-->

Constructions

Question
CBSEENMA9002911

In figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that: 



left parenthesis straight i right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis ii right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 half ar space left parenthesis increment BAE right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis increment ABC right parenthesis equals space 2 ar left parenthesis increment BEC right parenthesis
left parenthesis iv right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment AFD right parenthesis
left parenthesis straight v right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment FED right parenthesis
left parenthesis vi right parenthesis ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis AFC right parenthesis.

Solution

Given: ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC at F.
To space Prove colon space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis

Construction: Join EC and AD.

Proof: ∵ ΔABC is an equilateral triangle. ∴ ∠ABC = ∠BCA = ∠CAB = 60° ...(1)
∵    ΔBDE is an equilateral triangle.
∴ ∠BDE = ∠DEB = ∠EBD = 60° ...(2) ∠ABE + ∠BED
= ∠ABD + ∠EBD + ∠BED = 60°+ 60°+ 60°= 180°
∴ AB || DE    ...(3)
∵    Sum of consecutive interior angles on
the same side of a transversal is 180° ∠EBA + ∠BAC
= ∠EBD + ∠DBA + ∠BAC = 60° + 60° + 60° = 180°
∴ AC || BE    ...(4)
∵    Sum of consecutive interior angles on the same side of the transversal is 180°
∵    ΔCBA and ΔCEA are on the same base AC and between the same parallels.
∴ ar(ΔCBA) = ar(ΔCEA)
Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔABC) = ar(ΔCDA) + ar(ΔCED) + ar(ΔADE) ...(5)
In ΔABC,
∵    AD is a median.
therefore space space a r left parenthesis increment A B D right parenthesis equals a r left parenthesis increment A C D right parenthesis equals 1 half a r left parenthesis increment A B C right parenthesis space space space space space space space space space space space space space space space space space... left parenthesis 6 right parenthesis

∵ A median of a triangle divides it into two triangles of equal area
In ΔEBC,
∵ ED is a median.
therefore space space ae left parenthesis increment ECD right parenthesis equals ar left parenthesis increment EBD right parenthesis equals 1 half ar left parenthesis increment EBC right parenthesis space space space space space space space... left parenthesis 7 right parenthesis

∵ A median of a triangle divides it into two triangles of equal area ∵ ΔDEA and ΔDBE are on the same base DE and between the same parallels AB and DE.
∴ ar(ΔDEA) = ar(ΔDBE)    ...(8)
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area
Using (6), (7) and (8), (5) gives
ar left parenthesis increment ABC right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis plus ar left parenthesis increment BDE right parenthesis plus ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space 1 half ar left parenthesis increment abc right parenthesis equals 2 ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space ar space left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis.

(ii) ∵ ΔBAE and ΔBCE are on the same base BE and between the same parallels BE and AC.
∴ ar(ΔBAE) = ar(ΔBCE)
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in
area
⇒ ar(ΔBAE) = 2 ar(ΔBDE)
| From (7)

rightwards double arrow space space space space space space space ar left parenthesis increment BDE right parenthesis equals 1 half ar left parenthesis increment BAE right parenthesis.

(iii)    2 ar(ΔBEC) = 2.2 ar(ΔBDE)

| From (7)

= 4 ar(ΔBDE) = ar(ΔABC).

| Form (i)

(iv)    ∵ ΔEBO and ΔEAD are on the same base ED and between the same parallels AB and DE.
∴ ar(ΔEBD) = ar(ΔEAD).
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔEBD) – ar(ΔEFD)
= ar(ΔEAD) – ar(ΔEFD)
| Subtracting the same areas from both sides ⇒ ar(ΔBFE) = ar(ΔAFD).
left parenthesis straight v right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space vertical line space From space left parenthesis straight i right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 fourth.2 space ar left parenthesis increment ABD right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 half space ar left parenthesis increment ABD right parenthesis

∵ Bases of ΔBDE and ΔABD are the same.
therefore space space Altitude space of space increment BDE space equals space 1 half space Altitude space of space increment ABD space space space space space space space space... left parenthesis 9 right parenthesis
ar (ΔBEF) = ar(ΔAFD)    ...(10)                                             | From (iv)
because space  Altuitude of increment BDE equals 1 half Altitude  of increment ABD                   | From (9)
therefore  Altitude of increment BEF equals 1 half Altitude of increment AFD space space space space space space space space space space space... left parenthesis 11 right parenthesis

From (10) and (11),
BF = 2FD    ...(12)
In ΔBFE and ΔFED,
∵ BF = 2FD and, alt (ΔBFE) = alt (ΔFED) ar(ΔBFE) = 2 ar(ΔFED).


(vi) Let the altitude of ΔABD be h.
Then, altitude of increment BED equals straight h over 2 space space space space vertical line space because space space ar left parenthesis increment BDE right parenthesis

                      equals space 1 half ar left parenthesis increment ABD right parenthesis
Now,   ar left parenthesis increment FED right parenthesis equals 1 half. FD. straight h over 2 equals fraction numerator FD. straight h over denominator 4 end fraction space space space space space space space space space space space space space space space space... left parenthesis 13 right parenthesis
ar left parenthesis increment AFC right parenthesis equals 1 half. FC. straight h
space space equals 1 half left parenthesis FD plus DC right parenthesis straight h equals 1 half left parenthesis FD plus BD right parenthesis straight h
space space equals space 1 half left parenthesis FD plus BF plus FD right parenthesis straight h equals 1 half left parenthesis 2 FD plus BF right parenthesis straight h
space space equals space 1 half left parenthesis 2 FD plus 2 FD right parenthesis space straight h space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 12 right parenthesis
space space equals space 2. space FD. straight h
From (13) and (14), we obtain,
            ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis increment AFC right parenthesis