Mathematics Part Ii Chapter 8 Application Of Integrals
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part Ii

    Application Of Integrals Here is the CBSE Mathematics Chapter 8 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Application Of Integrals Chapter 8 NCERT Solutions for Class 12 Mathematics Application Of Integrals Chapter 8 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12035654
    Question 2
    CBSEENMA12035687

    Minimum and maximum z = 5x + 2y subject to the following constraints:
    x – 2y ≤ 2
    3x + 2y ≤ 12
    −3x + 2y ≤ 3
    x ≥ 0, y ≥ 0

    Solution
    straight x minus 2 straight y less-than or slanted equal to 2
3 straight x plus 2 straight y less-than or slanted equal to 12
minus 3 straight x plus 2 straight y less-than or slanted equal to 3
straight x greater-than or slanted equal to 0 comma space straight y greater-than or slanted equal to 0
    Converting the inequations into equations, we obtain the lines
    x – 2y = 2…..(i)
    3x + 2y = 12……(ii)
    −3x + 2y = 3……(iii)
    x = 0, y = 0

    From the graph, we get the corner points as
    A(0, 5), B(3.5, 0.75), C(2, 0), D(1.5, 3.75), O(0, 0)
    The values of the objective function are: 
    Point (x,y) Values of the objective function
    Z= 5x+2y
    A(0, 5) 5 × 0 + 2 × 5 = 10
    B(3.5, 0.75) 5 x 3.5 +2 x 0.75 =19 (Maximum)
    C(2, 0) 5 x 1.5 +2 x 3.75 =15
    O(0,0) 5 x 0 + 2 x 0 = 0 (Minimum)
    The maximum value of Z is 19 and its minimum value is 0.
    Question 3
    CBSEENMA12035717

    Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).

    Solution

    Consider the vertices, A(-1, 2), B(1, 5) and C(3, 4).
    Let us find the equation of the sides of the triangle increment ABC.
    Thus, the equation of AB is:
    fraction numerator straight y minus 5 over denominator 5 minus 2 end fraction space equals space fraction numerator straight x minus 1 over denominator 1 plus 1 end fraction
rightwards double arrow 3 straight x minus 2 straight y plus 7 space equals space 0
Similarly comma space the space equation space of space BC space is colon
fraction numerator straight y minus 4 over denominator 4 minus 5 end fraction equals fraction numerator straight x minus 3 over denominator 3 minus 1 end fraction
rightwards double arrow straight x plus 2 straight y minus 11 space equals 0
Also comma space the space equation space of space CA space is colon
fraction numerator straight y minus 4 over denominator 4 minus 2 end fraction space equals fraction numerator straight x minus 3 over denominator 3 plus 1 end fraction
rightwards double arrow straight x minus 2 straight y plus 5 space equals 0

    Now the area of increment ABC = Area of increment ADB + Area of increment BDC
    therefore space Area space of space increment ADB space equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
    Similarly comma space Area space of space increment BDC equals space integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
Thus comma space Area space of space increment ADB space plus space Area space of space increment BDC
equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 2 straight x plus 2 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 6 minus 2 straight x over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets straight x plus 1 close square brackets dx plus integral subscript 1 superscript 3 open square brackets 3 minus straight x close square brackets dx
equals open square brackets straight x squared over 2 plus straight x close square brackets subscript negative 1 end subscript superscript 1 space plus space open square brackets 3 straight x minus straight x squared over 2 close square brackets subscript 1 superscript 3
equals 0 plus 2 plus 9 minus 9 over 2 minus 3 plus 1 half
equals 2 plus 9 over 2 minus 5 over 2
equals 4 space square space units

    Question 4
    CBSEENMA12035753

    Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y – 2.

    Solution

    The shaded area OBAO represents the area bounded by the curve x2 = 4y and the line x = 4y – 2.

