Mathematics Chapter 14 Statistics
  • Sponsor Area

    NCERT Solution For Class 9 About 2.html

    Statistics Here is the CBSE About 2.html Chapter 14 for Class 9 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 9 About 2.html Statistics Chapter 14 NCERT Solutions for Class 9 About 2.html Statistics Chapter 14 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 9 About 2.html.

    Question 1
    CBSEENMA9003243

    A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?

    Solution

    'a'   =  a
    'b'   =  a
    'c'   =  a
    therefore space space space space space space space space straight s space equals space fraction numerator apostrophe straight a apostrophe plus apostrophe straight b apostrophe plus apostrophe straight c apostrophe over denominator 2 end fraction equals fraction numerator straight a plus straight a plus straight a plus over denominator 2 end fraction equals fraction numerator 3 straight a over denominator 2 end fraction
    Area of the signal board
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals square root of fraction numerator 3 straight a over denominator 2 end fraction open parentheses fraction numerator 3 straight a over denominator 2 end fraction minus straight a close parentheses open parentheses fraction numerator 3 straight a over denominator 2 end fraction minus straight a close parentheses open parentheses fraction numerator 3 straight a over denominator 2 end fraction minus straight a close parentheses end root
square root of fraction numerator 3 straight a over denominator 2 end fraction open parentheses straight a over 2 close parentheses open parentheses straight a over 2 close parentheses open parentheses straight a over 2 close parentheses end root equals square root of fraction numerator 3 straight a to the power of 4 over denominator 16 end fraction end root equals fraction numerator square root of 3 over denominator 4 end fraction straight a squared
    Perimeter = 180 cm
    rightwards double arrow   'a' + 'b' + 'c' = 180
    rightwards double arrow   a + a + a = 180
    rightwards double arrow              3a = 180
    rightwards double arrow space space space space space space space straight a space equals space 180 over 3
    rightwards double arrow space space space    a = 60  cm
    therefore  Area of the signal board equals fraction numerator square root of 3 over denominator 4 end fraction straight a squared
               equals fraction numerator square root of 3 over denominator 4 end fraction left parenthesis 60 right parenthesis squared equals 900 square root of 3 space cm squared
    Alternatively,
         space space space space space straight s space equals fraction numerator 3 straight a over denominator 2 end fraction equals 3 over 2 left parenthesis 60 right parenthesis equals 90 space cm
    Area of the signal board
        equals square root of straight s left parenthesis straight s minus straight a left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals square root of 90 left parenthesis 90 minus 60 right parenthesis left parenthesis 90 minus 60 right parenthesis left parenthesis 90 minus 60 right parenthesis end root
equals space square root of 90 left parenthesis 30 right parenthesis left parenthesis 30 right parenthesis left parenthesis 30 right parenthesis end root equals 900 square root of 3 space cm squared

    Question 2
    CBSEENMA9003244

    The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m (see figure). The advertisements yield an earning of र5000 per m2 per year. A company hired one of its walls for 3 months. How much rent did it pay?


    Solution

    a =122 m
    b = 22 m
    c = 120 m
    therefore space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 122 plus 22 plus 120 over denominator 2 end fraction straight m
space space space space space space space space equals space 264 over 2 space space straight m space equals space 132 space straight m
     

    1 year =12 months
    V Rent for 12 months per m2= र 5000

    therefore space   Rent for 1 month per m2 =  र5000 over 2
    therefore   Rent for 3 months of 1320 m2
                    equals space र 5000 over 12 cross times 3 equals space र space 1250

    therefore space space  Rent for 3 months of 1320 m2
                = र (1250 x 1320)
                = र 1650000.

    Question 4
    CBSEENMA9003246

    Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm. 

    Solution

     a = 18 cm
    b = 10 cm Perimeter - 42 cm
    ⇒ a + b + c = 42
    ⇒ 18 + 10 + c = 42
    ⇒ 28 + c = 42
    ⇒    c = 42 – 28
    ⇒    c = 14 cm
     space space space space space space space space space space space space space straight s equals 42 over 2 equals 21 space cm
    therefore space space space space space Area of the triangle 
           equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals square root of 21 left parenthesis 21 minus 18 right parenthesis left parenthesis 21 minus 10 right parenthesis left parenthesis 21 minus 14 right parenthesis end root
equals square root of 21 left parenthesis 3 right parenthesis left parenthesis 11 right parenthesis left parenthesis 7 right parenthesis end root
equals space square root of left parenthesis 7 right parenthesis left parenthesis 3 right parenthesis left parenthesis 3 right parenthesis left parenthesis 11 right parenthesis left parenthesis 7 right parenthesis end root
equals space left parenthesis 7 right parenthesis left parenthesis 3 right parenthesis square root of 11 equals 21 square root of 11 space cm squared

    Question 5
    CBSEENMA9003247

    Sides of a triangle are in the ratio of 12 :17 : 25 and its perimeter is 540 cm. Find its area.

