Mathematics Chapter 3 Coordinate Geometry
  • Sponsor Area

    NCERT Solution For Class 9 About 2.html

    Coordinate Geometry Here is the CBSE About 2.html Chapter 3 for Class 9 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 9 About 2.html Coordinate Geometry Chapter 3 NCERT Solutions for Class 9 About 2.html Coordinate Geometry Chapter 3 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 9 About 2.html.

    Question 1
    CBSEENMA9001614

    Simplify:

    open parentheses 12 to the power of begin display style 1 fifth end style end exponent over 27 to the power of begin display style 1 fifth end style end exponent close parentheses to the power of 5 over 2 end exponent

    Solution

    Solution not provided.
    Ans.   2 over 3

    Question 2
    CBSEENMA9001615

    Evaluate:

    open parentheses 32 over 243 close parentheses to the power of negative 4 over 5 end exponent


    Solution

    Solution not provided.
    Ans.   space space space space 81 over 16

    Question 3
    CBSEENMA9001616

    Evaluate:

    left parenthesis 0.00032 right parenthesis to the power of negative 2 over 5 end exponent


    Solution

    Solution not provided.
    Ans.   25

    Question 4
    CBSEENMA9001617

    Evaluate:

    open parentheses 81 over 49 close parentheses to the power of negative 3 over 2 end exponent

    Solution

    Solution not provided.
    Ans.   2343 over 729

    Question 5
    CBSEENMA9001618

    Find the value of n, given (81)5/n = 243.


    Solution

    Solution not provided.
    Ans.   4

    Question 6
    CBSEENMA9001619

    Simplify:

    1 half square root of 486 minus square root of 27 over 2 end root.

    Solution

    Solution not provided.
    Ans.   3 square root of 6

    Question 7
    CBSEENMA9001620

    If straight x equals fraction numerator square root of 7 over denominator 5 end fraction space and space 5 over straight x equals straight p square root of 7 then find the value of the rational number p.

    Solution

    Solution not provided.
    Ans.   25 over 7

    Question 8
    CBSEENMA9001621

    Write the following in the ascending order of their magnitude square root of 3 comma cube root of 4 comma space fourth root of 6.

    Solution

    Solution not provided.
    Ans.  fourth root of 6 space comma space cube root of 4 comma space square root of 3

    Question 9
    CBSEENMA9001622

    Evaluate:

    open parentheses negative 1 over 27 close parentheses to the power of negative 2 over 3 end exponent

    Solution

    Solution not provided.
    Ans.   9

    Question 10
    CBSEENMA9001674

    Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    4x2 - 3x + 7

    Solution

    4x2 - 3x + 7

    This expression is a polynomial in one variable x because in the expression there is only one variable (x) and all the indices of x are whole numbers.

    Question 11
    CBSEENMA9001675

    Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    y2square root of 2

    Solution

    y2square root of 2
    This expression is a polynomial in one variable y because in the expression there is only one variable (y) and all the indices of y are whole numbers.

    Question 12
    CBSEENMA9001676

    Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    3 square root of straight t plus straight t square root of 2

    Solution
    3 square root of straight t plus straight t square root of 2
    This expression is not a polynomial because in the term 3 square root of straight t comma space the exponent of t is 1 half commawhich is not a whole number.
    Question 13
    CBSEENMA9001677

    Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    straight y plus 2 over straight y

    Solution
    straight y plus 2 over straight y
    This expression is not a polynomial because in the term 2 over straight y comma the exponent of y is (- 1) which is not a whole number.
    Question 14
    CBSEENMA9001678

    Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    x10+ y3 + t50


    Solution

    x10+ y3 + t50
    This expression is not a polynomial in one variable because in the expression, three variables (x, y and t) occur.

    Question 15
    CBSEENMA9001679

    Write the coefficients of x2 in each of the following:

    2 + x2 + x

    Solution

    2 + x2 + x

    Coefficient of x2 = 1.

    Question 16
    CBSEENMA9001680

    Write the coefficients of x2 in each of the following:
    2 - x2 + x3

    Solution

    2 - x2 + x3

    Coefficient of x2 = - 1.

    Question 17
    CBSEENMA9001681

    Write the coefficients of x2 in each of the following:

    straight pi over 2 x squared plus x

    Solution
    straight pi over 2 straight x squared plus straight x
    Coefficient of x= - 1

    Sponsor Area

    Question 18
    CBSEENMA9001682

    Write the coefficients of x2 in each of the following:

    square root of 2 straight x end root minus 1


    Solution
    square root of 2 straight x end root minus 1
    Coefficient of x= 0.
    Question 19
    CBSEENMA9001683

    Give one example each of a binomial of degree 35, and of a monomial of degree 100.

    Solution

    One example of a binomial of degree 35 is 3x35- 4.
    One example of a monomial of degree 100 is square root of 2 y to the power of 100.

    Question 20
    CBSEENMA9001684

    Write the degrees of each of the following polynomials:

    5x3 + 4x+ 7x

    Solution

    5x3 + 4x+ 7x
    Term with the highest power of x = 5x3
    Exponent of x in this term = 3
    ∴ Degree of this polynomial = 3.

    Question 21
    CBSEENMA9001685

    Write the degrees of each of the following polynomials:

    4 - y2

    Solution

    4 - y2
    Term with the highest power of y = - y2
    Exponent of y in this term = 2
    ∴ Degree of this polynomial = 2.

    Question 22
    CBSEENMA9001686

    Write the degrees of each of the following polynomials:

    5 straight t minus square root of 7

    Solution
    5 straight t minus square root of 7
    Term with the highest power of t = 5t
    Exponent of t in this term = 1
    ∴ Degree of this polynomial = 1.
    Question 23
    CBSEENMA9001687

    Write the degrees of each of the following polynomials:

    3

    Solution

    3
    It is a non-zero constant. So the degree of this polynomial is zero.

    Question 28
    CBSEENMA9001692
    Question 29
    CBSEENMA9001693
    Question 31
    CBSEENMA9001695

    Write the various coefficients in each of the following polynomials:

    (i) x7 - 3x5 + 4    (ii) 5y2 - 3y + 2

    (iii) x4 - 3x2 + 1    (iv) 1 - 2y + 3y6

    (v) 7.

    Solution

    (i) 1, - 3, 4

    (ii)    5, - 3, 2    (iii) 1, - 3, 1

    (iv)    1, - 2, 3    (v) 7.

    Question 32
    CBSEENMA9001696

    How many terms are there in each of the following polynomials? Write them for each polynomial.

    (i) 3x2 - 5x + 7    (ii) t - 7t2 + 5 - t3
    (iii)    x4 - 3x2 + 2    (iv) 5 - 3y + 2y6
    (v)    7    (vi) 3 - 2x.

    Solution

    (i) 3x2 - 5x + 7
    Number of terms = 3
    Terms: 3x2, - 5x, 7.
    (ii)    t - 7t + 5 - t3
    Number of terms = 4
    Terms: t, - 7t2, 5, - t3.
    (iii)    x4 - 3x2 + 2
    Number of terms = 3
    Terms: x4, - 3x2, 2.
    (iv)    5 - 3y + 2y6
    Number of terms = 3
    Terms: 5, - 3y, 2y6.
    (v)    7
    Number of term = 1
    Term: 7 (only).
    (vi)    3 - 2x
    Number of terms = 2
    Terms: 3, - 2x.

    Question 33
    CBSEENMA9001697

    Write the coefficient of x3 in each of the following polynomials:


    2 over 3 minus 5 over 4 x plus x cubed plus 1 half x squared

    Solution

    Solution not provided.
    Ans.  1

    Question 34
    CBSEENMA9001698
    Question 35
    CBSEENMA9001699
    Question 36
    CBSEENMA9001700

    Write the coefficient of x3 in each of the following polynomials:


    straight x over 2 minus x squared over 3 plus x cubed over 4

    Solution

    Solution not provided.
    Ans. 1 fourth

    Question 37
    CBSEENMA9001701

    Find the degree of each of the polynomials given below:

    (i) x5 - x4 + 3    (ii) 2 - y2 - y3 + 2y8        (iii) 2.

