Sponsor Area

Application Of Integrals

Question
CBSEENMA12035892

Prove that the curves y²= 4x and x²= 4y divide the area of the square bonded by x = 0, x = 4, y = 4, and y = 0 into three equal parts.

Solution

The point of intersection of the 

Parabolas  y2 = 4x   and   x2 = 4y are ( 0, 0 ) and ( 4, 4 )

                       

Now the area of the region OAQBO bounded by curves  y2 = 4x  and  x2 = 4y, 

 

04 2 x - x24 dx =  2 x3232 - x31204 = 323 - 163 = 163sq. units                                                                                                 ..............(i)

Again, the area of the region OPQAO bounded by the curve  x2 = 4y ,  x = 0,

x = 4  and  the  x - axis,

 

04 x24 dx = x31204 = 6412  = 163 sq. units             ..............(ii)

 

Similarly, the area of the region OBQRO bounded by the curve y2 = 4x, the y-axis, y = 0  and  y = 4

 

04 y24 dy = y31204 = 163 sq. units                                 ............(iii)

 

From (i), (ii), and (iii) it is concluded that the area of the region OAQBO =

area of the region OPQAO = area of the region OBQRO, i. e., area bounded

by parabolas  y2 = 4x  and  x2 = 4y  divides the area of the square into

three equal parts.