    Solution

    Let the sides of the triangle be 12k, 17k and 25 k cm.
    Then,
    Perimeter = 12k+ 17k + 25k = 54k
    According to the question,
    54k = 540
    rightwards double arrow space space space space space straight k equals 540 over 54
    rightwards double arrow   k = 10
    therefore   a = 12k = 12 x 10 = 120 cm
           b = 17k = 17 x 10 = 170 cm
           c = 25k = 25 x 10 = 250 cm
    therefore space space space space straight s space equals space fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 120 plus 170 plus 250 over denominator 2 end fraction
space space space space space space space space space equals space 540 over 2 equals 270 space cm
therefore space space space Area space space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space equals space square root of 270 left parenthesis 270 minus 120 right parenthesis left parenthesis 270 minus 120 right parenthesis left parenthesis straight v minus 250 right parenthesis end root
space space space space space equals square root of 270 left parenthesis 150 right parenthesis left parenthesis 100 right parenthesis left parenthesis 20 right parenthesis end root
space space space space space equals square root of left parenthesis 9 cross times 30 right parenthesis left parenthesis 5 cross times 30 right parenthesis left parenthesis 5 cross times 20 right parenthesis left parenthesis 20 right parenthesis end root
space space space space space equals space left parenthesis 3 right parenthesis left parenthesis 30 right parenthesis left parenthesis 5 right parenthesis left parenthesis 20 right parenthesis space cm squared space equals space 9000 space cm squared.

    Question 6
    CBSEENMA9003248

    An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

    Solution

    a = 12 cm
    b = 12 cm
    Perimeter = 30 cm

    ⇒     a + b + c = 30
    ⇒    12 + 12 + c = 30
    ⇒    24 + c = 30
    ⇒    c = 30 – 24
    ⇒    c = 6 cm

    straight s equals 30 over 2 space cm space equals space 15 space cm
    therefore  Area of the triangle
        equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 15 left parenthesis 15 minus 12 right parenthesis left parenthesis 15 minus 12 right parenthesis left parenthesis 15 minus 6 right parenthesis end root
equals space square root of 15 left parenthesis 3 right parenthesis left parenthesis 3 right parenthesis left parenthesis 9 right parenthesis end root equals 9 square root of 15 space cm squared

    Question 7
    CBSEENMA9003249

    In the following figure, calculate the area of the shaded portion:


    Solution

    In right triangle PSQ,
    PQ2 = PS2 + QS2

    | By Pythagoras Theorem
    = (12)2 + (16)2
    = 144 + 256 = 400
    rightwards double arrow space space space space PQ equals square root of 400 equals 20 space cm
  
    New,  for triangle PQR comma
              a = 20 cm
              b = 48 cm
              c = 52 cm 
    therefore space space space space straight s space equals space fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space space space space equals space fraction numerator 20 plus 48 plus 52 over denominator 2 end fraction equals 60 space cm
therefore space space Area space of space increment PQR
space space space space space space space space space equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space equals square root of 60 left parenthesis 60 minus 20 right parenthesis left parenthesis 60 minus 48 right parenthesis left parenthesis 60 minus 52 right parenthesis end root
space space space space space space space space space equals space square root of 60 left parenthesis 40 right parenthesis left parenthesis 12 right parenthesis left parenthesis 8 right parenthesis end root
space space space space space space space space space equals space square root of left parenthesis 6 cross times 10 right parenthesis left parenthesis 4 cross times 10 right parenthesis left parenthesis 6 cross times 2 right parenthesis left parenthesis 8 right parenthesis end root
space space space space space space space space space equals space 6 cross times 10 cross times 8 equals 480 space cm squared
Area space of space triangle PSQ equals 1 half straight x space Base space straight x space Altitude
space space space space space space space space space space space space space space space space space space space space space equals space 1 half straight x space 16 space straight x space 12 space equals space 96 space cm squared

    ∴ Area of the shaded portion
    = Area of ΔPQR – Area of ΔPSQ
    = 480 – 96 = 384 cm2.



    Question 8
    CBSEENMA9003250

    Find the area of a right angled triangle if the radius of its circumcircle is 3 cm and altitude drawn to the hypotenuse is 2 cm.

    Solution

    Let ABC be the right angled triangle right angled at B. Let O be the centre of the circumcircle.
    Then, O is the mid-point of the hypotenuse
    AC.    | by geometry
    OA = OB = OC
    = radius of the circumcircle = 3 cm

    ∴ Hypotenuse AC = Diameter of the circle
    = 2 x radius of the circumcircle
    = 2 x 3 = 6
    cm Let BM be the perpendicular from B on AC.
    ∴ BM = 2 cm
    ∴ Area of the right angled triangle ABC
    equals 1 half cross times space Base cross times Altitude
equals 1 half cross times AC cross times BM
equals 1 half cross times 6 cross times 2 equals 6 space cm squared

    Question 9
    CBSEENMA9003251

    A regular hexagon has a side 8 cm. Determine its perimeter and area.

    Solution

    Side = 8 cm
    ∴ Perimeter = 6 x 8 = 48 cm
    Area of equilateral triangle OAB
    equals fraction numerator square root of 3 over denominator 4 end fraction left parenthesis side right parenthesis squared

    equals fraction numerator square root of 3 over denominator 4 end fraction left parenthesis 8 right parenthesis squared equals 16 square root of 3 space cm squared

    ∴ Area of the regular hexagon
    = 6 x Area of equilateral triangle OAB
    equals space 6 cross times 16 square root of 3 equals 96 square root of 3 space cm squared

    Question 10
    CBSEENMA9003252

    Sides of a triangle are in the ratio 13 : 14 : 15 and its perimeter is 84 cm. Find its area.

    Solution

    Let the sides of the triangle be 13k, 14k and 15k (in cm). Then,
    perimeter = a + b + c
    = 13k + 14k + 15k
    = 42k cm
    According to the questions,
    42k = 84
    rightwards double arrow space space space space straight k equals 84 over 42 equals 2
    ∴ Sides are 26 cm, 28 cm and 30 cm.
    therefore space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space space space space space space equals space fraction numerator 26 plus 28 plus 30 over denominator 2 end fraction
space space space space space space space space space space space space equals space 42 space cm
therefore space space space space Area space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space space space space equals space square root of 42 left parenthesis 42 minus 26 right parenthesis left parenthesis 42 minus 28 right parenthesis left parenthesis 42 minus 30 right parenthesis end root
space space space space space space space space space space space space space space equals space square root of left parenthesis 42 right parenthesis left parenthesis 16 right parenthesis left parenthesis 14 right parenthesis left parenthesis 12 right parenthesis end root
space space space space space space space space space space space space space space equals space 336 space cm squared

    Question 11
    CBSEENMA9003253

    The base of an isosceles triangle measures 24 cm and its area is 60 cm2. Find its perimeter.