    Let A and B be the points of intersection of the line and parabola.
    Co-ordinates of point A are open parentheses negative 1 comma space 1 fourth close parentheses. space Co-ordinates of point B are (2, 1).
    Area OBAO = Area OBCO + Area OACO   ...(1)
    Area OBCO = 
    equals integral subscript 0 superscript 2 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript 0 superscript 2 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript 0 superscript 2 minus 1 fourth open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 2
equals 1 fourth open square brackets 2 plus 4 close square brackets minus 1 fourth open square brackets 8 over 3 close square brackets
equals 3 over 2 minus 2 over 3 equals 5 over 6
    Area OACO = 
      equals integral subscript negative 1 end subscript superscript 0 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript negative 1 end subscript superscript 0 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript negative 1 end subscript superscript 0 space minus space 1 fourth open square brackets straight x cubed over 3 close square brackets subscript negative 1 end subscript superscript 0
equals 1 fourth open square brackets negative fraction numerator left parenthesis negative 1 right parenthesis squared over denominator 2 end fraction minus 2 left parenthesis negative 1 right parenthesis close square brackets minus 1 fourth open square brackets negative open parentheses negative 1 close parentheses cubed over 3 close square brackets
equals 1 fourth open square brackets negative 1 half plus 2 close square brackets minus 1 fourth open square brackets 1 third close square brackets
equals 3 over 8 minus 1 over 12 equals 7 over 24
    Therefore, required area = open parentheses 5 over 6 plus 7 over 24 close parentheses space equals 9 over 8 sq. units

    Question 5
    CBSEENMA12035754

    Using integration, find the area of the region enclosed between the two circles:
    straight x squared plus straight y squared space equals space 4 space and space left parenthesis straight x minus 2 right parenthesis squared plus straight y squared space equals space 4.

    Solution

    Given equations of the circles are:
    straight x squared plus straight y squared space equals space 4 space space space... left parenthesis 1 right parenthesis
left parenthesis straight x minus 2 right parenthesis squared plus straight y squared space equals space 4 space... left parenthesis 2 right parenthesis
    Equation (1) is a circle with centre O at the origin and radius 2. Equation (2) is a circle with centre C(2, 0) and radius 2.
    Solving (1) and (2), we have:
    left parenthesis straight x minus 2 right parenthesis squared plus straight y squared space equals space straight x squared plus straight y squared
straight x squared minus 4 straight x plus 4 plus straight y squared space equals space straight x squared plus straight y squared
straight x space equals space 1
    This gives straight y equals plus-or-minus square root of 3
    Thus, the points of intersection of the given circles are straight A open parentheses 1 comma space square root of 3 close parentheses space and space straight A apostrophe left parenthesis 1 comma space minus square root of 3 right parenthesis space as space shown space in space the space figure. space

    Required area
     = Area of the region OACA'O
     = 2[area of the region ODCAO] 
     =2[area of the region ODAO + area of the region DCAD]
    equals 2 open square brackets integral subscript 0 superscript 1 ydx plus integral subscript 1 superscript 2 ydx close square brackets
equals 2 open square brackets integral subscript 0 superscript 1 square root of 4 minus left parenthesis straight x minus 2 right parenthesis squared end root dx plus integral subscript 1 superscript 2 square root of 4 minus straight x squared end root dx close square brackets
equals 2 open square brackets 1 half left parenthesis straight x minus 2 right parenthesis square root of 4 minus left parenthesis straight x minus 2 right parenthesis squared end root plus 1 half cross times 4 sin to the power of negative 1 end exponent open parentheses fraction numerator straight x minus 2 over denominator 2 end fraction close parentheses close square brackets subscript 0 superscript 1 plus 2 open square brackets 1 half straight x square root of 4 minus straight x squared end root plus 1 half cross times 4 sin to the power of negative 1 end exponent straight x over 2 close square brackets subscript 1 superscript 2
equals open square brackets left parenthesis straight x minus 2 right parenthesis square root of 4 minus left parenthesis straight x minus 2 right parenthesis squared end root plus 4 sin to the power of negative 1 end exponent open parentheses fraction numerator straight x minus 2 over denominator 2 end fraction close parentheses close square brackets subscript 0 superscript 1 plus open square brackets straight x square root of 4 minus straight x squared end root plus 4 sin to the power of negative 1 end exponent straight x over 2 close square brackets subscript 1 superscript 2
equals open square brackets negative square root of 3 plus 4 sin to the power of negative 1 end exponent open parentheses fraction numerator negative 1 over denominator 2 end fraction close parentheses minus 4 sin to the power of negative 1 end exponent left parenthesis negative 1 right parenthesis close square brackets plus open square brackets 4 sin to the power of negative 1 end exponent 1 minus square root of 3 minus 4 sin to the power of negative 1 end exponent 1 half close square brackets
equals open square brackets open parentheses negative square root of 3 minus 4 cross times straight pi over 6 close parentheses plus 4 cross times straight pi over 2 close square brackets plus open square brackets 4 cross times straight pi over 2 minus square root of 3 minus 4 cross times straight pi over 6 close square brackets
equals fraction numerator 8 straight pi over denominator 3 end fraction minus 2 square root of 3