    Solution

    Solution not provided.
    Ans. (i) 5      (ii)  8    (iii)  0

    Question 38
    CBSEENMA9001702

    Point out which of the following polynomials are monomials, binomials or trinomials?
    (i) x3 + 2x - 3    (ii) x3 + 8
    (iii) 4x + 3x    (iv) 8
    (v) 5x3 + 2x3    (vi) 7x2 - 5.

    Solution

    (i) trinomial    (ii) binomial
    (iii) binomial    (iv) monomial
    (v) monomial    (vi) binomial.

    Question 39
    CBSEENMA9001703

    Find the value of the polynomial 5x - 4x2 + 3 at
    x = 0

    Solution

    Let f(x) = 5x - 4x2 + 3
    (i) Value of f(x) at x = 0
    = f(0) = 5(0) - 4(0)2 + 3
    = 3

    Sponsor Area

    Question 40
    CBSEENMA9001704

    Find the value of the polynomial 5x - 4x2 + 3 at
    x = - 1

    Solution

    Value of f(x) at x = - 1
    = f(- 1) = 5(- 1) - 4(- 1)2 + 3
    = - 5 - 4 + 3 = - 6

    Question 41
    CBSEENMA9001705

    Find the value of the polynomial 5x - 4x2 + 3 at
    x = 2.

    Solution

    Value of f(x) at x = 2
    = f(2) = 5(2) - 4(2)2 + 3
    = 10 - 16 + 3 = - 3.

    Question 42
    CBSEENMA9001706

    Find p(0), p(1) and p(2) for each of the following polynomials:
    p(y) = y2 - y + 1 

    Solution

    p(y) = y2 - y + 1
    ∴ p(0) = (0)2 - (0) + 1 = 1,
    p(1) = (1)2 - (1) + 1 = 1,
    and, p(2) = (2)2 - (2) + 1 = 4 - 2 + 1 = 3.

    Question 43
    CBSEENMA9001707

    Find p(0), p(1) and p(2) for each of the following polynomials:
    p(t) = 2 + t + 2t2 - t3

    Solution

    p(t) = 2 + t + 2t2 - t3
    ∴ p(0) = 2 + 0 + 2(0)2 - (0)3 = 2,
    p(1) = 2 + 1 + 2(1)2 - (1)3
    = 2 + 1 + 2 - 1 = 4,
    and, p(2) = 2 + 2 + 2(2)2 - (2)3
    = 2 + 2 + 8 - 8 = 4.

    Question 44
    CBSEENMA9001708

    Find p(0), p(1) and p(2) for each of the following polynomials:
    p(x) = x3

    Solution

    p(x) = x3
    ∴ p(0) = (0)3 = 0,
    p(1) = (1)3= 1,
    and, p( 2) = (2)3 = 8.

    Question 45
    CBSEENMA9001709

    Find p(0), p(1) and p(2) for each of the following polynomials:
    p(x) = (x - 1)(x + 1).

    Solution

    p(x) = (x - 1)(x + 1)
    ∴ p(0) = (0 - 1)(0 + 1) = (- 1)(1) = - 1,
    p(1) = (1 - 1)(1 + 1) = (0)(2) = 0,
    and, p(2) = (2 - 1)(2 + 1) = (1)(3) = 3

    Question 46
    CBSEENMA9001710
    Question 47
    CBSEENMA9001711
    Question 48
    CBSEENMA9001712

    Verify whether the following are zeroes of the polynomial, indicated against them.
    p(x) = x2 - 1, x = 1, - 1

    Solution

    p(x) = x2 - 1, x = 1, - 1
    p(1) = (1)2 - 1 = 1 - 1 = 0
    p(-1) = (-1)2 - 1 = 1 - 1 = 0
    ∴ 1, - 1 are zeroes of p(x).

    Question 49
    CBSEENMA9001713

    Verify whether the following are zeroes of the polynomial, indicated against them.
     p(x) = (x + 1)(x - 2), x = - 1, 2

    Solution

    p(x) = (x + 1)(x - 2), x = - 1, 2
    p(- 1) = (-1 + 1)(- 1 - 2)
    = (0)(- 3)
    = 0
    p(2) = (2 + 1)(2 - 2) = (3)(0) = 0
    ∴ -1, 2 are zeros of p(x).

    Question 50
    CBSEENMA9001714

    Verify whether the following are zeroes of the polynomial, indicated against them.
    p(x) = x2, x = 0

    Solution

    p(x) = x2, x = 0
    p(0) = (0)2 = 0
    ∴ 0 is a zero of p(x).

    Question 51
    CBSEENMA9001715
    Question 52
    CBSEENMA9001716

    Verify whether the following are zeroes of the polynomial, indicated against them.

    p(x) = 3x2 - 1,   straight x equals negative fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 2 over denominator square root of 3 end fraction

    Solution

    p(x) = 3x2 - 1,   straight x equals negative fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 2 over denominator square root of 3 end fraction
    straight P open parentheses negative fraction numerator 1 over denominator square root of 3 end fraction close parentheses equals 3 open parentheses negative fraction numerator 1 over denominator square root of 3 end fraction close parentheses squared minus 1
    equals 3 open parentheses 1 third close parentheses minus 1 equals 1 minus 1 equals 0
straight P open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses equals 3 open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses squared minus 1 equals 3 open parentheses 4 over 3 close parentheses minus 1
equals space 4 minus 1 equals 3 not equal to 0
    therefore space minus fraction numerator 1 over denominator square root of 3 end fraction is a zero of p(x) but fraction numerator 2 over denominator square root of 3 end fraction is not a zero of p(x).

    Question 53
    CBSEENMA9001717
    Question 54
    CBSEENMA9001718

    Find the zero of the polynomial in each of the following cases:
    p(x) = x + 5 

    Solution

    p(x) = x + 5
    p(x) = 0
    ⇒ x + 5 = 0 ⇒ x = - 5
    ∴ - 5 is a zero of the polynomial p(x).

    Question 55
    CBSEENMA9001719

    Find the zero of the polynomial in each of the following cases:
    p(x) = x - 5

    Solution

    p(x) = x - 5
    p(x) = 0
    ⇒ x - 5 = 0 ⇒ x = 5
    ∴ 5 is a zero of the polynomial p(x).

    Question 56
    CBSEENMA9001720

    Find the zero of the polynomial in each of the following cases:
    p(x) = 2x + 5

    Solution

    p(x) = 2x + 5
    p(x) = 0
    rightwards double arrow space 2 straight x space plus space 5 space equals space 0 space rightwards double arrow space 2 straight x equals space minus 5 space rightwards double arrow space straight x space equals space minus 5 over 2
    therefore space minus 5 over 2 is a zero of the polynomial p(x).

    Question 57
    CBSEENMA9001721

    Find the zero of the polynomial in each of the following cases:
    p(x) = 3x - 2

    Solution

    p(x) = 3x - 2
    p(x) = 0
    rightwards double arrow space 3 straight x space minus space 2 space equals space 0 space rightwards double arrow space 3 straight x space equals space 2 space rightwards double arrow space straight x space 2 over 3
    therefore space space 2 over 3 is a zero of the polynomial p(x).

    Question 58
    CBSEENMA9001722

    Find the zero of the polynomial in each of the following cases:
    p(x) = 3x

    Solution

    p(x) = 3x
    p(x) = 0
    ⇒ 3x = 0 ⇒ x = 0
    ∴ 0 is a zero of the polynomial p(x).

    Question 59
    CBSEENMA9001723

    Find the zero of the polynomial in each of the following cases:
    p(x) = ax, a ≠ 0

    Solution

    p(x) = ax, a ≠ 0
    p(x) = 0
    ⇒ ax = 0 ⇒ x = 0    | ∵ a  ≠ 0
    ∴ 0 is a zero of the polynomial p(x).

    Question 60
    CBSEENMA9001724

    Find the zero of the polynomial in each of the following cases:

    p(x)=cx + d, straight c not equal to 0,  c, d are real numbers

    Solution

    p(x)=cx + d,  straight c not equal to 0,  c, d are real numbers
    p(x) = 0
    rightwards double arrow space cx plus straight d equals 0 rightwards double arrow space cx space equals space minus straight d space rightwards double arrow space straight x equals space minus straight d over straight c
    therefore space space minus straight d over straight c is a zero of the polynomial p(x).

    Question 61
    CBSEENMA9001725

    Find the zero of the polynomial px + q + r.