    Solution
    Area space equals space straight a over 4 square root of 4 straight b squared minus straight a squared end root
rightwards double arrow space space space space 60 24 over 4 square root of 4 straight b squared left parenthesis 24 right parenthesis squared end root
rightwards double arrow space space space space 10 equals square root of 4 straight b squared minus 576 end root
rightwards double arrow space space space 100 equals 4 straight b squared minus 576 space space space space space space space space space space space space space space space space space space space vertical line space Squaring space
rightwards double arrow space space space 4 straight b squared equals 676
rightwards double arrow space space space straight b squared equals 676 over 4 equals 169
rightwards double arrow space space straight b space equals space square root of 169 equals 13 space cm

    ∴ Perimeter = a + b + b
    = 24 + 13 + 13
    = 50 cm

    Question 12
    CBSEENMA9003254
    Question 13
    CBSEENMA9003255
    Question 14
    CBSEENMA9003256

    An isosceles triangle has perimeter 30 m and each of the equal sides is 12 cm. Find area of the triangle. 

    Solution

    Let the third side be x cm. Then,
           12 + 12 + x = 30
    rightwards double arrow          24 + x = 30
    rightwards double arrow             x = 6 cm
    So,      a = 12 cm
               b = 12 cm
               c = 6 cm
    therefore space space space space space space space space space straight s space equals space fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 12 plus 12 plus 6 over denominator 2 end fraction equals 15 space cm
therefore space space space space space space space space Area space equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root space equals space 9 square root of 15 space cm squared
space space space space space space space space space space space space space space space space

    Question 15
    CBSEENMA9003257

    The sides of a triangular park are in the ratio 3 : 5 : 7 and its perimeter 600 m. Find the area of the triangle. 

    Solution

    Let the sides of the triangle be 3k, 5k and 7k (in m). Then,
    a = 3k
    b = 5k
    c = 7k
    ∴ Perimeter = a + b + c
    = 3k + 5k + 7k = 15k
    According to the question,
    15k = 600
    ⇒ k = 40
    ∴ a = 120 m
    b = 200 m
    c = 280 m
    therefore space space space space space space straight s equals space fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 120 plus 200 plus 280 over denominator 2 end fraction space straight m
space space space space space space space space space space space equals space 300 space straight m
    therefore   Area of the triangle
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 300 left parenthesis 300 minus 120 right parenthesis left parenthesis 300 minus 200 right parenthesis left parenthesis 300 minus 280 right parenthesis end root
equals space square root of 300 cross times 180 cross times 100 cross times 20 end root
equals space square root of 108000000
equals space 6000 square root of 3 space straight m squared

    Question 16
    CBSEENMA9003258

    The perimeter of a right triangle is 24 cm. If its hypotenuse is 10 cm, find its area.

    Solution
    Let the sides forming the right angle be a cm and b cm. Then,

    a + b + 10 = 24
    ⇒    a + b = 14    ...(1)
    Also, a2 + b2 = (10)2
    ⇒    a2 + b2 = 100    ...(2)
    We know that
    (a + b)2 = a2 + b2 + 2ab
    ⇒    (14)2 = 100 + lab
    ⇒    2ab = 96
    ⇒    ab = 48    ...(3)
    Also, (a – b)2 = a2 + b2 – 2ab
    = 100 – 2 x 48 = 100 – 9b
    = 4    | if a > b
    ⇒ a – b = 2    ....(4)
    Solving (1) and (4), we get a = 8 cm b = 6 cm
    therefore space space space space space space space space space space space space space space space Area space equals space 1 half ab equals begin inline style 1 half end style.8.6 equals 24 space cm squared

    Question 17
    CBSEENMA9003259

    The perimeter of a triangularfield is 300 cm and its sides are in the ratio 5 : 12 : 13. Find the length of the perpendicular from the opposite vertex to the side whose length is 130 cm.

    Solution
    a : b : c = 5 : 12 : 13 5 + 12 + 13 = 30 a + b + c = 300 cm
    therefore space space space space space space space space space space straight a equals 5 over 30 cross times 300 equals 50 space cm
space space space space space space space space space space space space space straight b equals 12 over 30 cross times 300 equals 120 space cm
space space space space space space space space space space space space space c space equals space 13 over 30 cross times 300 equals 130 space c m
therefore space space space space space space s space equals space fraction numerator a plus b plus c over denominator 2 end fraction
space space space space space space space space space equals space fraction numerator 50 plus 120 plus 130 over denominator 2 end fraction
space space space space space space space space space equals space 150 space c m
    ∴ Area of the triangular field
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 150 left parenthesis 150 minus 50 right parenthesis left parenthesis 150 minus 120 right parenthesis left parenthesis 150 minus 130 right parenthesis end root
equals square root of 150 cross times 100 cross times 30 cross times 20 end root
equals space 3000 space cm squared space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let the length of the perpendicular from the opposite vertex to the side whose length is 130 cm be h cm. Then,
    Area of the triangular field
             equals fraction numerator 130 cross times straight h over denominator 2 end fraction
equals 65 straight h space cm squared space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space
    From (1)  and (2),
                  65h = 3000
    rightwards double arrow space space space space space space straight h space equals space 3000 over 64 equals 600 over 113 space cm space equals space 46.15 space cm

    Sponsor Area

    Question 18
    CBSEENMA9003260

    The sides of a triangular park are 8 m, 10 m and 6 m respectively. A small circular area of diameter 2 m is to be left out and the remaining area is to be used for growing roses. How much area is used for growing roses? (Use π = 3.14).