    Question 6
    CBSEENMA12035769

    A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is ` 100 and that on a bracelet is ` 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit? It is being given that at least one of each must be produced.

    Solution

    suppose a number of necklaces manufacture be x,
    and the number of bracelets manufactures by y.
    since the total number of items are at most 24.
    x+y ≤24 .... (1)
    Bracelets takes 1 hour to manufacture and necklaces take half an hour to manufacture.
    x items take x hour to manufacture and y items take y/2 hour to manufacture.
    and maximum time available is 16 hours.
    therefore,
    x/2 + y ≤ 16 ... (2)
    The profit on one necklace is Rs. 100 and the profit on one bracelet is Rs. 300.
    Let the profit be Z. Now we wish to maximize the profit. so,
    Max z = 100 x +300y.... (3)
    So, x+y ≤24
    x/2 + y ≤ 16
    Max Z = 100 x + 300 y is the required L.P.P

    Question 7
    CBSEENMA12035784

    Solve the following L.P.P. graphically :
    Minimise Z = 5x + 10y
    Subject to x + 2y ≤ 120
    Constraints x + y ≥ 60
    x – 2y ≥ 0
    and x, y ≥ 0

    Solution

    The corner points of the feasible region are A(60,0), B (120,0), C(60,30), and D (40,20).
    The vaules of Z at these corner points are as follows.


    The corner points of the feasible region are A(60,0), B (120,0), C(60,30), and D (40,20).
    The values of Z at these corner points are as follows.

    Z = 5x +10y
    Z|A(60,0) =300
    Z|B(120,0) = 600
    Z|C(60,30) =600
    Z|D(40,20) =400
    Minimum value of Z = 300 at x = 60, y =0

    Question 8
    CBSEENMA12035823

    Using integration, find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 =32

    Solution

    Put y = x in  x2 + y2 =32

    ∴ x2 + x2 = 32

    2x2 = 32

    x2 =16

    x = 4

    A = 04 yline dx + 432ycircle dxA = 04 x dx + 432 (32 -x2dx = x2204 + 432 (32)2 - x2 dx = (8) + x232 - x2 + 322 sin-1x3232 = (8) + 0 + 16 x π2 - 216 + 16 sin-1432 8 +8π - 8 - 16 sin-1 12 = 8π -16 x π4 = 8π- 4π = 4π sq units

    Question 9
    CBSEENMA12035856

    Using integration find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.

    Solution

    The respective equations for the parabola and the circle are:

    y2 = 4x               ............(1)4x2 + 4y2 = 9     ............(2)or  x2 + y2 =322

    Equations (1) is a parabola with vertex ( 0, 0 ) which opens to the right and  equation (2) is a circle with centre (0, 0 ) and radius 32.

    From equations (1) and (2), we get:

    4x2 + 4 ( 4x ) = 94x2 + 16x - 9 = 04x2 + 18x - 2x- 9 = 02x ( 2x + 9 ) - 1 ( 2x + 9 ) = 0 ( 2x + 9 ) ( 2x - 1 ) = 0x = -92,  12For  x = -92,   y2 = 4 -92, which is not possible, hence x = 12Therefore, the given curves intersect at x = 12.

                       

    Required area of the region bound by the two curves

    = 2 012 2xdx +  2 1232 94 - x2  dx= 4 23 x32012  +  2 x2 94 - x2 + 98  sin-1 2x31232 = 831812 + 2  0 +98  sin-1 1 - 14 2  - 98  sin-1 13= 83122 + 94 π2 - 22 -  94  sin-1 13= 223 + 9π8 - 22 -94  sin-1 13 

    Question 10
    CBSEENMA12035892

    Prove that the curves y²= 4x and x²= 4y divide the area of the square bonded by x = 0, x = 4, y = 4, and y = 0 into three equal parts.