    Solution

         px + q + r = 0
    rightwards double arrowpx = - (q + r)
    rightwards double arrow space space space straight x space equals space minus open parentheses fraction numerator straight q plus straight r over denominator straight p end fraction close parentheses
    therefore space space space minus open parentheses fraction numerator straight q plus straight r over denominator straight p end fraction close parentheses is the required zero.

    Question 62
    CBSEENMA9001726

    If p(x) = 5x3 - 2x2 + 3x - 2, then find the values of p(1) and p(0). Also, find the value of p(-1).

    Solution

    p(x) = 5x3 - 2x2 + 3x - 2
    ∴ p(1) = 5(1)3 - 2(1)2 + 3(1) - 2
    = 5 - 2 + 3 - 2 = 4
    and    p(0) = 5(0)3 - 2(0)2 + 3(0) - 2 = - 2
    Also, p(- 1) = 5(- 1)3 - 2(- 1)2 + 3(- 1) - 2
    = - 5 - 2 - 3 - 2 = - 12

    Question 63
    CBSEENMA9001727

    Determine whether the indicated numbers are zeroes of the given polynomial?

    g(x) = 3x2 - 2;    straight x equals fraction numerator 2 over denominator square root of 3 end fraction comma space minus fraction numerator 2 over denominator square root of 3 end fraction

    Solution

    We have
    g(x) = 3x2 - 2
    8 open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses equals 3 open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses squared minus 2 equals 2 not equal to 0
    therefore space space space space straight x space equals space fraction numerator 2 over denominator square root of 3 end fraction is not a zero of 8(x)
    8 open parentheses negative fraction numerator 2 over denominator square root of 3 end fraction close parentheses equals 3 open parentheses negative fraction numerator 2 over denominator square root of 3 end fraction close parentheses squared equals negative 2 not equal to 0
    therefore space straight x equals space minus fraction numerator 2 over denominator square root of 3 end fraction is not a zero of 8(x).

    Question 64
    CBSEENMA9001728

    Determine whether the indicated numbers are zeroes of the given polynomial?

    f(x) = x- 6x+ 11x - 6;   x = 1, 3

    Solution

    We have
    8(x) = 3x- 2
    f(x) = x- 6x
    f(1) = (1)- 6(1)2 + 11 (1) - 6 = 0
    therefore x = 1 is a zero f  f(x)
    f(3) = (3)- 6(3)+ 11(3) - 6
           = 27 - 54 + 33 - 6 = 0
    therefore   x = 3 id s zero of f(x)

    Question 65
    CBSEENMA9001729

    Find the value of the polynomial straight p left parenthesis straight z right parenthesis equals 3 straight z squared minus 4 straight z plus square root of 17 when z =3.

    Solution

           straight p left parenthesis straight z right parenthesis equals 3 straight z squared minus 4 straight z plus square root of 17
    therefore space space straight p left parenthesis straight z right parenthesis equals 3 straight z squared minus 4 straight z plus square root of 17
         = 15 + square root of 17

    Question 66
    CBSEENMA9001730

    If x = -2 is the root of the equation square root of 5 space left parenthesis x plus p right parenthesis equals 0 and is also the zero of the polynomial px squared plus kx plus 2 square root of 2 comma then find the value of k.

    Solution
    space space space space square root of 2 left parenthesis x plus p right parenthesis equals 0
rightwards double arrow space space x plus p space equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space because space square root of 2 not equal to 0
rightwards double arrow space x space equals space minus p
    According to the question.
                            - p = - 2
    rightwards double arrow space space space space                   p = 2
    Let     f(x) = px+ kx + 2 square root of 2

    Then,   f(x) = 2x+ kx + 2 square root of 2
    If x = -2 is a zero of f(x), then f(-2) = 0
    rightwards double arrow space space space space space 2 left parenthesis negative 2 right parenthesis squared space plus space straight k left parenthesis negative 2 right parenthesis space plus space 2 square root of 2 space equals space 0
rightwards double arrow space space space space 2 straight k space equals space 8 space plus space 2 square root of 2
rightwards double arrow space space space space space straight k space equals space 4 plus square root of 2
    Question 69
    CBSEENMA9001733
    Question 70
    CBSEENMA9001734

     Check whether - 2 and 2 are zeroes of the polynomial x + 2.

    Solution

    Solution not provided.
    Ans.     - 2 is a zero but 2 is not.

    Question 71
    CBSEENMA9001735

    Find a zero of the polynomial p(x) = 2x + 1.

    Solution

    Solution not provided.
    Ans.    negative 1 half

    Question 72
    CBSEENMA9001736

    Verify whether 2 and 0 are zeroes of the polynomial x2 - 2x.

    Solution

    Solution not provided.
    Ans.    2 and 0, both are zeros of the polynomial.

    Question 73
    CBSEENMA9001737
    Question 74
    CBSEENMA9001738

    If p(y) = 4 + 3y - y2 + 5y3, find p(2).

    Solution

    Solution not provided.
    Ans.    46

    Question 75
    CBSEENMA9001739
    Question 76
    CBSEENMA9001740

    If 2 is a zero of polynomial 4y2 - 6y - k, find the value of k. Also, find the other zero.

    Solution

    Solution not provided.
    Ans.    4;     negative 1 half

    Question 77
    CBSEENMA9001741

    Find the remainder when x3 + 3x2 + 3x + 1 is divided by
    x + 1    

    Solution

    Let p(x) = x3 + 3x2 + 3x + 1
     x + 1
    x + 1 = 0 ⇒ x = - 1
    ∴ Remainder
    = p(- 1) = (- 1)3 + 3(- 1)2 + 3(- 1) + 1
    = - 1 + 3 - 3 + 1 = 0.         

    Question 78
    CBSEENMA9001742

    Find the remainder when x3 + 3x2 + 3x + 1 is divided by

    straight x minus 1 half

    Solution
    straight x minus 1 half
straight x minus 1 half space equals space space 0 space space space rightwards double arrow space space space space straight x space equals 1 half
    therefore space space Remainder 
               equals open parentheses 1 half close parentheses cubed plus 3 open parentheses 1 half close parentheses squared plus 3 open parentheses 1 half close parentheses plus 1
equals space 1 over 8 plus 3 over 4 plus 3 over 2 plus 1 space equals space 27 over 8
    Question 79
    CBSEENMA9001743

    Find the remainder when x3 + 3x2 + 3x + 1 is divided by

    x

    Solution

    x

    Remainder

    = (0)3 + 3(0)2 + 3(0) + 1 = 1.

     

    Sponsor Area

    Question 80
    CBSEENMA9001744

    Find the remainder when x3 + 3x2 + 3x + 1 is divided by

    x + straight pi

    Solution

    x + straight pi
    x + straight pi = 0 ⇒ x = - straight pi
    ∴ Remainder = (- straight pi)3 + 3(- straight pi)2 + 3(- straight pi) + 1
    = - straight pi3 + 3straight pi2 - 3straight pi + 1.

    Question 81
    CBSEENMA9001745

    Find the remainder when x3 + 3x2 + 3x + 1 is divided by
    5 + 2x

    Solution

    5 + 2x
    5 +2x = 0    rightwards double arrow 2x = - 5   rightwards double arrow   x = negative 5 over 2
    therefore   Remainder
    equals open parentheses negative 5 over 2 close parentheses cubed plus 3 open parentheses negative 5 over 2 close parentheses squared plus 3 open parentheses negative 5 over 2 close parentheses plus 1
equals space minus 125 over 8 plus 75 over 4 minus 15 over 2 plus 1 equals negative 27 over 8

    Question 82
    CBSEENMA9001746

    Find the remainder when x3 - ax2 + 6x - a is divided by x — a.

    Solution

    Let p(x) = x3 - ax2 + 6x - a
    x - a = 0
    ⇒    x = a
    ∴ Remainder = (a)3 - a(a)2 + 6(a) - a
    = a3 - a3 + 6a - a
    = 5a.

    Question 83
    CBSEENMA9001747

    Check whether 7 + 3x is a factor of 3x3 + 7x.