    Solution

    For triangular park

    ∵ 62 + 82 = 102
    ∴ Angular between sides of length 6 m and
    8 m = 90°
    ∴ Area of the triangular park
    equals space fraction numerator 6 cross times 8 over denominator 2 end fraction equals 24 space straight m squared
    Radius of circular area (r)
    equals 3 over 2 space straight m space equals space 1 space straight m space

    ∴ Circular area = πr squared equals straight pi left parenthesis 1 right parenthesis squared equals straight pi equals 3.14 space straight m squared
    ∴ Area used for growing uses
    = Area of the triangular part
    - Circular area
    = 24 – 3.14 = 20.86 m2

    Question 21
    CBSEENMA9003263
    Question 22
    CBSEENMA9003264

    Find the area of an equilateral triangle of side 10 cm.

    Solution

    Solution not provided.
    Ans.  25 square root of 3 space cm squared

    Question 23
    CBSEENMA9003265
    Question 24
    CBSEENMA9003266

    Find the area of a triangle whose sides are 40 cm, 24 cm and 32 cm.


    Solution

    Solution not provided.
    Ans.  384 cm2

    Question 25
    CBSEENMA9003267
    Question 27
    CBSEENMA9003269
    Question 28
    CBSEENMA9003270

    Find the area of a triangle whose sides are 6.5 cm, 7 cm and 7.5 cm. 

    Solution

    Solution not provided
    Ans.  21 cm2

    Question 29
    CBSEENMA9003271
    Question 31
    CBSEENMA9003273
    Question 32
    CBSEENMA9003274

    Find the area of a triangle, whose sides are 26 cm, 28 cm and 30 cm respectively. 

    Solution

    Solution not provided
    Ans.  336 cm2

    Question 35
    CBSEENMA9003277

    A park, in the shape of a quadrilateral ABCD, has ∠C = 90°, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?

    Solution

    Join BD.

    Area of right triangle BCD
                 equals 1 half cross times Base space cross times space Height space
equals space 1 half cross times 5 cross times 12 equals 30 space straight m squared
    In right triangle BCD,
                    BD= BC2 + CD
                                    | BY Pythagoras Thereom
                 = (12)+ (5)= 144 + 25 = 169
    rightwards double arrow space space space space space space BD equals square root of 169 space equals space 13 space straight m

    For ΔABD
               a = 13 m
               b = 8 m 
               c = 9 m
    therefore space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 13 plus 8 plus 9 over denominator 2 end fraction equals 30 over 2 equals 15 space straight m
    ∴ Area of the ΔABD
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 15 left parenthesis 15 minus 13 right parenthesis left parenthesis 15 minus 8 right parenthesis left parenthesis 15 minus 9 right parenthesis end root
equals space square root of 15 left parenthesis 2 right parenthesis left parenthesis 7 right parenthesis left parenthesis 6 right parenthesis end root
equals space square root of left parenthesis 3 cross times 5 right parenthesis left parenthesis 2 right parenthesis left parenthesis 7 right parenthesis left parenthesis 2 cross times 3 right parenthesis end root
equals space 3 cross times 2 square root of 35 equals 6 square root of 35 space straight m squared
equals space 6 cross times 5.916 equals 35.5 space straight m squared space space left parenthesis Approx. right parenthesis
    ∴ Area of the quadrilateral ABCD
    = Area of ΔBCD + Area of ΔABD
    = 30 m2 + 35.5 m2
    = 65.5 m2 (approx.)
    Hence, the park occupies the area 65.5 m2. (approx.)


               

    Tips: -

       

    Question 36
    CBSEENMA9003278

    Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.

    Solution

    For ΔABC
    a = 4 cm
    b = 5 cm
    c = 3 cm
    ∵ a2 + c2 = b2

    ∴ ΔABC is right angled with ∠B = 90°.
    ∴ Area of right triangle ABC
    equals 1 half cross times space Base space cross times space Height
equals space 1 half cross times 3 cross times 4 equals 6 space cm squared

    For ΔACD
    a = 4 cm b = 5 cm
    c = 5 cm
    therefore space space space space space space space straight s space equals space fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space space space space space space equals space fraction numerator 4 plus 5 plus 5 over denominator 2 end fraction equals 14 over 2 equals 7 space cm 
    ∴ Area of the ΔACD
    equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 7 left parenthesis 7 minus 4 right parenthesis left parenthesis 7 minus 5 right parenthesis left parenthesis 7 minus 5 right parenthesis end root
equals space square root of 7 left parenthesis 3 right parenthesis left parenthesis 2 right parenthesis left parenthesis 2 right parenthesis end root equals 2 square root of 21 space cm squared

    = 2 x 4.6 cm2 (approx.)
    = 9.2 cm2 (approx.)
    ∴ Area of the quadrilateral ABCD
    = Area of ΔABC + Area of ΔACD
    = 6 cm2 + 9.2 cm2
    = 15.2 cm2, (approx.)

    Question 37
    CBSEENMA9003279

    Radha made a picture of an aeroplane with coloured paper as shown in figure. Find the total area of the paper used.


