k being a positive real number k is fixed. ∴ h is a fixed positive real number.
    ∴ The locus of P is a line parallel to the line
    AB at a fixed distance

    Question 52
    CBSEENMA9002886

    Show that the line segment joining the mid-points of a pair of opposite sides of a parallelogram divides it into two equal parallelograms.

    Solution
    Given: A parallelogram ABCD in which M and N are the mid-points of a pair of its opposite sides AB and DC respectively.

    To Prove: ar(|| gm AMND) = ar(|| gm MBCN). Proof: ∵ ABCD is a || gm
    therefore space space space space space AB space equals space DC space space space and space space AB space parallel to space DC
rightwards double arrow space space space space space 1 half AB equals 1 half DC space and space AM space parallel to space DN
rightwards double arrow space space space space space AM equals DN space space and space space AM space parallel to space DN
rightwards double arrow space space space space space square AMND space is space straight a space parallel to space gm.

    Similarly, we can prove that □MBCN is a parallelogram.
    ∵ || gm AMND and || gm MBCN are on equal bases AM and MB (∵ M is the mid-point of AB) and between the same parallels AB and DC.
    ∴ ar(|| gm AMND) = ar(|| gm MBCN).


    Question 53
    CBSEENMA9002887

    In an equilateral triangle, O is any point is the interior of the triangle and perpendiculars are drawn from O to the sides. Prove that the sum of these perpendicular line segments is constant.

    Solution

    Given: ABC is an equilateral triangle. O is any point in the interior of the triangle. Perpendiculars OD, OE and OF are drawn from 0 on the sides BC, AB and AC respectively of ΔABC.
    To Prove: OD + OE + OF = constant
    Construction: Join O to A, B and C. Draw AH
    ⊥ BC.
    Proof: ∵ ΔABC is an equilateral triangle AB = BC = CA
    ar left parenthesis increment AOB right parenthesis equals fraction numerator left parenthesis AB right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis BC right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space space space space space space space space space space vertical line space because space AB space equals space BC

    ar left parenthesis increment BOC right parenthesis equals fraction numerator left parenthesis BC right parenthesis left parenthesis OD right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
ar space left parenthesis increment COA right parenthesis equals fraction numerator left parenthesis CA right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis BC right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction space space space space space space space... left parenthesis 3 right parenthesis space space space space space space vertical line space because space CA space equals space BC
    Adding (1), (2) and (3), we get
    space space space space space space space ar space left parenthesis increment AOB right parenthesis plus ar left parenthesis increment BOC right parenthesis plus ar left parenthesis increment COA right parenthesis
rightwards double arrow space space space ar space left parenthesis increment ABC right parenthesis equals fraction numerator left parenthesis BC right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis BC right parenthesis left parenthesis OD right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis BC right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction
rightwards double arrow space space space 1 half left parenthesis BC right parenthesis left parenthesis AH right parenthesis equals 1 half BC left parenthesis OE plus OD plus OF right parenthesis
rightwards double arrow space space space space AH equals OD plus OE plus OF
    ⇐ OD + OE + OF = AH which is constant for a given triangle.

    Question 54
    CBSEENMA9002888

    ΔABC and ΔABD are two triangles on the same base AB. If line segment CD is bisected by AB at O, show that ar (ΔABC) = ar (ΔABD).


    Solution

    Given: ΔABC and ΔABD are two triangles on the same base AB. Line segment CD is bisected by AB at O.
    To Prove: ar(ABC) = ar(ABD)
    Proof: ∵ Line segment CD is bisected by AB at O
    ∴ CO = DO
    ⇒ O is the mid-point of CD.
    ⇒ AO is a median of ΔACD and BO is a median of ΔBCD
    ∵ AO is a median of ΔACD
    ∴ ar(ΔAOC) = ar(Δ AOD)    ... (1)
    ∵    A median of a triangle divides it into
    two triangles of equal areas
    ∵ BO is a median of ΔBCD ar(ΔBOC) = ar(ΔBOD)    ...(2)
    ∵    A median of a triangle divides it into
    two triangles of equal areas
    Adding (1) and (2), we get ar(ΔAOC) + ar(ΔBOC)
    = ar(ΔAOD) + ar(ΔBOD)
    ⇒ ar(ΔABC) = ar(ΔABD)

    Question 55
    CBSEENMA9002889

     ΔABC and ΔABD are two triangles on the same base AB. If line segment CD is bisected by AB at O, show that ar (ΔABC) = ar (ΔABD).

    ar left parenthesis quad. space ABCD right parenthesis equals 1 half BD. left parenthesis AM plus CN right parenthesis.

