-->

Constructions

Question
CBSEENMA9002869

In a triangle ABC, E is the midpoint of median AD. Show that a r left parenthesis increment B E D right parenthesis space equals 1 fourth a r left parenthesis increment A B C right parenthesis

Solution
Given: In a triangle ABC, E is the midpoint of median AD.
 To space Prove space colon space ar left parenthesis increment BED right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis.
Proof: In ΔABC,

∵ AD is a median.
therefore space space ar left parenthesis increment ABD right parenthesis equals ar left parenthesis increment ACD right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

(1)

∵ A median of a triangle divides it into two triangles of equal areas.
In ΔABD,
∵ BE is a median.

therefore space space ar left parenthesis increment BED right parenthesis equals ar left parenthesis increment BEA right parenthesis equals 1 half ar left parenthesis increment ABD right parenthesis
∵ A median of a triangle divides it into two triangles of equal areas
rightwards double arrow space space ar left parenthesis increment BED right parenthesis equals 1 half ar left parenthesis increment ABD right parenthesis
space space space space space space space space space space space space space space equals 1 half.1 half space ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space vertical line space From space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space equals space 1 fourth ar space left parenthesis increment ABC right parenthesis.