    Solution
    7 + 3x will be a factor of 3x3 + 7x only if 7 + 3x divides 3x3 + 7x leaving no remainder.
    Let       p(x) = 3x+ 7x
                7 + 3x = 0   rightwards double arrow   3x = - 7
    rightwards double arrow         x = negative 7 over 3
    therefore         Remainder =  3 open parentheses negative 7 over 3 close parentheses cubed plus 7 open parentheses negative 7 over 3 close parentheses
               
                   equals negative 343 over 9 minus 49 over 3 equals negative 490 over 9 not equal to 0
    therefore      7 + 3x is not a factor of 3x+ 7x
    Question 84
    CBSEENMA9001748

    The polynomial p(x) = kx3 + 9x2 + 4x - 8 when divided by x + 3 leaves a remainder - 20. Find the value of k.

    Solution

    Divisor = x + 3
    x + 3 = 0 ⇒ x = - 3
    ∴ Zero of x + 3 is - 3
    Remainder = -20    | Given
    ⇒ p(- 3) = -20
    ⇒ k(- 3)3 + 9(- 3)2 + 4(- 3) - 8 = - 20
    ⇒ - 27k + 81 - 12 - 8 = - 20
    ⇒ 27k = 81
    ⇒    k = 3.

    Question 85
    CBSEENMA9001749

    The polynomial p(x) = x4 - 2x3 + 3x2 - ax + 3a - 7. When divided by (x + 1) leaves the remainder 19. Find the value of a. Also find the remainder, when p(x) is divided by x + 2.

    Solution

    p(x) = x4 - 2x3 + 3x2 - ax + 3a - 7

    By remainder theorem.
    p(- 1) = 19                          | x + 1 = 0 rightwards double arrowx = -1
    rightwards double arrow (- 1)4 - 2 (- 1)3 + 3 (- 1)- a(- 1) + 3a - 7 = 19
    rightwards double arrow space     4a = 20
    rightwards double arrow space space space space space space space space space space space space space space straight a space space equals space 20 over 4 equals space 5

    Also, the remainder when p(x) is divided by x + 2

    = p(-2)
    = (-2)4 - 2 (-2)3 + 3(-2)2
    - a(-2) + 3a - 7
    = 16 + 16 + 12 + 2a + 3a - 7
    = 5a + 37
    = 5(5) + 37
    = 25 + 37
    = 62


    Question 86
    CBSEENMA9001750

    The polynomials ax3 - 3x2 + 4 and 2x3 - 5x + a when divided by (x - 2) leave the remainders p and q respectively. If p - 2q = 4, find the value of a.

    Solution

    Let f(x) = ax3 - 3x2 + 4
    and    g(x) = 2x3 - 5x + a
    By remainder theorem,
    f(2) = p ...(1) | x - 2 = 0 ⇒ x = 2
    and    g(2) = q ...(2) | x - 2 = 0 ⇒ x = 2
    (1) gives
    a(2)3 - 3(2)2 + 4 = p
    ⇒    8a - 8 = p    ...(3)
    (2) gives
    2(2)3 - 5(2) + a = q
    ⇒    6 + a = q    ...(4)
    According to the question,
    p - 2q = 4
    ⇒ (8a - 8) - 2 (6 + a) = 4
    ⇒ 8a - 8 - 12 - 2a = 4
    ⇒    6a = 24
    ⇒    a = 4

    Question 87
    CBSEENMA9001751

    The polynomials ax3 + 3x2 - 3 and 2x3 - 5x + a when divided by x - 4 leaves the remainders p and q respectively. Find the value of a, if 2p = q. 

    Solution

    Let f(x) = ax3 + 3x2 - 3
    and    g(x) = 2x3 - 5x + a
    By remainder theorem,
    f(4) = p ...(1) | x - 4 = 0 ⇒ x = 4
    and    g (4) = q ...(2) | x - 4 = 0 ⇒ x = 4
    (1) gives
    a(4)3 + 3(4)2 - 3 = p

    ⇒    64a + 48 - 3 = p
    ⇒    64a + 45 = p    ...(3)
    (2) gives
    2(4)3 - 5(4) + a = q
    ⇒    128 - 20 + a = q
    ⇒    108 + a = q    ...(4)
    According to the question,
                     2p = q
    rightwards double arrow           2(64a + 45) = 108 + a
    rightwards double arrow           128a + 90 = 108 + a
    rightwards double arrow           128a - a = 108 - 90
    rightwards double arrow           127a  = 18
     
    rightwards double arrow space space space space space space space space space space space space space space space straight a equals 18 over 127

    Question 88
    CBSEENMA9001752

    Divide p(x) by g(x) using long division method, where p(x) = x + 3x2 - 1 and g(x) = 1 + x.

    Solution

    Solution not provided.
    Ans.  Quotient = 3x - 2
             Remainder = 1

    Question 89
    CBSEENMA9001753

    Using long division method divide the polynomial 3x4 - 4x3 - 3x - 1 by x - 1.

    Solution

    Solution not provided.
    Ans.  Quotient = 3x3 - x2 - x - 4
             Remainder = - 5

    Question 90
    CBSEENMA9001754

    Using long division method, find the remainder obtained on dividing p(x) = x2 + 1 by x + 1.

    Solution

    Solution not provided.
    Ans.  Quotient = x2 - x + 1
             Remainder = 0

    Question 91
    CBSEENMA9001755
    Question 92
    CBSEENMA9001756

    Check whether the polynomial q(t) = 4t3 + 4t2 - t -1 is a multiple of 2t + 1.

    Solution

    Solution not provided.
    Ans.  Yes

    Question 97
    CBSEENMA9001761

    Find the remainders when 3x3- 4x2 + 7x - 5 is divided by (x - 3) and (x + 3).

    Solution

    Solution not provided.
    Ans.    61,    - 143

    Question 103
    CBSEENMA9001767

    Determine which of the following polynomials has (x + 1) a factor:

    x3 + x2 + x + 1

    Solution

    x3 + x2 + x + 1

    p(x) = x3 + x+ x + 1
    The zero of x + 1 is  - 1.
    p(-1) = ( - 1)3 + ( - 1)2 + (- 1) + 1
    = - 1 + 1 - 1 + 1 = 0
    ∴ By factor theorem, x + 1 is a factor of x3 + x2 + x + 1.
    Question 104
    CBSEENMA9001768

    Determine which of the following polynomials has (x + 1) a factor:

    x4 + x3 + x2 + x + 1

    Solution

    x4 + x3 + x2 + x + 1
    Let p(x) = x4 + x3 + x2 + x + 1
    The zero of x + 1 is - 1.
    p(- 1) = (- 1)4 + (- 1)3 + (- 1)2 + (- 1) + 1
    = 1 - 1 + 1 - 1 + 1 = 1 ≠ 0
    ∴ By factor theorem, x + 1 is not a factor of x4 + x3 + x2 + x + 1.

    Question 105
    CBSEENMA9001769

    Determine which of the following polynomials has (x + 1) a factor:

    x4 + 3x3 + 3x2 + x + 1

    Solution

     x4 + 3x3 + 3x2 + x + 1
    Let p(x) = x4 + 3x3 + 3x2 + x + 1
    The zero of x + 1 is - 1.
    P(- 1) = (- 1)4 + 3(- 1)3 + 3(- 1)2 + (- 1) + 1
    = 1 - 3 + 3 - 1 + 1 = 1 ≠ 0
    ∴ By factor theorem, x + 1 is not a factor of x4 + 3x3 + 3x2 + x + 1.

    Question 106
    CBSEENMA9001770

    Determine which of the following polynomials has (x + 1) a factor:

    left parenthesis straight x cubed minus straight x squared minus left parenthesis 2 plus square root of 2 right parenthesis straight x plus square root of 2 right parenthesis




    Solution
    left parenthesis straight x cubed minus straight x squared minus left parenthesis 2 plus square root of 2 right parenthesis straight x plus square root of 2 right parenthesis
    Let space straight p left parenthesis straight x right parenthesis equals straight x cubed minus straight x squared minus left parenthesis 2 plus square root of 2 right parenthesis left parenthesis negative 1 right parenthesis plus square root of 2
space space space space space equals space minus 1 minus 1 plus 2 plus square root of 2 plus square root of 2 equals 2 square root of 2 not equal to 0
    ∴ By factor theorem, x + 1 is not a factor of straight x to the power of 4 minus straight x cubed space left parenthesis 2 plus square root of 2 right parenthesis straight x plus square root of 2.
    Question 107
    CBSEENMA9001771

    Use the factor theorem to determine whether g(x) is a factor ofp(x) in each of the following cases:

     p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1

    Solution

    p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1
    g(x) = 0
    ⇒ x + 1 = 0 ⇒ x = - 1
    ∴ Zero of g(x) is - 1.
    Now, p(- 1)
    = 2(- 1)3 + (- 1)2 - 2(- 1) - 1
    = - 2 + 1 + 2 - 1 = 0
    ∴ By factor theorem, g(x) is a factor of p(x).