    Solution

    Given: BD is one of the diagonals of a quadrilateral ABCD. AM and CN are perpendiculars from A and C respectively on BD.

    To Prove: ar(quad. ABCD)
    equals 1 half BD. left parenthesis AM plus CN right parenthesis
    Proof: ar(quad ABCD)

    negative ar left parenthesis increment ABD right parenthesis plus ar left parenthesis increment BCD right parenthesis
equals space fraction numerator BD. AM over denominator 2 end fraction plus fraction numerator BD. CN over denominator 2 end fraction
    because  Area of a triangle = 1 half x Base X Corresponding altitude
    equals 1 half BD left parenthesis AM plus CN right parenthesis

    Question 56
    CBSEENMA9002890

    ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that

    (i)    ar(ΔADO) = ar(ΔCDO)
    (ii)    ar(ΔABP) = ar(ΔCBP)

    Solution

    Given: ABCD is a parallelogram whose diagonals intersect at O. P is any point on BO.

    To Prove:

    (i) ar(ΔADO) = ar(ΔCDO) (ii) ar(ΔABP) = ar(ΔCBP)

    Proof:
    (i)    ∵ Diagonals of a parallelogram bisect each other
    ∴ AO = OC
    ⇒ O is the mid-point of AC
    DO is a median of ΔDAC
    ar(ΔADO) = ar(ΔCDO)
    ∵ A median of a triangle divides it into two triangles of equal areas
    (ii)    ∵ BO is a median of ΔBAC
    ∴ ar(ΔBOA) = ar(ΔBOC)    ...(1)
    ∵ A median of a triangle divides it into two triangles of equal areas ∵ PO is a median of ΔPAC
    ∴ ar(ΔPOA) = ar(ΔPOC)    ...(2)
    ∵ A median of a triangle divides it into two triangles of equal areas Subtracting (2) from (1), we get ar(ΔBOA) – ar(ΔPOA) = ar(ΔBOC) – ar(ΔPOC) ⇒    ar(ΔABP) = ar(ΔCBP)

    Question 57
    CBSEENMA9002891

    In the given figure, ΔABC is right angled at B, and BD is its median. E is the mid-point of BD. If AB = 6 cm, AC = 10 cm, calculate area of ΔBEC.


    Solution

    In right triangle ABC,
    AB2 + BC2 = AC2
    | By Pythagoras theorem ⇒    62 + BC2 = 102
    ⇒    BC = 8 cm
    therefore space space ar left parenthesis increment ABC right parenthesis equals 1 half cross times space Base space cross times space Corresponding space altitude
space space space space space space space space space space space space space space space space space space equals space 1 half cross times BC cross times AB
space space space space space space space space space space space space space space space space space space space equals space 1 half cross times 8 cross times 6
space space space space space space space space space space space space space space space space space space space equals space 24 space cm squared space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    ∵ BD is a median of ΔABC
    therefore space space space ar space left parenthesis increment ABD right parenthesis space equals space ar left parenthesis increment BCD right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis
space space space space space space space space space space space space space space equals space 1 half cross times 24 space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space equals space 12 space cm squared space

    ∵ A median of a triangle divides it into two triangles of equal areas ⇒ ar(ΔBCD) = 12 cm2    ...(2)
    ∵ E is the mid-point of BD ∴ CE is a median of ΔBCD
    therefore space ar left parenthesis increment BEC right parenthesis space equals space ar space left parenthesis increment CED right parenthesis equals 1 half ar space left parenthesis increment BCD right parenthesis
    ∵ A median of a triangle divides it into two triangles of equal areas
    space space space space space space space space space space space space space equals space 1 half cross times 12 space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 2 right parenthesis
space space space space space space space space space space space space space space equals space 6 space space cm squared
space space rightwards double arrow space space space space space ar left parenthesis increment BEC right parenthesis equals 6 space cm squared

    Question 58
    CBSEENMA9002892

    In the given figure, ΔABC is right angled at A and AD is its median. BA is produced to E such that BA = AE. ED is joined. If AB = 6 cm, BC = 10 cm, find ar(ΔBED).