    Solution

    The point of intersection of the 

    Parabolas  y2 = 4x   and   x2 = 4y are ( 0, 0 ) and ( 4, 4 )

                           

    Now the area of the region OAQBO bounded by curves  y2 = 4x  and  x2 = 4y, 

     

    04 2 x - x24 dx =  2 x3232 - x31204 = 323 - 163 = 163sq. units                                                                                                 ..............(i)

    Again, the area of the region OPQAO bounded by the curve  x2 = 4y ,  x = 0,

    x = 4  and  the  x - axis,

     

    04 x24 dx = x31204 = 6412  = 163 sq. units             ..............(ii)

     

    Similarly, the area of the region OBQRO bounded by the curve y2 = 4x, the y-axis, y = 0  and  y = 4

     

    04 y24 dy = y31204 = 163 sq. units                                 ............(iii)

     

    From (i), (ii), and (iii) it is concluded that the area of the region OAQBO =

    area of the region OPQAO = area of the region OBQRO, i. e., area bounded

    by parabolas  y2 = 4x  and  x2 = 4y  divides the area of the square into

    three equal parts.

    Question 11
    CBSEENMA12035924

    Using integration, find the area of the following region:

      x, y :  x29 + y24  1  x3 + y2 

    Solution

    Given ellipse

     x29 + y24 = 1 y = 23  9 - x2Given line x3 + y2 = 1 y =  2 - 2 x3Required Area   x, y :  x29 + y24  1  x3 + y2  is given below

                 

    Required Area = 03  y1 - y2  dx                       = 03 23  9 - x2 -  2 - 2x3  dx                       =  23  x2  9 - x2 + 92 sin-1 x3  - 2x + x2303                       =  23  92 sin-1 1  - 6 + 3  - 0                       = 3 × π2 - 3 = 32  π - 2  sq. units

    Question 12
    CBSEENMA12035961

    Using integration find the area of the triangular region whose sides have equations  y=2x+1,  y=3x+1  and  x=4.

    Solution

    Equations of the lines are   y = 2 x + 1,    y = 3 x + 1     and   x = 4.

    Let  y1 = 2 x + 1,   y2 = 3 x + 1 

    Now area of the triangle bounded by the given lines,

    =  y2 - y1 04 dx=  3 x + 1  -  2 x + 1  04 dx= x04 dx= 12  x2 04= 12  42 - 02 = 12 × 16

    = 8 sq. units

    Thus, the area of the required triangular region is  8 square units

           

    Question 14
    CBSEENMA12036148

    The area of the region bounded by the parabola (y – 2)2 = x – 1, the tangent to the parabola at the point (2, 3) and the x-axis is 

    • 3

    • 6

    • 9

    • 12

    Solution

    C.

    9

    Equation of tangent at (2, 3) 

    ≡ x – 2y + 4 = 0
    Required Area
    space equals space integral subscript 0 superscript 3 space left square bracket space left parenthesis straight y minus 2 right parenthesis squared space plus space 1 minus 2 straight y plus 4 right square bracket space dy
space equals space integral subscript 0 superscript 3 space left square bracket space left parenthesis straight y minus 2 right parenthesis squared space minus space 2 straight y space plus 5 right square bracket space dy
space equals 9 space sq. space units

    Question 15
    CBSEENMA12036168

    The area of the plane region bounded by the curves x + 2y2= 0 and x + 3y2= 1 is equal to 

    • 5/3

    • 1/3

    • 2/3

    • 4/3

    Solution

    D.

    4/3

    Solving the equations we get the points of intersection (–2, 1) and (–2,  1)The bounded region is shown as shaded region

    The space required space area space equals space 2 integral subscript 0 superscript 1 space left parenthesis 1 minus 3 straight y squared right parenthesis space minus space left parenthesis negative 2 straight y squared right parenthesis
space equals space 2 integral subscript 0 superscript 1 space left parenthesis 1 minus straight y squared right parenthesis space dy space equals space 2 space open square brackets straight y space minus space straight y cubed over 3 close square brackets subscript 0 superscript 1
space equals space 2 space straight x space 2 over 3 space equals space 4 over 3

    Question 16
    CBSEENMA12036191

    The solution for x of the equation integral subscript square root of 2 end subscript superscript straight x fraction numerator dt over denominator straight t square root of straight t squared minus 1 end root end fraction space equals straight pi over 2 space is

    • 2

    • π

    • square root of 3 divided by 2
    • 2 square root of 2

    Solution

    B.