    Question 108
    CBSEENMA9001772

    Use the factor theorem to determine whether g(x) is a factor ofp(x) in each of the following cases:

    p(x) = x3 + 3x2 + 3x + 1,g(x) = x + 2

    Solution

    p(x) = x3 + 3x2 + 3x + 1,g(x) = x + 2
    g(x) = 0
    ⇒ x + 2 = 0 ⇒    x = -2
    ∴ Zero of g(x) is - 2.
    Now, p(- 2)
    = (- 2)3 + 3(- 2)2 + 3(- 2) + 1
    = - 8 + 12 - 6 + 1 = - 1 ≠ 0
    ∴ By factor theorem, g(x) is not a factor of p(x).

    Question 109
    CBSEENMA9001773

    Use the factor theorem to determine whether g(x) is a factor ofp(x) in each of the following cases:

     p(x) = x3 - 4x2 + x + 6, g(x) = x - 3

    Solution

    p(x) = x3 - 4x2 + x + 6, g(x) = x - 3
    g(x) = 0
    ⇒ x - 3 = 0 ⇒ x = 3
    ∴ Zero of g(x) is 3.
    Now, p( 3)
    = (3)3 - 4(3)2 + 3 + 6
    = 27 - 36 + 3 + 6 = 0
    ∴ By factor theorem, g(x) is a factor of p{x).

    Question 110
    CBSEENMA9001774

    Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
    p(x) = x2 + x + k

    Solution

    p(x) = x2 + x + k
    If x - 1 is a factor of p(x), then p(1) = 0
                                           | By Factor Theorem
    rightwards double arrow    (1)+ (1) + k = 0
    rightwards double arrow     1 + 1 + k = 0
    rightwards double arrow      2 + k = 0
    rightwards double arrow           k = - 2.

    Question 111
    CBSEENMA9001775

    Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
    p(x) = 2x+ kx + square root of 2

    Solution

    p(x) = 2x+ kx + square root of 2
    If x - 1 is a factor of p(x), then p(1) = 0
                                              | By Factor Theorem
    rightwards double arrow space space space space space 2 left parenthesis 1 right parenthesis squared plus straight k left parenthesis 1 right parenthesis space plus space square root of 2 space equals space 0
rightwards double arrow space space space space space 2 plus straight k plus square root of 2 equals 0
rightwards double arrow space space space space space space space space space straight k space equals negative left parenthesis 2 plus square root of 2 right parenthesis.

    Question 112
    CBSEENMA9001776

    Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

    p(x) = kx2square root of 2 to the power of straight x end root plus 1

    Solution

    p(x) = kx2 - square root of 2 x plus 1
    If x - 1 is a factor of p(x), then p(1) = 0
                                              | By Factor Theorem
      rightwards double arrow          k(1)2square root of 2 to the power of open parentheses space 1 space close parentheses end exponent end root + 1 = 0
      rightwards double arrow space space space space space space space space space space space space straight k minus square root of 2 plus 1 equals 0
rightwards double arrow space space space space space space space space space space space space space straight k space equals space square root of 2 minus 1

    Question 113
    CBSEENMA9001777

    Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

    p(x)=kx2 - 3x + k

    Solution

    p(x)=kx2 - 3x + k
    If x - 1 is a factor of p(x) then p(1) = 0
                                       | By Factor Theorem
    rightwards double arrow   k(1)2 - 3(1) + k = 0
    rightwards double arrow    k - 3 + k = 0
    rightwards double arrow    2k = 3
    rightwards double arrow space space space space space k = 3 over 2

    Question 114
    CBSEENMA9001778

    Factorise
    12x2 - 7x + 1

    Solution

    12x2 - 7x+ 1
    12x- 7x + 1 = 12x2 - 4x - 3x + 1
    = 4x(3x - 1) - 1(3x - 1)
    = (3x - 1) (4x - 1)

    Question 115
    CBSEENMA9001779

    Factorise
    2x2 + 7x + 3

    Solution

    2x2 + 7x + 3
    2a2 + 7x + 3 = 2x2 + 6x + x + 3
    = 2x(x + 3) + 1(x + 3)
    = (x + 3) (2x + 1)

    Question 116
    CBSEENMA9001780

    Factorise
    6x2 + 5x - 6

    Solution

    6x2 + 5x - 6
    6x2 + 5x - 6 = 6x2 + 9x - 4x - 6
    = 3x(2x + 3) - 2(2x + 3)
    = (2x + 3) (3x-2)

    Question 117
    CBSEENMA9001781

    Factorise
    3x2 - x - 4

    Solution

    3x2 - x - 4
    3x2 - x - 4 = 3x2 - 4x + 3x - 4
    = x(3x - 4) + 1(3x - 4)
    = (3x - 4)(x + 1)

    Question 118
    CBSEENMA9001782

    Factorise
    x3 - 2x2 - x + 2

    Solution

    x3 - 2x2 - x + 2
    Let p(x) = x3 - x2 - x + 2
    By trial, we find that
    p(1) = (1)3 - 2(1)2 - (1) + 2
    = 1 - 2 - 1 + 2 = 0
    ∴ By Factor Theorem, (x - 1) is a factor of p(x).
    Now,
    x3 - 2x2 - x + 2 = x2(x - 1) - x(x - 1) - 2(x - 1)
    = (x - 1)(x2 - x - 2)
    = (x - 1)(x2 - 2x + x - 2)
    = (x - 1){x(x - 2) + 1(x - 2)}
    = (x - 1)(x - 2)(x + 1).

    Question 119
    CBSEENMA9001783

    Factorise
     x3 - 3x2 - 9x - 5

    Solution

    x3 - 3x2 - 9x - 5
    Let p(x) = x3 - 3x2 - 9x - 5
    By trial, we find that
    p(- 1) = (- 1)3 - 3(- 1)2- 9(- 1) -5
    = - 1 - 3 + 9 - 5 = 0
    ∴ By Factor Theorem, x - (- 1), i.e., (x + 1) is a factor of p(x).
    Now,
    x3 - 3x2 - 9x - 5
    = x2(x + 1) - 4x(x + 1) - 5(x + 1)
    = (x + 1)(x2- 4x - 5)
    = (x + 1)(x2 - 5x + x - 5)
    = (x+ 1){x(x - 5) + 1 (x - 5)}
    = (x + 1)(x - 5)(x + 1).

    Sponsor Area

    Question 120
    CBSEENMA9001784

    Factorise
    x3 + 13x2 + 32x + 20

    Solution

    x3 + 13x2 + 32x + 20
    Let p(x) = x3 + 13x2 + 32x + 20
    By trial, we find that
    p(- 1) = (- 1)3 + 13(- 1)2 + 32(- 1) + 20
    = - 1 + 13 - 32 + 20 = 0
    ∴ By Factor Theorem, x - (- 1), i.e., (x + 1) is a factor of p(x).
    Now,
    x3 + 13x2 + 32x + 20
    = x2(x + 1) + 12x(x + 1) + 20(x + 1)
    = (x + 1)(x2+ 12x + 20)
    = (x + 1)(x2 + 2x + 10x + 20)
    = (x + 1) {x(x + 2) + 10(x + 2)}
    = (x + 1)(x + 2)(x + 10).

    Question 121
    CBSEENMA9001785

    Factorise
    2y3 + y2 - 2y - 1

    Solution

    2y3 + y2 - 2y - 1
    Let p(y) = 2y3 + y2 - 2y - 1
    By trial, we find that
    p(1) = 2(1)3 + (1)2 - 2(1) - 1
    = 2 + 1 - 2 - 1 = 0
    ∴ By Factor Theorem, (y - 1) is a factor of p(y).
    Now,
    2y3 + y2 - 2y - 1
    = 2y2(y - 1) + 3y(y - 1) + 1(y - 1)
    = (y - 1)(2y2 + 3y + 1)
    = (y - 1)(2y2 + 2y + y+ 1)
    = (y - 1){2y(y + 1) + 1(y + 1)}
    = (y - 1)(y + 1) (2y + 1).