    Solution

    In right triangle BAC,
    AB+ AC2 = BC2
    | By Pythagoras Theorem
    ⇒ 62 + AC2 = 102 ⇒    AC = 8 cm
    therefore space space space ar left parenthesis increment ABC right parenthesis equals 1 half cross times space Base space cross times thin space Corresponding space altitude
space space space space space space space space space space space equals space 1 half cross times AB cross times AC
space space space space space space space space space space space equals space 1 half cross times 6 cross times 8 space
space space space space space space space space space space space equals space 24 space cm squared space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    ∵ AD is a median of ΔABC ∴ ar(ΔABD) = ar(ΔACD)
    ∵ A median of a triangle divides it into two triangles of equal areas
    equals space 1 half space ar left parenthesis ABC right parenthesis
equals space 1 half straight x space 24 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 1 right parenthesis
equals space space 12 space cm squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space
    ∵ BA = AE ∴ A is the mid-point of BE ∴ DA is a median of ΔBDE
    therefore space space ar space left parenthesis increment ABD right parenthesis equals 1 half ar left parenthesis increment BED right parenthesis
    ∵ A median of a triangle divides it into two triangles of equal areas
    rightwards double arrow space space space space space ar left parenthesis increment ABD right parenthesis equals 1 half ar left parenthesis increment BED right parenthesis
rightwards double arrow space space space space space 12 equals 1 half ar left parenthesis increment BED right parenthesis space space space space space space space vertical line space From space left parenthesis 3 right parenthesis
rightwards double arrow space space space space space ar left parenthesis increment BED right parenthesis equals 24 space cm squared

    Question 59
    CBSEENMA9002893

    The medians of ΔABC intersect at G. Prove that

    ar(ΔAGB) = ar(ΔAGC) = ar(ΔBGC)  equals 1 third space ar left parenthesis increment ABC right parenthesis

    Solution

    Given: The medians AD, BE and CF of ΔABC intersect at G.

    To Prove: ar(ΔAGB) = ar(ΔAGC) equals space ar left parenthesis increment BGC right parenthesis equals 1 third ar left parenthesis increment ABC right parenthesis
    Proof: In ΔABC,
    ∵ AD is a median
    ∵ ar(ΔABD) = ar(ΔACD)    ...(1)
    A median of a triangle divides it into two triangles of equal areas
    In ΔGBC,
    ∵ GD is a median ∴ ar(ΔGBD) = ar(ΔGCD)    ...(2)
    A median of a triangle divides it into two triangles of equal areas Subtracting (2) from (1), we get
    ar(ΔABD) – ar(ΔGBD)
    = ar(ΔACD) – ar(ΔGCD)
    ⇒    ar(ΔGAB) = ar(ΔGAC) ...(3)
    Similarly, we can show that ar(ΔGAB) = ar(ΔGBC)    ...(4)
    From (3) and (4), we get ar(ΔGAB) = ar(ΔGAC) = ar(ΔGBC)
    But,
    ar(ΔGAB) + ar(ΔGAC) + ar(ΔGBC)
    = ar(ΔABC)
    ⇒ 3 ar(ΔAGB) = ar(⇒ABC)
    rightwards double arrow space space space space space space space ar left parenthesis increment AGB right parenthesis equals 1 third ar left parenthesis increment ABC right parenthesis
rightwards double arrow space space space space space space space ar left parenthesis increment AGB right parenthesis space equals space ar left parenthesis increment AGC right parenthesis
space space space space space space space space space space space space space space equals space ar left parenthesis increment BGC right parenthesis equals 1 third ar left parenthesis ABC right parenthesis

    Question 60
    CBSEENMA9002894

    Triangles ABC and DBC are on the same base BC with vertices A and D on opposite sides of BC such that ar (ΔABC) = ar(ΔDBC). Show that BC bisects AD. 


    Solution

    Given: Triangles ABC and DBC are on the same base BC with vertices A and D on opposite sides of BC such that ar(ΔABC) = ar(ΔDBC).
    To Prove: BC bisects AD.



    Proof: ar(ΔABC) = ar(ΔDBC)    | Given
    rightwards double arrow space 1 half cross times BC cross times AM
equals space 1 half cross times BC cross times DN

    | Area of a triangle = equals 1 half x Base x Corresponding altitude
    rightwards double arrow       AM = DN                                                       ...(1)

    In ΔAMO and ΔDNO,
    AM = DN    | From (1)
    ∠AMN = ∠DNO    | Each = 90°
    ∠AOM = ∠DON
    | Vertically opposite angles ∴ ΔAMO ⊥ ΔDNO
    | AAS congruence rule ∴ AO = DO    | CPCT
    ⇒ BC bisects AD.