    Solution

    For Triangular Area I
    a = 5 cm b = 5 cm c = 1 cm
    therefore space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 5 plus 5 plus 1 over denominator 2 end fraction equals 11 over 2 equals 5.5 space cm

    therefore space space Area space straight I space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space space space space equals square root of 5.5 left parenthesis 5.5 minus 5 right parenthesis left parenthesis 5.5 minus 5 right parenthesis left parenthesis 5.5 minus 1 right parenthesis end root
space space space space space space space space space space space space space space equals square root of 5.5 left parenthesis.5 right parenthesis left parenthesis.5 right parenthesis left parenthesis 4.5 right parenthesis end root
space space space space space space space space space space space space space space equals left parenthesis.5 right parenthesis square root of left parenthesis 5.5 right parenthesis left parenthesis 4.5 right parenthesis end root
space space space space space space space space space space space space space space equals left parenthesis.5 right parenthesis square root of left parenthesis.5 right parenthesis left parenthesis 11 right parenthesis left parenthesis.5 right parenthesis left parenthesis 9 right parenthesis end root
space space space space space space space space space space space space space space equals left parenthesis.5 right parenthesis left parenthesis.5 right parenthesis left parenthesis 3 right parenthesis square root of 11
space space space space space space space space space space space space space space equals 0.75 square root of 11 equals 0.75 left parenthesis 3.3 right parenthesis space left parenthesis approx right parenthesis
space space space space space space space space space space space space space space equals space 2.5 space cm squared space left parenthesis approx right parenthesis space
    Area II = 6.5 x 1 = 6.5 cm2
    For Area III
    Area space III space equals space 1 half cross times 2 cross times fraction numerator square root of 3 over denominator 2 end fraction plus 1 half cross times 1 cross times fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space space space space space equals fraction numerator square root of 3 over denominator 2 end fraction plus fraction numerator square root of 3 over denominator 4 end fraction
space space space space space space space space space space space space equals space fraction numerator 3 square root of 3 over denominator 4 end fraction equals fraction numerator 3 cross times 1.732 over denominator 4 end fraction space left parenthesis approx right parenthesis
space space space space space space space space space space space space equals space fraction numerator 5.196 over denominator 4 end fraction equals 1.3 space cm squared space left parenthesis approx right parenthesis

    Area space IV equals fraction numerator 6 cross times 1.5 over denominator 2 end fraction equals 4.5 space cm squared
Area space straight V equals fraction numerator 6 cross times 1.5 over denominator 2 end fraction equals 4.5 space cm squared

    Total area of the paper used

    = Area I + Area II + Area III + Area IV + Area V
    = 2.5 cm2 + 6.5 cm2 + 1.3 cm2 + 4.5 cm+ 4.5 cm2
    = 19.3 cm2.

     

     

    Question 38
    CBSEENMA9003280

    A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.

    Solution

    For triangle
    a = 26 cm
    b = 28 cm
    c = 30 cm
    therefore space space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction space equals space fraction numerator 26 plus 28 plus 30 over denominator 2 end fraction
space space space space space space space space space equals 84 over 2 equals space 42 space space cm
    therefore    Area of the triangle 
               equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 42 left parenthesis 42 minus 26 right parenthesis left parenthesis 42 minus 28 right parenthesis left parenthesis 42 minus 30 right parenthesis end root
equals space square root of 42 left parenthesis 16 right parenthesis left parenthesis 14 right parenthesis left parenthesis 12 right parenthesis end root
equals space square root of left parenthesis 6 cross times 7 right parenthesis left parenthesis 16 right parenthesis left parenthesis 7 cross times 2 right parenthesis left parenthesis 6 cross times 2 right parenthesis end root
equals space 6 cross times 4 cross times 7 cross times 2 equals 336 space cm squared

    Let the height of the parallelogram be h cm.
    Then, area of the parallelogram
    = Base x Height = 28 x h cm2
    According to the question,

    28 straight h space equals space 336 space space space space space space rightwards double arrow space straight h equals 336 over 28
rightwards double arrow space space space space straight h space equals space 12 space cm
    Hence, the height of the parallelogram is 12 cm.

    Question 39
    CBSEENMA9003281

    A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?

    Solution

    For ΔABC
    a = 30 m
    b = 48 m
    c = 30 m
    therefore space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space equals space fraction numerator 30 plus 48 plus 30 over denominator 2 end fraction equals 108 over 2 equals 54 space straight m

    therefore space Area of increment ABC
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 54 left parenthesis 54 minus 30 right parenthesis left parenthesis 54 minus 48 right parenthesis left parenthesis 54 minus 30 right parenthesis end root
equals space square root of 54 left parenthesis 24 right parenthesis left parenthesis 6 right parenthesis left parenthesis 24 right parenthesis end root
equals space square root of left parenthesis 9 cross times 6 right parenthesis left parenthesis 24 right parenthesis left parenthesis 6 right parenthesis left parenthesis 24 right parenthesis end root equals 3 cross times 6 cross times 24
equals space 432 space straight m squared

    Area of the rhombus
    = 2 Area of ΔABC = 2 x 432 = 864 m2
    ∴ Area of grass for 18 cows = 864 m2. ∴ Area of grass for 1 cow
    equals 864 over 18 straight m squared equals 48 space straight m squared.
    Aliter : Draw BE ⊥ AC. Then E is the midpoint of AC.
    therefore space space space space AE equals CE equals 1 half AC equals 1 half left parenthesis 48 right parenthesis equals 24 space straight m

    In right triangle AEB.
    AB2 = AE2 + BE2
    I By Pythagoras Theorem ⇒    (30)2 = (24)2 + BE2
    ⇒    900 = 576 + BE2
    ⇒    BE2 = 900 – 576
    ⇒    BE2 = 324
    rightwards double arrow space space space space BE equals square root of 324 space equals space 18 space straight m

