-->

Constructions

Question
CBSEENMA9002887

In an equilateral triangle, O is any point is the interior of the triangle and perpendiculars are drawn from O to the sides. Prove that the sum of these perpendicular line segments is constant.

Solution

Given: ABC is an equilateral triangle. O is any point in the interior of the triangle. Perpendiculars OD, OE and OF are drawn from 0 on the sides BC, AB and AC respectively of ΔABC.
To Prove: OD + OE + OF = constant
Construction: Join O to A, B and C. Draw AH
⊥ BC.
Proof: ∵ ΔABC is an equilateral triangle AB = BC = CA
ar left parenthesis increment AOB right parenthesis equals fraction numerator left parenthesis AB right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis BC right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space space space space space space space space space space vertical line space because space AB space equals space BC

ar left parenthesis increment BOC right parenthesis equals fraction numerator left parenthesis BC right parenthesis left parenthesis OD right parenthesis over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
ar space left parenthesis increment COA right parenthesis equals fraction numerator left parenthesis CA right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis BC right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction space space space space space space space... left parenthesis 3 right parenthesis space space space space space space vertical line space because space CA space equals space BC
Adding (1), (2) and (3), we get
space space space space space space space ar space left parenthesis increment AOB right parenthesis plus ar left parenthesis increment BOC right parenthesis plus ar left parenthesis increment COA right parenthesis
rightwards double arrow space space space ar space left parenthesis increment ABC right parenthesis equals fraction numerator left parenthesis BC right parenthesis left parenthesis OE right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis BC right parenthesis left parenthesis OD right parenthesis over denominator 2 end fraction plus fraction numerator left parenthesis BC right parenthesis left parenthesis OF right parenthesis over denominator 2 end fraction
rightwards double arrow space space space 1 half left parenthesis BC right parenthesis left parenthesis AH right parenthesis equals 1 half BC left parenthesis OE plus OD plus OF right parenthesis
rightwards double arrow space space space space AH equals OD plus OE plus OF
⇐ OD + OE + OF = AH which is constant for a given triangle.