    Question 61
    CBSEENMA9002895
    Question 66
    CBSEENMA9002900
    Question 67
    CBSEENMA9002901
    Question 69
    CBSEENMA9002903

    In figure, ABDE and BCDE are two parallelograms. Show that ar left parenthesis increment BDE right parenthesis equals 1 third ar left parenthesis quad. space space ACDE right parenthesis.


    Solution

    Solution not provided.

    Question 73
    CBSEENMA9002907

    Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

    Solution
    Given: Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas.

    To Prove: The perimeter of the parallelogram ABCD is greater than that of rectangle ABEF.
    Proof: Let ABCD be the parallelogram and ABEF be the rectangle on the same base AB and between the same parallels AB and FC. Then, perimeter of the parallelogram ABCD = 2(AB + AD) and, perimeter of the rectangle ABEF = 2(AB + AF).

    In ΔADF,
    ∵ ∠AFD = 90°
    ∴ ∠ADF is an acute angle. (< 90°)
    | Angle sum property of a triangle
    ∴ ∠AFD > ∠ADF ∴ AD > AF
    Side opposite to greater angle of a triangle is longer ∴ AB + AD > AB + AF
    ∴ 2(AB + AD) > 2(AB + AF)
    ∴ Perimeter of the parallelogram ABCD > Perimeter of the rectangle ABEF.

    Question 75
    CBSEENMA9002909

    In figure, ABCD, DCFE and ABFE are parallelograms. Show that ar(ΔADE) = ar(ΔBCF).


    Solution

    Given: ABCD, DCFE and ABFE are parallelograms.
    To Prove: ar(ΔADE) = ar(ΔBCF).
    Proof: ∵ ABCD is a || gm
    ∴ AB || DC    ...(1)
    | Opposite sides of a || gm are ||
    ∵    DCFE is a || gm
    ∴ DC || EF    ...(2)
    | Opposite sides of a || gm are ||
    From (1) and (2),
    AB || EF    ...(3)
    ∵    ABCD is a || gm
    ∴ AD = BC    ...(4)
    | Opposite sides of a || gm are equal
    ∵    ΔADE and ΔBCF are on equal bases (∵ AD = BC) and between the same parallels AB and EF.
    □∴ ar(ΔADE) = ar(ΔBCF).
    ∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in areas

    Question 76
    CBSEENMA9002910

    In figure, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar(ΔBPC) = ar(ΔDPQ).



    [Hint. Join AC.]

    Solution

    Given: ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. AQ intersects DC at P.
    To Prove: ar(ΔBPC) = ar(ΔDPQ).
    Construction: Join AC.
    Proof: ∵ ΔQAC and ΔQDC are on the same base QC and between the same parallels AD and QC.

    ∴ ar(ΔQAC) = ar(ΔQDC)    ...(1)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in areas
    ⇒ ar(ΔQAC) – ar(ΔQPC)
    = ar(ΔQDC) – ar(ΔQPC)
    | Subtracting the same areas from both sides
    ⇒ ar(ΔPAC) = ar(ΔQDP)    ...(2)
    ∵ ΔPAC and ∵PBC are on the same base PC and between the same parallels AB and DC.
    ∵ ar(∵PAC) = ar(∵PBC)    ...(3)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    From (2) and (3),
    ar(ΔPBC) = ar(ΔQDP)
    ⇒    ar(ΔBPC) = ar(ΔDPQ).

    Question 77
    CBSEENMA9002911

    In figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that: 



    left parenthesis straight i right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis ii right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 half ar space left parenthesis increment BAE right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis increment ABC right parenthesis equals space 2 ar left parenthesis increment BEC right parenthesis
left parenthesis iv right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment AFD right parenthesis
left parenthesis straight v right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment FED right parenthesis
left parenthesis vi right parenthesis ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis AFC right parenthesis.

    Solution

    Given: ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC at F.
    To space Prove colon space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis

    Construction: Join EC and AD.

