-->

Constructions

Question
CBSEENMA9002893

The medians of ΔABC intersect at G. Prove that

ar(ΔAGB) = ar(ΔAGC) = ar(ΔBGC)  equals 1 third space ar left parenthesis increment ABC right parenthesis

Solution

Given: The medians AD, BE and CF of ΔABC intersect at G.

To Prove: ar(ΔAGB) = ar(ΔAGC) equals space ar left parenthesis increment BGC right parenthesis equals 1 third ar left parenthesis increment ABC right parenthesis
Proof: In ΔABC,
∵ AD is a median
∵ ar(ΔABD) = ar(ΔACD)    ...(1)
A median of a triangle divides it into two triangles of equal areas
In ΔGBC,
∵ GD is a median ∴ ar(ΔGBD) = ar(ΔGCD)    ...(2)
A median of a triangle divides it into two triangles of equal areas Subtracting (2) from (1), we get
ar(ΔABD) – ar(ΔGBD)
= ar(ΔACD) – ar(ΔGCD)
⇒    ar(ΔGAB) = ar(ΔGAC) ...(3)
Similarly, we can show that ar(ΔGAB) = ar(ΔGBC)    ...(4)
From (3) and (4), we get ar(ΔGAB) = ar(ΔGAC) = ar(ΔGBC)
But,
ar(ΔGAB) + ar(ΔGAC) + ar(ΔGBC)
= ar(ΔABC)
⇒ 3 ar(ΔAGB) = ar(⇒ABC)
rightwards double arrow space space space space space space space ar left parenthesis increment AGB right parenthesis equals 1 third ar left parenthesis increment ABC right parenthesis
rightwards double arrow space space space space space space space ar left parenthesis increment AGB right parenthesis space equals space ar left parenthesis increment AGC right parenthesis
space space space space space space space space space space space space space space equals space ar left parenthesis increment BGC right parenthesis equals 1 third ar left parenthesis ABC right parenthesis