-->

Constructions

Question
CBSEENMA9002870

Show that the diagonals of a parallelogram divide it into four triangles of equal area.   

Solution
Given: ABCD is a parallelogram whose diagonals AC and BD intersecting at O divide it into four trianlges ΔOAB, ΔOBC, ΔOCD and ΔODA.

To Prove: ar(ΔOAB) = ar(ΔOBC)
= ar(ΔOCD) = ar(ΔODA). Construction: Draw BE ⊥ AC.
Proof: ∵ ABCD is a parallelogram ∴ OA = OC and OB = OD
| ∵ Diagonals of a parallelogram bisect each other
Now,
ar left parenthesis increment OAB right parenthesis equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis OA right parenthesis left parenthesis BE right parenthesis over denominator 2 end fraction
and space space space ar left parenthesis increment OBC right parenthesis equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis OC right parenthesis left parenthesis BE right parenthesis over denominator 2 end fraction

But OA = OC
∴ ar(ΔOAB) = ar(ΔOBC)    ...(1)
Similarly,
ar(ΔOBC) = ar(ΔOCD)    ...(2)
and, ar(ΔOCD) = ar(ΔODA)    ...(3)
From (1), (2) and (3), ar(ΔOAB) = ar(ΔOBC)
= ar(ΔOCD) = ar(ΔODA).