    BD = 2 BE = 2 x 18 = 36 m Area of rhombus ABCD
              equals 1 half space Product of diagonals
               equals 1 half cross times 48 cross times 36
equals space 864 space straight m squared
    Area of right increment AEB
               equals 1 half cross times Base cross times Height
equals space 1 half cross times 24 cross times 18 equals 216 space straight m squared

    ∴ Area of rhombus ABCD = 4 Area of ΔAEB = 4 x 216 = 864 m2
    ∴ Area of grass for 18 cows = 864 m2
                    
    therefore   Area of grass for 1 cow  = 864 over 18 equals 48 space straight m squared

    Sponsor Area

    Question 40
    CBSEENMA9003282

    An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see figure), each piece measuring 20 cm, 50 cm and 50 cm: How much cloth of each colour is required for the umbrella?


    Solution

    For one triangular piece
    a = 20 cm b = 50 cm c = 50 cm
    therefore space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space space space space space equals space fraction numerator 20 plus 50 plus 50 over denominator 2 end fraction equals 120 over 2 equals 60 space cm
    Area of one triangle
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 60 left parenthesis 60 minus 20 right parenthesis left parenthesis 60 minus 50 right parenthesis left parenthesis 60 minus 50 right parenthesis end root
equals space square root of 60 left parenthesis 40 right parenthesis left parenthesis 10 right parenthesis left parenthesis 10 right parenthesis end root equals 200 square root of 6 space cm squared
    ∴ Area of five triangles of one colour
    equals 5 left parenthesis 200 square root of 6 right parenthesis space cm squared equals 1000 square root of 6 space cm squared
    Hence,   1000square root of 6 cm2 of each colour is required for the umbrella.

    Question 42
    CBSEENMA9003284

    A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 28 cm and 35 cm. Find the cost of polishing the tiles at the rate of 50 p per cm2.


    Solution

    For one tile
    a = 9 cm b = 28 cm c = 35 cm
    therefore space space space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction
space space space space space space space space space space space space equals space fraction numerator 9 plus 28 plus 35 over denominator 2 end fraction equals 36 space cm
     
    therefore   Area of one tile
     equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals square root of 36 left parenthesis 36 minus 9 right parenthesis left parenthesis 36 minus 28 right parenthesis left parenthesis 36 minus 35 right parenthesis end root
equals space square root of 36 left parenthesis 27 right parenthesis left parenthesis 8 right parenthesis left parenthesis 1 right parenthesis end root
equals square root of 36 left parenthesis 9 cross times 3 right parenthesis left parenthesis 4 cross times 2 right parenthesis end root
equals space 6 cross times 3 cross times 2 square root of 6 equals 36 square root of 6 space c m squared
    therefore  Area of 16 tiles
            equals 36 square root of 6 cross times 16 equals 576 square root of 6 space cm squared
    ∴ Cost of polishing the tiles at the rate of 50 p per cm2.
    equals space 576 square root of 6 cross times 50 space straight p space equals space straight र fraction numerator 576 square root of 6 cross times 50 over denominator 100 end fraction
equals straight र space 288 square root of 6 equals straight र space 705.60

    Question 43
    CBSEENMA9003285

    A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.

    Solution

    Let the given field be in the shape of a trapezium ABCD in which AB = 25 m, CD = 10 m, BC = 13 m and AD = 14 m.
    From D, draw DE || BC meeting AB at E. Also, draw DF ⊥ AB.
    ∴ DE = BC = 13 m
    AE = AB – EB = AB – DC
    = 25 – 10= 15 m

    For ΔAED
    a = 14 m b = 13 m c = 15 m
    therefore space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 14 plus 13 plus 15 over denominator 2 end fraction equals 42 over 2 equals 21 space straight m
    ∴ Area of the ΔAED
                 equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals square root of 21 left parenthesis 21 minus 14 right parenthesis left parenthesis 21 minus 13 right parenthesis left parenthesis 21 minus 15 right parenthesis end root
equals space square root of 21 left parenthesis 7 right parenthesis left parenthesis 8 right parenthesis left parenthesis 6 right parenthesis end root
equals square root of left parenthesis 7 cross times 3 right parenthesis left parenthesis 7 right parenthesis left parenthesis 4 cross times 2 right parenthesis left parenthesis 2 cross times 3 right parenthesis end root
equals 7 cross times 3 cross times 2 cross times 2 equals 84 space space straight m squared
rightwards double arrow space space space 1 half cross times AE cross times DE equals 84
rightwards double arrow space space space 1 half cross times 15 cross times DF equals 84
rightwards double arrow space space space space DF equals fraction numerator 84 cross times 2 over denominator 15 end fraction
rightwards double arrow space space space space DF equals 56 over 5 space straight m space equals space 11.2 space straight m
    ⇒ Height of the trapezium is 11.2 m. ∴ Area of parallelogram EBCD = Base x Height
    equals space EB cross times DF equals 10 cross times 56 over 5 equals 112 space straight m squared

    Area of the field = Area of ∴AED + Area of parallelogram EBCD
    = 84 m2 + 112 m2 = 196 m2.

     

    Question 44
    CBSEENMA9003286

    The cross-section of a canal is in the shape of a trapezium. If the canal is 12 m wide at the top and 8 m wide at the bottom and the area of its cross-section is 84 m2, determine its depth.