    π

    integral subscript square root of 2 end subscript superscript straight x space fraction numerator dt over denominator straight t square root of straight t squared minus 1 end root end fraction space equals space straight pi over 2
left square bracket sec to the power of negative 1 end exponent right square bracket subscript square root of 2 end subscript superscript straight x space equals space straight pi over 2
sec to the power of negative 1 end exponent space straight x space minus space straight pi over 4 space equals space straight pi over 2
sec to the power of negative 1 end exponent space straight x space space equals space fraction numerator 3 straight pi over denominator 4 end fraction
straight x space equals space minus space square root of 2
    Question 17
    CBSEENMA12036192

    integral fraction numerator dx over denominator cos space straight x space plus space square root of 3 space sin space straight x end fraction equals
    • 1 half space log space tan space open parentheses straight x over 2 plus straight pi over 12 close parentheses space plus straight C
    • 1 half space log space tan space open parentheses straight x over 2 minus straight pi over 12 close parentheses plus straight c
    • log space tan space open parentheses straight x over 2 minus straight pi over 12 close parentheses plus straight c
    • log space tan space open parentheses straight x over 2 plus straight pi over 12 close parentheses plus straight c

    Solution

    A.

    1 half space log space tan space open parentheses straight x over 2 plus straight pi over 12 close parentheses space plus straight C integral fraction numerator dx over denominator cos space straight x space space plus space square root of 3 space sin space straight x end fraction
space equals space 1 half space integral sec space open parentheses straight x minus straight pi over 3 close parentheses dx
equals space 1 half space log space tan space open parentheses straight x over 2 minus straight pi over 6 plus straight pi over 4 close parentheses space plus straight C
space equals space 1 half space log space tan space open parentheses straight x over 2 plus straight pi over 12 close parentheses space plus straight C

    Sponsor Area

    Question 18
    CBSEENMA12036193
    Question 21
    CBSEENMA12036260

    limit as straight n rightwards arrow infinity of space sum from straight r equals 1 to straight n of space 1 over straight n straight e to the power of straight r over straight n end exponent space is space
    • e

    • e+1

    • e-1
    • 1-e

    Solution

    C.

    e-1
    limit as straight x rightwards arrow infinity of space sum from straight r space equals 1 to straight n of space 1 over straight n straight e to the power of straight r divided by straight n end exponent
space equals space integral subscript 0 superscript 1 space straight e to the power of straight x space dx
space equals space open square brackets straight e to the power of straight x close square brackets subscript 0 superscript 1
straight e minus 1
    Question 23
    CBSEENMA12036291

    Let g(x) = cos x2, f(x) = x and α, β (α <β) be the roots of the quadrtic equation 18x2 - 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0 is

    • 12(2-1)

    • 12(3-1)

    • 12(3+1)

    • 12(3-2)

    Solution

    B.

    12(3-1)

    18x2-9πx + π2 = 0

    (6x -π)(3x-π) = 0

     x = π6,π3α = π6, β = π3y = (gof)(x) =cosxArea = π6π3 cos x dx = (sin x )π6π3 = 32 -12 = 12(3-1) sq.units

    Question 24
    CBSEENMA12036292

    If sum of all the solutions of the equation 8 cos x. cos π6+x.cosπ6-x-12 = 1 in [0,π] is kπ, then k is equal to:

    • 20/9

    • 2/3

    • 13/9

    • 8/9

    Solution

    C.

    13/9

    8 cos x.cos2 π6-sin2 x - 12 =18 cos x34-12-1 + cos2 x = 1 8 cos x-3+4 cos2 x4 = 1 cos 3x = 1 cos 3x = 12 3x = π3,5π3,7π3x =  π9,5π9,7π9 sum = 13π9 k = 139

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    1