-->

Statistics

Question
CBSEENMA9003291

Find the area of a rhombus whose perimeter is 200 m and one of the diagonals is 80 m.

Solution

Let each of the equal sides of the rhombus be a cm. Then,
Perimeter = a + a + a + a = 4a m According to the question,
                4a = 200
rightwards double arrow space space space space space space space space space space space space space space space straight a equals 200 over 4 equals 50 space straight m

straight d subscript 1 equals 80 space straight m
straight a squared space equals space open parentheses straight d subscript 1 over 2 close parentheses squared plus open parentheses straight d subscript 2 over 2 close parentheses squared
rightwards double arrow space space left parenthesis 50 right parenthesis squared equals left parenthesis 40 right parenthesis squared plus open parentheses straight d subscript 2 over 2 close parentheses squared
rightwards double arrow space space open parentheses straight d subscript 2 over 2 close parentheses squared equals left parenthesis 30 right parenthesis squared
rightwards double arrow space space straight d subscript 2 over straight d equals 30
rightwards double arrow space space straight d subscript 2 equals 60 space straight m
∴ Area of the rhombus
equals 1 half straight d subscript 1 straight d subscript 2 equals 1 half cross times 80 cross times 60
equals space 2400 space straight m squared

Some More Questions From Statistics Chapter