    Proof: ∵ ΔABC is an equilateral triangle. ∴ ∠ABC = ∠BCA = ∠CAB = 60° ...(1)
    ∵    ΔBDE is an equilateral triangle.
    ∴ ∠BDE = ∠DEB = ∠EBD = 60° ...(2) ∠ABE + ∠BED
    = ∠ABD + ∠EBD + ∠BED = 60°+ 60°+ 60°= 180°
    ∴ AB || DE    ...(3)
    ∵    Sum of consecutive interior angles on
    the same side of a transversal is 180° ∠EBA + ∠BAC
    = ∠EBD + ∠DBA + ∠BAC = 60° + 60° + 60° = 180°
    ∴ AC || BE    ...(4)
    ∵    Sum of consecutive interior angles on the same side of the transversal is 180°
    ∵    ΔCBA and ΔCEA are on the same base AC and between the same parallels.
    ∴ ar(ΔCBA) = ar(ΔCEA)
    Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔABC) = ar(ΔCDA) + ar(ΔCED) + ar(ΔADE) ...(5)
    In ΔABC,
    ∵    AD is a median.
    therefore space space a r left parenthesis increment A B D right parenthesis equals a r left parenthesis increment A C D right parenthesis equals 1 half a r left parenthesis increment A B C right parenthesis space space space space space space space space space space space space space space space space space... left parenthesis 6 right parenthesis

    ∵ A median of a triangle divides it into two triangles of equal area
    In ΔEBC,
    ∵ ED is a median.
    therefore space space ae left parenthesis increment ECD right parenthesis equals ar left parenthesis increment EBD right parenthesis equals 1 half ar left parenthesis increment EBC right parenthesis space space space space space space space... left parenthesis 7 right parenthesis

    ∵ A median of a triangle divides it into two triangles of equal area ∵ ΔDEA and ΔDBE are on the same base DE and between the same parallels AB and DE.
    ∴ ar(ΔDEA) = ar(ΔDBE)    ...(8)
    ∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area
    Using (6), (7) and (8), (5) gives
    ar left parenthesis increment ABC right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis plus ar left parenthesis increment BDE right parenthesis plus ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space 1 half ar left parenthesis increment abc right parenthesis equals 2 ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space ar space left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis.

    (ii) ∵ ΔBAE and ΔBCE are on the same base BE and between the same parallels BE and AC.
    ∴ ar(ΔBAE) = ar(ΔBCE)
    ∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in
    area
    ⇒ ar(ΔBAE) = 2 ar(ΔBDE)
    | From (7)

    rightwards double arrow space space space space space space space ar left parenthesis increment BDE right parenthesis equals 1 half ar left parenthesis increment BAE right parenthesis.

    (iii)    2 ar(ΔBEC) = 2.2 ar(ΔBDE)

    | From (7)

    = 4 ar(ΔBDE) = ar(ΔABC).

    | Form (i)

    (iv)    ∵ ΔEBO and ΔEAD are on the same base ED and between the same parallels AB and DE.
    ∴ ar(ΔEBD) = ar(ΔEAD).
    ∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔEBD) – ar(ΔEFD)
    = ar(ΔEAD) – ar(ΔEFD)
    | Subtracting the same areas from both sides ⇒ ar(ΔBFE) = ar(ΔAFD).
    left parenthesis straight v right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space vertical line space From space left parenthesis straight i right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 fourth.2 space ar left parenthesis increment ABD right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 half space ar left parenthesis increment ABD right parenthesis

    ∵ Bases of ΔBDE and ΔABD are the same.
    therefore space space Altitude space of space increment BDE space equals space 1 half space Altitude space of space increment ABD space space space space space space space space... left parenthesis 9 right parenthesis
    ar (ΔBEF) = ar(ΔAFD)    ...(10)                                             | From (iv)
    because space  Altuitude of increment BDE equals 1 half Altitude  of increment ABD                   | From (9)
    therefore  Altitude of increment BEF equals 1 half Altitude of increment AFD space space space space space space space space space space space... left parenthesis 11 right parenthesis

    From (10) and (11),
    BF = 2FD    ...(12)
    In ΔBFE and ΔFED,
    ∵ BF = 2FD and, alt (ΔBFE) = alt (ΔFED) ar(ΔBFE) = 2 ar(ΔFED).