    Solution
    Let the depth be h m Area of trapezium = 84 m2

    rightwards double arrow    Area of increment ABC+ Area of increment ADC= 84 m2
    rightwards double arrow space space 1 half left parenthesis AB right parenthesis left parenthesis DE right parenthesis plus 1 half left parenthesis DC right parenthesis left parenthesis DE right parenthesis equals 84
rightwards double arrow space space space 1 half left parenthesis 12 right parenthesis left parenthesis straight h right parenthesis plus 1 half left parenthesis 8 right parenthesis left parenthesis straight h right parenthesis equals 84
rightwards double arrow space space space space space space space 6 straight h plus 4 straight h equals 84
rightwards double arrow space space space space space space space space space space 10 straight h space equals space 84
rightwards double arrow space space space space space space space space straight h equals 84 over 10 equals 8.4
    Hence, the depth of the canal is 8.4 m.
    Question 45
    CBSEENMA9003287

    he perimeter of a rhombus is 146 cm. One of its diagonals is 55 cm. Find the length of the other diagonal and area of the rhombus.

    Solution
    Length of a side of the rhombus
    equals 146 over 4 cm equals 36.5 space space cm.


    For ΔABC
    a = 36.5 cm b = 55 cm c = 36.5 cm
    therefore space space space space space space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 36.5 plus 55 plus 36.5 over denominator 2 end fraction equals 128 over 2
space space space space space space space space space space space space space space equals 64 space space cm
    Area of the ΔABC
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis asterisk times straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 64 left parenthesis 64 minus 36.5 right parenthesis left parenthesis 64 minus 55 right parenthesis left parenthesis 64 minus 36.5 right parenthesis end root
equals square root of 64 left parenthesis 27.5 right parenthesis left parenthesis 9 right parenthesis left parenthesis 27.5 right parenthesis end root
equals space 8 cross times 27.5 cross times 3
equals space 660 space cm squared

    ∴ Area of the rhombus ABCD
    = 2 Area of the ΔABC = 2 x 660 = 1320 cm2

    rightwards double arrow space space space space space 1 half straight d subscript 1 straight d subscript 2 equals 1320
rightwards double arrow space space space space 1 half left parenthesis 55 right parenthesis straight d subscript 2 equals 1320
rightwards double arrow space space space space space space straight d subscript 2 equals fraction numerator 1320 cross times 2 over denominator 55 end fraction
rightwards double arrow space space space space space space straight d subscript 2 equals 48 space cm
    ∴ Length of the other diagonal is 48 cm. 

    Question 46
    CBSEENMA9003288

    Find the area of a quadrilateral ABCD whose sides in metres are 9, 40, 28 and 15 respectively and the angle between first two sides is a right angle. 

    Solution
    For ΔABC Area of right triangle ABC

    equals 1 half cross times Base cross times Height
equals 1 half cross times 9 cross times 40 equals 180 space straight m squared

    For ΔACD
    a = 28 m b = 41 m c = 15 m
    therefore space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 28 plus 41 plus 15 over denominator 2 end fraction equals 84 over 2 equals 42 space straight m
therefore space space Area space of space increment ACD equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space space space equals square root of 42 left parenthesis 42 minus 28 right parenthesis left parenthesis 42 minus 41 right parenthesis left parenthesis 42 minus 15 right parenthesis end root
space space space space space space space space space space space space equals square root of 42 left parenthesis 14 right parenthesis left parenthesis 1 right parenthesis left parenthesis 27 right parenthesis end root
space space space space space space space space space space space space equals space 14 cross times 3 cross times 3 equals 126 space straight m squared

    Area of the quadrilateral ABCD
    = Area of ΔABC + Area of ΔACD
    = 180 m+ 126 m2 = 306 m2.

    Question 47
    CBSEENMA9003289

    A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 15 cm, 14 cm and 13 cm and the parallelogram stands on the base 15 cm, find the height of the parallelogram.

    Solution

    For triangle
    a = 15 cm b = 14 cm c = 13 cm
    therefore space space space space space space space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 15 plus 14 plus 13 over denominator 2 end fraction equals 21 space cm
therefore space space space Area space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space space space equals space square root of 21 left parenthesis 21 minus 15 right parenthesis left parenthesis 21 minus 14 right parenthesis left parenthesis 21 minus 13 end root
space space space space space space space space space space space space space equals square root of 21 left parenthesis 6 right parenthesis left parenthesis 7 right parenthesis left parenthesis 8 right parenthesis end root
space space space space space space space space space space space space space equals space 84 space cm squared

    Let the height of the parallelogram be h cm. Then, area of the parallelogram
    = Base x Height = 15 x h = 15h cm2 According to the question,
    Area of the parallelogram
                       = Area of the triangle
    rightwards double arrow space space space space 15 straight h space equals space 84
rightwards double arrow space space space space space space straight h space equals 84 over 15 equals 5.6 space cm

    Hence, the height of the parallelogram is 5.6 cm.



    Question 48
    CBSEENMA9003290

    The adjacent sides of a parallelogram ABCD measure 34 cm and 20 cm and the diagonal AC measures 42 cm. Find the area of the parallelogram.  

    Solution

    For ΔABC,   a = 34 cm b = 42 cm c = 20 cm

    therefore space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction space equals fraction numerator 34 plus 42 plus 20 over denominator 2 end fraction equals 48 space cm
    ∴ Area of ΔABC
    equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 48 left parenthesis 48 minus 34 right parenthesis left parenthesis 48 minus 42 right parenthesis left parenthesis 48 minus 20 right parenthesis end root
equals space square root of 48 left parenthesis 14 right parenthesis left parenthesis 6 right parenthesis left parenthesis 28 right parenthesis end root
equals space 336 space cm squared

    ∴ Area of parallelogram ABCD
    = 2 Area of triangle ABC
    = 2 x 336 cm2 = 672 cm2


    Question 49
    CBSEENMA9003291

    Find the area of a rhombus whose perimeter is 200 m and one of the diagonals is 80 m.