    Question 122
    CBSEENMA9001786

    Use Factor Theorem to verify that x + a is a factor of xn + an for any odd positive integer n.

    Solution

    Let p(x) = xn + an
    The zero of x + a is - a. | x + a = 0 ⇒ x = - a
    Now,
    p(- a) = (- a)n + an = (- 1)nan + an
             = (- 1)an + an 
        
    because n is an odd positive interger
    therefore   (-1)n = - 1
    = - an + a= 0
    ∴ By Factor Theorem, x + a is a factor of xn + an for any odd positive integer n.

    Question 123
    CBSEENMA9001787

    Determine the value of ‘b’ for which the polynomial 5x3 - x2 + 4x + b is divisible by 1 - 5x.

    Solution

    Let p(x) = 5x3 - x2 + 4x + b
    1 - 5x = 0
    rightwards double arrow space space space space space space space space 5 straight x space equals space 1 space space space rightwards double arrow space space space straight x space equals space 1 fifth
    therefore  The zero of 1 - 5x is 1 fifth
    If p(x) is divisivle by 1 - 5x, then straight p open parentheses 1 fifth close parentheses equals 0
                                             | By Factor Theorem
    rightwards double arrow space 5 open parentheses 1 fifth close parentheses cubed minus open parentheses 1 fifth close parentheses squared plus 4 open parentheses 1 fifth close parentheses plus straight b equals 0
rightwards double arrow space space 1 over 25 minus 1 over 25 plus 4 over 5 plus straight b equals 0
rightwards double arrow space space space 4 over 5 plus straight b equals 0
rightwards double arrow space space space space straight b space equals space minus 4 over 5.

    Question 124
    CBSEENMA9001788

    Find the values of a and b so that (x + 1) and (x - 1) are factors of x4 + ax3 - 3x2 + 2x + b.  

    Solution

    Let p (x) = x4 + ax3 - 3x2 + 2x + b
    If (x + 1) and (x - 1) are factors of p(x), then by factor theorem,
    p(-1) = 0 ...(1) | x + 1 = 0 ⇒ x = -1
    and    p(1) = 0 ...(2) | x - 1 = 0 ⇒ x = 1
    Now,
    P(-1) = 0
    ⇒ (-1)4 + a(-1)3 - 3(-1)2 + 2 (-1) + b = 0
    ⇒ 1 - a - 3 - 2 + b = 0
    ⇒    -a + b = 4    ...(3)
    and    p(1) = 0
    ⇒ (1)4 + a(1)3 - 3(1)2 + 2 (1) + b = 0
    ⇒ 1 + a - 3 + 2 + b = 0
    ⇒    a + b = 0    ...(4)
    Solving (3) and (4), we get
    a = -2,b = 2

    Question 125
    CBSEENMA9001789

    For what value of a the polynomial 2x3 + ax2 + 11x + a + 3 is exactly divisible by 2x - 1?

    Solution

    Let p(x) = 2x3 + ax2 + 11x + a + 3
    If p(x) is exactly divisible by 2x - 1, then by factor theorem,
    space space space space space space straight P open parentheses 1 half close parentheses equals 0 space space space space 12 straight x minus 1 equals 0 space rightwards double arrow space straight x space equals space 1 half
rightwards double arrow space space space 2 open parentheses 1 half close parentheses cubed plus straight a open parentheses 1 half close parentheses squared plus 11 open parentheses 1 half close parentheses plus straight a plus 3 equals 0
rightwards double arrow space space space 1 fourth plus straight a over 4 plus 11 over 2 plus straight a plus 3 equals 0
rightwards double arrow space space space space fraction numerator 5 straight a over denominator 4 end fraction plus 35 over 4 equals 0
rightwards double arrow space space space space space straight a space equals space minus 7

    Hence, the required polynomial is
    2x3 - 7x2 + 11x - 7 + 3
    or 2x3 - 7x2 + 11x - 4

    Question 126
    CBSEENMA9001790

    Without actual division prove that x4 + 2x3 - 2x2 + 2x - 3 is exactly divisible by x2 + 2x - 3. 

    Solution

    x2 + 2x - 3
    = x2 + 3x - x - 3
    = x(x + 3) - 1 (x + 3)
    = (x + 3) (x - 1)
    Let p(x) = x4 + 2x3 - 2x2 + 2x - 3
    We see that
    p(-3) = (-3)4 + 2(-3)3 - 2(-3)+ 2(-3) - 3
    = 81 - 54 - 18 - 6 - 3
    = 0
    Hence by converse of factor theorem, (x + 3) is a factor of p(x).
    Also, we see that
    p(1) = (1)4 + 2(1)3 - 2(1)2 + 2(1) - 3
    = 0
    Hence by converse of factor theorem, (x - 1) is a factor of p(x).
    From above, we see that
    (x + 3) (x - 1), i.e., x2 + 2x - 3 is a factor of p(x)
    ⇒ p(x) is exactly divisible by (x2 + 2x - 3).

    Question 127
    CBSEENMA9001791

    Determine whether (3x — 2) is a factor of 3x3 + x2 - 20x + 12?

    Solution

    Let p(x) = 3x3 + x2 - 20x + 12
    We see that
    straight P open parentheses 2 over 3 close parentheses equals 3 open parentheses 2 over 3 close parentheses cubed plus open parentheses 2 over 3 close parentheses squared minus 20 open parentheses 2 over 3 close parentheses plus 12
space space space space space space space space left enclose space space space 3 straight x minus 2 end enclose space equals space 0 space space space space space rightwards double arrow space straight x space 2 over 3
space space space space space space equals 8 over 9 plus 4 over 9 minus 40 over 3 plus 12
space space space space space space equals space 0
    Hence by converse of factor theorem, (3x - 2) is a factor of p(x).

    Question 128
    CBSEENMA9001792

    Factorise: x3 - 6x2 + 11x - 6.

    Solution

    Let p(x) = x3 - 6x2 + 11x - 6
    By trial, we find that
    p(1) = (1)3 - 6(1)2 + 11(1) - 6 = 0
    ∴ By converse of factor theorem, (x - 1) is a factor of p(x).
    Now, x3 - 6x2 + 11x - 6
    = x2 (x - 1)- 5x (x - 1) + 6 (x - 1)
    = (x - 1) (x2 - 5x + 6)
    = (x - 1) {x2 - 2x - 3x + 6}
    = (x - 1) {x(x - 2)-3 (x - 2)}
    = (x - 1)(x - 2)(x - 3)

    Question 129
    CBSEENMA9001793

    If both (x - 2) and open parentheses straight x minus 1 half close parentheses are factors of px2 + 5x + r, show that p = r.

    Solution

    Let f(x) = px2 + 5 x + r
    If (x - 2) is a factor of f (x), then by factor theorem
    f(2) = 0 | x - 2 = 0 ⇒ x = 2
    ⇒ p(2)2 + 5(2) + r = 0
    ⇒ 4p + r + 10 = 0    ...(1)
    If open parentheses straight x minus 1 half close parentheses is a factor of f (x), then by factor theorem,
    straight f open parentheses 1 half close parentheses equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space straight x minus 1 half equals 0 rightwards double arrow straight x equals 1 half space rightwards double arrow space straight x equals 1 half
rightwards double arrow space space space straight p open parentheses 1 half close parentheses squared plus 5 open parentheses 1 half close parentheses plus straight r equals 0
rightwards double arrow space space space space straight p over 4 plus 5 over 2 plus straight r equals 0
rightwards double arrow space space space straight p plus 4 straight r plus 10 equals 0 space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

    Subtracting (2) from (1), we get
    3p - 3r = 0
    ⇒    p = r

    Question 130
    CBSEENMA9001794

    Using factor theorem, factorise the polynomial x4 + x3 - 7x2 - x + 6.

    Solution

    Let f(x) = x4 + x3 - 7x- x + 6
    By trial, f(1) = 0 and f(2) = 0
    So by factor theorem, (x - 1) and (x - 2) are factors of f(x).
    (x - 1) (x - 2) = x2 - 3x + 2
    Now, f(x) = x2 (x2 - 3x + 2)+ 4x (x2 - 3x + 2) + 3 (x2 - 3x + 2)
    = (x2 - 3x + 2) (x2 + 4x + 3)
    = (x - 1) (x - 2) (x + 1) (x + 3)

    Question 131
    CBSEENMA9001795

     Examine whether x + 2 is a factor of x3 + 3x2 + 5x + 6 and 2x + 4.