    (vi) Let the altitude of ΔABD be h.
    Then, altitude of increment BED equals straight h over 2 space space space space vertical line space because space space ar left parenthesis increment BDE right parenthesis

                          equals space 1 half ar left parenthesis increment ABD right parenthesis
    Now,   ar left parenthesis increment FED right parenthesis equals 1 half. FD. straight h over 2 equals fraction numerator FD. straight h over denominator 4 end fraction space space space space space space space space space space space space space space space space... left parenthesis 13 right parenthesis
    ar left parenthesis increment AFC right parenthesis equals 1 half. FC. straight h
space space equals 1 half left parenthesis FD plus DC right parenthesis straight h equals 1 half left parenthesis FD plus BD right parenthesis straight h
space space equals space 1 half left parenthesis FD plus BF plus FD right parenthesis straight h equals 1 half left parenthesis 2 FD plus BF right parenthesis straight h
space space equals space 1 half left parenthesis 2 FD plus 2 FD right parenthesis space straight h space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 12 right parenthesis
space space equals space 2. space FD. straight h
    From (13) and (14), we obtain,
                ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis increment AFC right parenthesis

    Question 78
    CBSEENMA9002912

    Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar(ΔAPB) x ar(ΔCPD) = ar(ΔAPD) x ar(ΔBPC).

    [Hint From A and C, draw perpendiculars to DD.] 

    Solution

    Given: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P.
    To Prove: ar(ΔAPB) x ar(ΔCPD) = ar(ΔAPD) x ar(ΔBPC).
    Construction: From A and C, draw perpendiculars AE and CF respectively to BD.

    Proof: ar(AAPB) x ar(ACPD)
    space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis PB right parenthesis left parenthesis AE right parenthesis over denominator 2 end fraction cross times open parentheses fraction numerator DP cross times CF over denominator 2 end fraction close parentheses
open parentheses Area space of space increment space equals space fraction numerator base space cross times space corresponding space altitude over denominator 2 end fraction close parentheses
space space space space space space space space space space space space space space space space equals 1 fourth left parenthesis PB right parenthesis left parenthesis AE right parenthesis left parenthesis DP right parenthesis left parenthesis CF right parenthesis space space space space space space space space... left parenthesis 1 right parenthesis
ar left parenthesis increment APD right parenthesis cross times ar left parenthesis increment BPC right parenthesis
space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis DP right parenthesis left parenthesis AE right parenthesis over denominator 2 end fraction cross times fraction numerator left parenthesis PB right parenthesis left parenthesis CF right parenthesis over denominator 2 end fraction
space space space space space space space space space space space space equals space 1 fourth left parenthesis PB right parenthesis space left parenthesis AE right parenthesis left parenthesis Dp right parenthesis left parenthesis CF right parenthesis space space space space space space space... left parenthesis 2 right parenthesis
space space space space space space space space space space space space space space space space space space space space space

    From (1) and (2),
    ar(ΔAPB) x ar(ΔCPD)
    = ar(ΔAPD) x ar(ΔBPC).

    Question 79
    CBSEENMA9002913

    P and Q are respectively the midpoints of sides AB and BC of a triangle ABC and R is the mid-point of AP. Show that:

    left parenthesis straight i right parenthesis space ar left parenthesis increment PRQ right parenthesis equals 1 half ar left parenthesis increment ARC right parenthesis
left parenthesis II right parenthesis space ar left parenthesis increment RQC right parenthesis equals 3 over 8 ar left parenthesis increment ABC right parenthesis

    (iii) ar(ΔPBQ) = ar(ΔARC).

    Solution
    Given: P and Q are respectively the midpoints of sides AB and BC of a triangle ABC and R is the mid-point of AP.

    left parenthesis straight i right parenthesis space a r left parenthesis increment P R Q right parenthesis equals 1 half a r left parenthesis increment A R C right parenthesis
left parenthesis I I right parenthesis space a r left parenthesis increment R Q C right parenthesis equals 3 over 8 a r left parenthesis increment A B C right parenthesis
    (iii) ar(ΔPBQ) = ar(ΔARC). Construction: Join AQ and CP.

    Proof: (i) ar(ΔPRQ) = ar(ΔARQ)
    (∵ a median of a A divides it into triangles of equal area)
    equals 1 half ar left parenthesis increment APQ right parenthesis equals 1 half ar left parenthesis increment BPQ right parenthesis
equals 1 half ar left parenthesis increment CPQ right parenthesis equals 1 half.1 half ar left parenthesis increment BPC right parenthesis
equals space 1 half ar left parenthesis increment BPC right parenthesis equals 1 fourth.1 half ar left parenthesis increment ABC right parenthesis
equals space 1 half ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
1 half a r left parenthesis increment A R C right parenthesis equals 1 half 1 half a r left parenthesis increment A P C right parenthesis
equals space 1 fourth a r left parenthesis increment A P C right parenthesis equals 1 fourth.1 half space a r left parenthesis increment A B C right parenthesis
equals space 1 over 8 a r left parenthesis increment A B C right parenthesis space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we have
    ar left parenthesis increment PRQ right parenthesis equals 1 half ar left parenthesis increment ARC right parenthesis

