-->

Application Of Integrals

Question
CBSEENMA12035753

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y – 2.

Solution

The shaded area OBAO represents the area bounded by the curve x2 = 4y and the line x = 4y – 2.

Let A and B be the points of intersection of the line and parabola.
Co-ordinates of point A are open parentheses negative 1 comma space 1 fourth close parentheses. space Co-ordinates of point B are (2, 1).
Area OBAO = Area OBCO + Area OACO   ...(1)
Area OBCO = 
equals integral subscript 0 superscript 2 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript 0 superscript 2 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript 0 superscript 2 minus 1 fourth open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 2
equals 1 fourth open square brackets 2 plus 4 close square brackets minus 1 fourth open square brackets 8 over 3 close square brackets
equals 3 over 2 minus 2 over 3 equals 5 over 6
Area OACO = 
  equals integral subscript negative 1 end subscript superscript 0 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript negative 1 end subscript superscript 0 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript negative 1 end subscript superscript 0 space minus space 1 fourth open square brackets straight x cubed over 3 close square brackets subscript negative 1 end subscript superscript 0
equals 1 fourth open square brackets negative fraction numerator left parenthesis negative 1 right parenthesis squared over denominator 2 end fraction minus 2 left parenthesis negative 1 right parenthesis close square brackets minus 1 fourth open square brackets negative open parentheses negative 1 close parentheses cubed over 3 close square brackets
equals 1 fourth open square brackets negative 1 half plus 2 close square brackets minus 1 fourth open square brackets 1 third close square brackets
equals 3 over 8 minus 1 over 12 equals 7 over 24
Therefore, required area = open parentheses 5 over 6 plus 7 over 24 close parentheses space equals 9 over 8 sq. units