    Solution

    Solution not provided.
    Ans.  Yes

    Question 132
    CBSEENMA9001796

    Find the value of k if x - 1 is a factor of 4x3 + 3x2 - 4x + k.

    Solution

    Solution not provided.
    Ans.  - 3

    Question 133
    CBSEENMA9001797

    Factorise 6x2 + 17x + 5 by splitting the middle term.

    Solution

    Solution not provided.
    Ans.  (3x + 1) (2x + 5) 

    Question 134
    CBSEENMA9001798

    Factorise y2 - 5y + 6 by using the Factor Theorem.

    Solution

    Solution not provided.
    Ans.  (y - 2) (y - 3)

    Question 135
    CBSEENMA9001799

    Factorise x3 - 23x2 + 142x - 120.

    Solution

    Solution not provided.
    Ans.  (x - 1) (x - 10) (x - 12)

    Question 136
    CBSEENMA9001800

    Find the value of a if (a: + a) is a factor of x4 - a2 x2 + 3x - a. 

    Solution

    Solution not provided.
    Ans.  0

    Question 137
    CBSEENMA9001801

    Show that (x - 2) is a factor of the polynomial f(x) = 2x3 - 3x3 - 17x + 30 and hence factorize f(x).  

    Solution

    Solution not provided.
    Ans.  (x - 2) (x + 3) (2x - 5)

    Question 138
    CBSEENMA9001802

    Find the value of a if (x - 1) is a factor of 2x2 + ax plus square root of 2.

    Solution

    Solution not provided.
    Ans.  negative left parenthesis 2 plus square root of 2 right parenthesis

    Question 139
    CBSEENMA9001803

    Factorise: x3 + 6x2 + 11x + 6

    Solution

    Solution not provided.
    Ans.  (x + 1)(x + 2)(x + 3)

    Question 140
    CBSEENMA9001804

    Check whether polynomial p(s) = 3s3 + s2 - 20s + 12 is a multiple of 3s - 2.

    Solution

    Solution not provided.
    Ans.  Yes

    Question 141
    CBSEENMA9001805

    Check whether (p + 1) is a factor of (p100 - 1) and (p100 - 1). 

    Solution

    Solution not provided.
    Ans.  Yes,  No

    Question 142
    CBSEENMA9001806

    Factorise: 3u3 + 4u2 - 12u + 16.

    Solution

    Solution not provided.
    Ans.  (u - 2) (u + 2) (3u - 4)

    Question 144
    CBSEENMA9001808

     If (2x - 3) is a factor of 2x4 - 3x2 + 15x - 15k, find the value of open parentheses 3 straight k minus square root of 5 space straight k close parentheses.

    Solution

    Solution not provided.
    Ans.  space fraction numerator left parenthesis 3 space minus square root of 5 right parenthesis 107 over denominator 120 end fraction

    Question 145
    CBSEENMA9001809

    Use suitable identities to find the following products:

    (i) (x + 4)(x + 10) 

    Solution

    x + 4)(x + 10)
    (x + 4)(x + 10) = x2 + (4 + 10)x + (4)(10)
    | Using Identity IV
    = x2 + 14x + 40.

    Question 146
    CBSEENMA9001810

    Use suitable identities to find the following products:

    (x + 8)(x - 10)

    Solution

    x + 8)(x - 10)
    (x + 8)(x - 10) = (x + 8){x + (- 10)}
    = x2 + {8 + (- 10)}x + (8)(- 10)
    | Using Identity IV
    = x2 - 2x - 80.

    Question 147
    CBSEENMA9001811

    Use suitable identities to find the following products:

     (3x + 4)(3x - 5)

    Solution

    (3x + 4)(3x - 5)
    (3x + 4)(3x - 5) = (3x + 4) {3x + (- 5)}
    = (3x)2 + (4 + (- 5)} (3x) + (4)(- 5)
    | Using Identity IV
    = 9x2 - 3x - 20.

    Question 148
    CBSEENMA9001812

    Use suitable identities to find the following products:

    open parentheses straight y squared plus 3 over 2 close parentheses open parentheses y squared minus 3 over 2 close parentheses

    Solution
    open parentheses straight y squared plus 3 over 2 close parentheses open parentheses straight y squared minus 3 over 2 close parentheses
open parentheses straight y squared plus 3 over 2 close parentheses open parentheses y squared minus 3 over 2 close parentheses equals open parentheses z plus 3 over 2 close parentheses open parentheses z minus 3 over 2 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space w h e r e space y squared equals z
equals space left parenthesis z right parenthesis squared minus open parentheses 3 over 2 close parentheses squared
space space space space space space space space space vertical line space Using space Identity space III
equals space straight z squared minus 9 over 4 equals left parenthesis straight y squared right parenthesis squared minus 9 over 4
space space space space space space space space space space space space space space space space space
                      | Substituting the value of z
    equals straight y to the power of 4 minus 9 over 4.
    Question 149
    CBSEENMA9001813

    Use suitable identities to find the following products:
    (3 - 2x)(3 + 2x)

     

    Solution

    3 - 2x)(3 + 2x)
    (3x - 2x)(3 + 2x) = (3)2 - (2x)2
    | Using Identity III
    = 9 - 4x2.

    Question 150
    CBSEENMA9001814

    Evaluate the following products without multiplying directly:
    103 × 107 

    Solution

    103 × 107
    103 × 107 = (100 + 3) × (100 + 7)
    = (100)2 + (3 + 7) (100 + (3)(7))
    | Using Identity IV
    = 10000 + 1000 + 21 = 11021.
    Aliter
    103 × 107 = (105 - 2) × (105 + 2)
    = (105)2 - (2)2
    | Using Identity III
    = (100 + 5)2 - 4
    = (100)2 + 2(100)(5) + (5)2 - 4
    | Using Identity I
    = 10000 + 1000 + 25 - 4 = 11021.

    Question 151
    CBSEENMA9001815

    Evaluate the following products without multiplying directly:
    95 × 96

    Solution

    95 × 96
    95 × 94 = (90 + 5) × (90 + 6)
    = (90)2 + (5 + 6)(90) + (5)(6)
    | Using Identity IV
    = 8100 + 990 + 30 = 9120.
    Aliter
    95 × 96 = (100 - 5) × (100 - 4)
    = {100 + (- 5)} (100 + (- 4)}
    = (100)2 + {(- 5) + (- 4)}(100)
    + (- 5)(- 4) | Using Identity IV
    = 10000 - 900 + 20
    = 9120.

    Question 152
    CBSEENMA9001816

    Evaluate the following products without multiplying directly:

    104 × 96.

    Solution

    104 × 96
    104 × 96 = (100 + 4) × (100 - 4)
    = (100)2 - (4)| Using Identity III
    = 10000 - 16 = 9984.

    Question 153
    CBSEENMA9001817

    Evaluate using suitable identify: (999)3.

    Solution

    (999)3
    = (1000 - 1)3
    = (1000)3 - (1)3 - 3(1000)(1) (1000 - 1)
    = 1000 000 000 - 1 - 3000 × 999
    = 1000 000 000 - 1 - 2997000
    = 997002999

    Question 154
    CBSEENMA9001818

     Multiply 9x2 + 25y2 + 15xy + 12x -20y + 16 by 3x - 5y - 4 using suitable identity.

    Solution

    (3x - 5y - 4) (9x2 + 25y2 + 15xy + 12x - 20y + 16)
    = {(3x) + (-5y) + (-4)} {(3x)2 + (-5y)2 + (-4)2 - (3x) (-5y) - (-5y) (-4) - (-4) (3x)}
    = (3x)3 + (-5y)3 + (-4)3 - 3 (3x) (-5y) (-4)
    = 27x3 - 125y3 - 64 - 180cy.

    Question 155
    CBSEENMA9001819

    15. Factorise:
    a2 + b2 - 2 (ab - ac + bc)

    Solution

     a2 + b2 - 2(ab - ac + bc)
    = a2 + b2 - 2ab + 2ac - 2bc
    = (a - b)2 + 2c(a - b)
    = (a - b) (a - b + 2c).