    Solution

    Let each of the equal sides of the rhombus be a cm. Then,
    Perimeter = a + a + a + a = 4a m According to the question,
                    4a = 200
    rightwards double arrow space space space space space space space space space space space space space space space straight a equals 200 over 4 equals 50 space straight m

    straight d subscript 1 equals 80 space straight m
straight a squared space equals space open parentheses straight d subscript 1 over 2 close parentheses squared plus open parentheses straight d subscript 2 over 2 close parentheses squared
rightwards double arrow space space left parenthesis 50 right parenthesis squared equals left parenthesis 40 right parenthesis squared plus open parentheses straight d subscript 2 over 2 close parentheses squared
rightwards double arrow space space open parentheses straight d subscript 2 over 2 close parentheses squared equals left parenthesis 30 right parenthesis squared
rightwards double arrow space space straight d subscript 2 over straight d equals 30
rightwards double arrow space space straight d subscript 2 equals 60 space straight m
    ∴ Area of the rhombus
    equals 1 half straight d subscript 1 straight d subscript 2 equals 1 half cross times 80 cross times 60
equals space 2400 space straight m squared

    Question 50
    CBSEENMA9003292

    Find the area of a quadrilateral ABCD whose sides AB = 13 cm, BC = 12 cm, CD = 9 cm, DA = 14 cm and diagonal BD = 15 cm.

    Solution

    For ∴ABD
    a = 13 cm b = 14 cm c = 15 cm

    therefore space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 13 plus 14 plus 15 over denominator 2 end fraction equals 21 space cm
therefore space space space space Area space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space space equals square root of 21 left parenthesis 21 minus 13 right parenthesis left parenthesis 21 minus 14 right parenthesis left parenthesis 21 minus 15 right parenthesis end root
space space space space space space space space space space space space equals space square root of 21 cross times 8 cross times 7 cross times 6 end root
space space space space space space space space space space space space equals space 84 space cm squared
    For ΔBCD
    a = 9 cm b = 12 cm c = 15 cm
    therefore space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator straight a plus 12 plus 15 over denominator 2 end fraction equals 18 space cm
therefore space space space space Area space equals space square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
space space space space space space space space space space space equals square root of 18 left parenthesis 18 minus 9 right parenthesis left parenthesis 18 minus 12 right parenthesis left parenthesis 18 minus 15 right parenthesis end root
space space space space space space space space space space equals square root of 18 cross times 9 cross times 6 cross times 3 end root space equals space 54 space cm squared

    Now, area of quadrilateral ABCD
    = area of ΔABD + area of ΔBCD = 84 cm2 + 54 cm2
    = 138 cm2


    Question 54
    CBSEENMA9003296

    Area of a triangle =  
    • 1 half cross times space Base cross times space Height
    • Base x Height

    • 1 third cross times space Base cross times space Height
    • 1 fourth cross times space Base cross times space Height

    Solution

    A.

    1 half cross times space Base cross times space Height
    Question 55
    CBSEENMA9003297

    Base of a triangle =
    • fraction numerator 2 cross times Area over denominator Height end fraction
    • Area over Height
    • fraction numerator Area over denominator 2 space Height end fraction
    • fraction numerator Area over denominator 4 space Height end fraction

    Solution

    A.

    fraction numerator 2 cross times Area over denominator Height end fraction
    Question 56
    CBSEENMA9003298

    Height of a triangle =
    • fraction numerator 2 cross times Area over denominator Base end fraction
    • Area over Base
    • fraction numerator Area over denominator 3 space Base end fraction
    • fraction numerator Area over denominator 4 space Base end fraction

    Solution

    A.

    fraction numerator 2 cross times Area over denominator Base end fraction
    Question 58
    CBSEENMA9003300

    The area of a triangle is
    • square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
    • square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
    • square root of straight s left parenthesis straight s plus straight a right parenthesis left parenthesis straight s plus straight b right parenthesis left parenthesis straight s plus straight c right parenthesis end root
    • None of these

    Solution

    A.

    square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
    Question 60
    CBSEENMA9003302

    Area of an equilateral triangle of side a is
    • fraction numerator square root of 3 straight a squared end root over denominator 4 end fraction
    • fraction numerator straight a square root of 3 over denominator 4 end fraction
    • square root of 3 straight a squared
    • a square root of 3

    Solution

    A.

    fraction numerator square root of 3 straight a squared end root over denominator 4 end fraction
    Question 62
    CBSEENMA9003304
    Question 71
    CBSEENMA9003313
    Question 76
    CBSEENMA9003318

    1 hectare =
    • 10 m2
    • 100 m2
    • 1000 m2
    • 10000 m2.

    Solution

    D.

    10000 m2.
    Question 77
    CBSEENMA9003319

    1 acre =
    • 10 m2 
    • 100 m2
    • 1000 m2  
    • 10000 m2

    Solution

    B.

    100 m2

    Sponsor Area

    Question 100
    CBSEENMA9003342

    In figure, ar (||gm ABCD) is


    • 10 cm
    • 20 cm
    • 10 square root of 3 space cm squared
    • 20 square root of 3 space cm squared

    Solution

    D.

    20 square root of 3 space cm squared
    Question 104
    CBSEENMA9003346
    Question 107
    CBSEENMA9003349
    Question 111
    CBSEENMA9003353
    Question 112
    CBSEENMA9003354
    Question 118
    CBSEENMA9003360
    Question 119
    CBSEENMA9003361

    Sponsor Area

    Question 123
    CBSEENMA9003365

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    11