-->

Statistics

Question
CBSEENMA9003280

A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.

Solution

For triangle
a = 26 cm
b = 28 cm
c = 30 cm
therefore space space space space space space space straight s equals fraction numerator straight a plus straight b plus straight c over denominator 2 end fraction space equals space fraction numerator 26 plus 28 plus 30 over denominator 2 end fraction
space space space space space space space space space equals 84 over 2 equals space 42 space space cm
therefore    Area of the triangle 
           equals square root of straight s left parenthesis straight s minus straight a right parenthesis left parenthesis straight s minus straight b left parenthesis straight s minus straight c right parenthesis end root
equals space square root of 42 left parenthesis 42 minus 26 right parenthesis left parenthesis 42 minus 28 right parenthesis left parenthesis 42 minus 30 right parenthesis end root
equals space square root of 42 left parenthesis 16 right parenthesis left parenthesis 14 right parenthesis left parenthesis 12 right parenthesis end root
equals space square root of left parenthesis 6 cross times 7 right parenthesis left parenthesis 16 right parenthesis left parenthesis 7 cross times 2 right parenthesis left parenthesis 6 cross times 2 right parenthesis end root
equals space 6 cross times 4 cross times 7 cross times 2 equals 336 space cm squared

Let the height of the parallelogram be h cm.
Then, area of the parallelogram
= Base x Height = 28 x h cm2
According to the question,

28 straight h space equals space 336 space space space space space space rightwards double arrow space straight h equals 336 over 28
rightwards double arrow space space space space straight h space equals space 12 space cm
Hence, the height of the parallelogram is 12 cm.

Some More Questions From Statistics Chapter