-->

Statistics

Question
CBSEENMA9003277

A park, in the shape of a quadrilateral ABCD, has ∠C = 90°, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?

Solution

Join BD.

Area of right triangle BCD
             equals 1 half cross times Base space cross times space Height space
equals space 1 half cross times 5 cross times 12 equals 30 space straight m squared
In right triangle BCD,
                BD= BC2 + CD
                                | BY Pythagoras Thereom
             = (12)+ (5)= 144 + 25 = 169
rightwards double arrow space space space space space space BD equals square root of 169 space equals space 13 space straight m

For ΔABD
           a = 13 m
           b = 8 m 
           c = 9 m
therefore space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction equals fraction numerator 13 plus 8 plus 9 over denominator 2 end fraction equals 30 over 2 equals 15 space straight m
∴ Area of the ΔABD
equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b right parenthesis left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 15 left parenthesis 15 minus 13 right parenthesis left parenthesis 15 minus 8 right parenthesis left parenthesis 15 minus 9 right parenthesis end root
equals space square root of 15 left parenthesis 2 right parenthesis left parenthesis 7 right parenthesis left parenthesis 6 right parenthesis end root
equals space square root of left parenthesis 3 cross times 5 right parenthesis left parenthesis 2 right parenthesis left parenthesis 7 right parenthesis left parenthesis 2 cross times 3 right parenthesis end root
equals space 3 cross times 2 square root of 35 equals 6 square root of 35 space straight m squared
equals space 6 cross times 5.916 equals 35.5 space straight m squared space space left parenthesis Approx. right parenthesis
∴ Area of the quadrilateral ABCD
= Area of ΔBCD + Area of ΔABD
= 30 m2 + 35.5 m2
= 65.5 m2 (approx.)
Hence, the park occupies the area 65.5 m2. (approx.)


           

Tips: -

   

Some More Questions From Statistics Chapter