    (ii) ar(ΔRQC) = ar(ΔRBQ) (Δ a median of a A divides it into triangles of equal areas) = ar(ΔPRQ) + ar(ΔBPQ)
    equals 1 over 8 ar left parenthesis increment ABC right parenthesis plus 1 half ar left parenthesis increment PBC right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space Using space left parenthesis 1 right parenthesis
equals 1 half space ar left parenthesis increment ABC right parenthesis plus 1 half.1 half ar left parenthesis increment ABC right parenthesis
equals space 1 over 8 ar left parenthesis increment ABC right parenthesis plus 1 fourth ar left parenthesis increment ABC right parenthesis
equals 3 over 8 ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space space space space
    left parenthesis iii right parenthesis space ar left parenthesis increment PBQ right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis ii right parenthesis
ar space left parenthesis increment ARC right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis straight i right parenthesis

    From (3) and (4),
    ar(ΔPBQ) = ar(ΔARC).


    Sponsor Area

    Question 80
    CBSEENMA9002914

    In figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:



    (i)    ΔMBC ≅ ΔABD
    (ii)    ar(BYXD) = 2 ar(ΔMBC)
    (iii) ar(BYXD) = ar(ΔABMN)
    (iv)    ΔFCB ≅ ΔACE
    (v)    ar(CYXE) = 2 ar(ΔFCB)
    (vi)    ar(CYXE) = ar(ACFG)
    (vii)    ar(BCED) = ar(ABMN) + ar(ACFG).
    Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

    Solution

    Given: In figure, ABC is a right angle triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y.
    To Prove: (i) ΔMBC ≅ ΔABD (ii) ar(BYXD) = 2 ar(ΔMBC)
    (iii) ar(BYXD) = ar(ABMN)
    (iv)    ΔFCB ≅ ΔACE
    (v)    ar(CYXE) = 2 ar(ΔFCB)
    (vi)    ar(CYXE) = ar(ACFG)
    (vii)    ar(BCED) = ar(ABMN) + ar(ACFG) Proof: (i) In ΔMBC and ΔABD,
    MB = AB    ...(1)
    | Sides of a square BC = BD    ...(2)
    | Sides of a square ∠MBA = ∠CBD    | Each = 90°
    ⇒ ∠MBA + ∠ABC = ∠CBD + ∠ABC
    [adding ∠ABC to both sides] ⇒ ∠MBC = ∠ABD    ...(3)
    In view of (1), (2) and (3),
    ΔMBC = ΔABD.
    | By Congruence SAS Rule
    (ii)    ar(BYXD) = 2 ar(ΔABD)
    ⇒ ar(BYXD) = 2 ar(ΔMBC).
    (iii)    ar(BYXD) = 2ar(ΔABD) ar(ABMN) = 2ar(ΔMBC) = 2ar(ΔABD)
    | From (i)
    ∴ ar(BYXD) = ar(ABMN).
    (iv)    In ΔFCB and ΔACE,
    FC = AC    | Sides of a square
    CB = CE    | Sides of a square
    ∠FCA = ∠BCE    | Each = 90°
    ⇒ ∠FCA + ∠ACB = ∠BCE + ∠ACB
    (Adding the same on both sides) ⇒ ∠FCB = ∠ACE ∴ ΔFCB ≅ ΔACE.
    | SAS Congruence Rule
    (v)    ar(CYXE) = 2ar(ΔACE) = 2ar(ΔFCB)
    | From (iv) ∵ ΔFCB ≅ ΔACE ∴ ar(ΔFCB) = ar(ΔACE) Congruent As have equal areas
    (vi) ar(CYXE) = 2ar(ΔACE) = 2ar(ΔFCB) ar(ACFG) = 2ar(ΔFCB) ∴ ar(CYXE) = ar(ACFG).
    (vii) ar(BCED) = ar(CYXE) + ar(BYXD)
    = ar(ACFG) + ar(ABMN) = ar(ABMN) + ar(ACFG).

    Question 116
    CBSEENMA9002950
    Question 119
    CBSEENMA9002953

    Sponsor Area

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation