-->

Constructions

Question
CBSEENMA9002872

D, E and F are respectively the midpoints of the sides BC, CA and AB of a ΔABC. Show that:

(i) BDEF is a parallelogram

left parenthesis ii right parenthesis space ar left parenthesis increment DEF right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis square space space BDEF right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

Solution

Given: D, E and F are respectively the midpoints of the sides BC, CA and AB of a ΔABC.

To Prove: (i) □BDEF is a parallelogram
left parenthesis ii right parenthesis space ar left parenthesis increment DEF right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis square space space BDEF right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

Proof: (i) In ΔABC,
∵    F is the mid-point of side AB and
E is the mid-point of side AC.
∴ EF || BC
∵ In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side.

⇒    EF || BD    ...(1)

Similarly, ED || BF    ...(2)
In view of (1) and (2),
□ BDEF is a parallelogram.
∵    A quadrilateral is a parallelogram
if its opposite sides are parallel

(ii) As in (i), we can prove that
□AFDE and □FDCE are parallelograms.
∵    FD is a diagonal of || gm BDEF.
ar(ΔFBD) = ar(ΔDEF) ...(3) Similarly, ar(ΔDEF) = ar(ΔFAE) ...(4) and,    ar(ΔDEF) = ar(ΔDCE) ...(5)
From (3), (4) and (5), we have ar(ΔFBD) = ar(ΔDEF)
= ar(ΔFAE) = ar(ΔDCE) ...(6)
∵    ΔABC is divided into four non-overlapping triangles ΔFBD, ΔDEF, ΔFAE and ΔDCE.
∴ ar(ΔABC) = ar(ΔFBD) + ar(ΔDEF) + ar(ΔFAE) + ar(ΔDCE) = 4 ar(ΔDEF) | From (6)
⇒ ar(ΔDEF) = 1/2 ar(ΔABC).    ...(7)
4
(iii) ar(□BDEF)
= ar(ΔFBD) + ar(ΔDEF)
= ar(ΔDEF) + ar(ΔDEF)
| From (3)
= 2 ar(ΔDEF)
equals 2.1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 7 right parenthesis
equals space 1 half ar left parenthesis increment ABC right parenthesis