    Question 156
    CBSEENMA9001820

    Factorise: (ax + by)2 + (ay - bx)2

    Solution

    (ax + by)2 + (ay - bx)2
    = a2x2 + b2y2 + 2abxy + a2y2 + b2x2 - 2abxy
    = a2 (x2 + y2) + b2 (x2 + y2)
    = (x2 + y2) (a2 + b2).

    Question 157
    CBSEENMA9001821

    Find the value of x3 - 8y3 - 36xy - 216 when x = 2y + 6.

    Solution

    We have    x = 2y + 6
    ⇒ x + (-2y) + (-6) = 0
    ∴ x3 + (-2y)3 + (-6)3 = 3x (-2y) (-6)
    ⇒     x3 - 8y- 216 = 36xy
    ∴ x3 - 8y3 - 36xy - 216 = 0

    Question 158
    CBSEENMA9001822

    Factorise:
    (x - 3y)3 + (3y - 7z + (7z - x)3

    Solution

    We have
    (x - 3y) + (3y - 7z) + (7z - x) = 0
    ∴ (x - 3y)3 + (3y - 7z)3 + (7z - x)3
    = 3(x - 3y) (3y - 7z) (7z - x)

    Question 159
    CBSEENMA9001823

    If a + b + c = 7 and ab + be + ca = 20, find the value of a2 + b2 + c2.

    Solution

    We know that
    (a + b + c)2 = a2 + b2 + c2 + 2 (ab +bc + ca)
    ⇒    (7)2 = a2 + b2 + c2 + 2(20)
    ⇒ a2 + b2 + c2 = 9

    Question 160
    CBSEENMA9001824

    If p = 2 - a, then prove that a3 + 6ap + p3 - 8 = 0.

    Solution

    p = 2 - a
    ⇒    p + a - 2 = 0
    ∴ p3 + a3 + (- 2)3 = 3 (p) (a) (- 2)
    | Using Identity VI
    ⇒     p3 + a3 - 8 = - 6ap
    ⇒ a3 + 6ap +p3 - 8 = 0

    Question 161
    CBSEENMA9001825

    Simplify: (x + y)3 - (x - y)3 - 6y(x- y2)    

    Solution

    Let x + y = a, x - y = b
    Then, ab = (x + y) (x - y) = x2 - y2
    and    a - b = (x + y) - (x - y) = 2y
    Now, (x + y)3 - (x - y)3 - 6y (x2 - y2)
    = (x + y)3 - (x - y)3 - 3(2y) (x2 - y2)
    = a3 - b3 - 3(a - b) ab
    = (a - b)3 | Using Identity VII      
    = {(x + y) - (x - y)}3
    = (2y)3 = 8y3   

    Question 162
    CBSEENMA9001826

    If x2 + px + q = (x + a)(x + b), then factorise x2 + pxy + qy2.

    Solution

    x2 + px + q = (x + a)(x + b)
    ⇒ x2+ px + q = x2 + ax + bx + ab
    ⇒ x2+ px + q = x2 + (a + b)x + ab
    Comparing the coefficients, we get
    a + b = p    ...(1)
    ab = q    ...(2)
    ∴ x2 + pxy + qy2 = x2 + (a + b)xy + aby2
    | Using (1) and (2)
    = x2 + axy + bxy + aby2
    = x(x + ay) + by(x + ay)
    = (x + ay)(x + by).

    Question 163
    CBSEENMA9001827

    Prove that: (a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a) = 2(a3 + b3+ c3 - 3abc).

    Solution

    L.H.S. = (a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a)
    = {(a + b) + (b + c) + (c + a)} [(a + b)2 + (b + c)2 + (c + a)2 - (a + b)(b + c) - (b + c)(c + a) - (c + a)(a + b)]
    | Using Identity VIII
    = 2(a + b + c) [a2 + 2ab + b2 + b2 + 2bc + c2 + c2 + 2ca + c2 - ab - ac - b2 - bc - bc - ba - c2 - ca - ca - cb - a2 - ab]
    | Using Identity I
    = 2(a + b + c)(a2 + b2 + c2 - ab - be - ca)
    = 2(a3 + b3 + c3 - 3abc).
    | Using Identity VIII

    Question 164
    CBSEENMA9001828

    Evaluate using suitable identify: (999)3.

    Solution

     (999)3
    = (1000 - 1)3
    = (1000)3 - (1)3 - 3(1000)(1) (1000 - 1)
    = 1000 000 000 - 1 - 3000 × 999
    = 1000 000 000 - 1 - 2997000
    = 997002999

    Question 165
    CBSEENMA9001829

    Multiply 9x2 + 25y2 + 15xy + 12x -20y + 16 by 3x - 5y - 4 using suitable identity.

    Solution

    (3x - 5y - 4) (9x2 + 25y2 + 15xy + 12x - 20y + 16)
    = {(3x) + (-5y) + (-4)} {(3x)2 + (-5y)2 + (-4)2 - (3x) (-5y) - (-5y) (-4) - (-4) (3x)}
    = (3x)3 + (-5y)3 + (-4)3 - 3 (3x) (-5y) (-4)
    = 27x3 - 125y3 - 64 - 180cy.

    Question 166
    CBSEENMA9001830

    Show that if a + b is not zero, then the equation a(x - a) = 2ab - b(x - b) has a solution x = a + b.

    Solution

    a(x - a) = 2ab - b(x - b)
    ⇒ ax - a2 = 2ab - bx + b2
    ⇒ ax + bx = a2 + 2ab + b2
    ∴ x(a + b) = (a + b)2 | Using Identity I
    ∴    x = a + b
    | Cancelling (a + b) from both sides as (a + b) ≠ 0
    Hence the given equation has a solution x = a + b.

    Question 167
    CBSEENMA9001831

    Show that if 2(a2 + b2) = (a + b)2, then a = b.

    Solution

    2(a2 + b2) = (a + b)2
    ⇒ 2a2 + 2b2 = a2 + b2 + 2ab
    ⇒ a2 + b2 - 2ab = 0
    ⇒    (a - b)2 = 0
    ⇒    a - b = 0
    ⇒    a = b.

    Question 168
    CBSEENMA9001832

    Factorise each of the following:

    a4 - b4    (b)a4 - 16b4

    Solution

    a4 - b4
    a4 - b4 = (a2)2 - (b2)2 = (a2 + b2) (a2 - b2)
    | Using Identity III
    = (a2 + b2)(a + b)(a - b)
    | Using Identity III

    Question 169
    CBSEENMA9001833

    Factorise each of the following:

    a4 - 16b

    Solution

    a4 - 16b4

    a4 - 16b4 = (a2)2 - (4b2)2 = (a2 - 4b2)(a2 + 4b2)
    | Using Identity III
    = {(a)2 - (2b)2}(a2 + 4b2)
    = (a + 2b)(a - 2b)(a2 + 4b2)
    | Using Identity III

    Question 170
    CBSEENMA9001834

    Factorise each of the following:

    a2 - (b - c)2

    Solution

    a2 - (b - c)2

    a2 - (b - c)2 = {a + (b - c)}{a - (b - c)}
    | Using Identity III
    = (a + b - c)(a - b + c)
    x2 + 7xy + 12y2
    x2 + 7xy + 12y2 = x2 + 3xy + 4xy + 12y2
    = x(x + 3y) + 4y(x + 3y)
    = (x + 3y)(x + 4y)

    Question 171
    CBSEENMA9001835

    Factorise each of the following:

     x2 + 2ax - b2 - 2ab

    Solution

    x2 + 2ax - b2 - 2ab

    x2 + 2ax - b2 - 2ab = (x2 - b2) + (2ax - 2ab)
    = (x- b)(x + b) + 2a(x - b)
    | Using Identity III
    = (x - b)(x + b + 2a)

    Question 172
    CBSEENMA9001836

    Factorise each of the following:

    (x2 + x)2 + 4(x2 + x) - 12

    Solution

    (x2 + x)2 + 4(x2 + x) - 12
    (x2 + x)2 + 4(x2 + x) - 12 = y2 + 4y - 12
    | where y = x2 + x
    = y2 + 6y - 2y - 12
    = y(y + 6) - 2(y + 6)
    = (y + 6)(y - 2)
    = (x2 + x + 6)(x2 + x - 2)
    | ∵ = x2 + x
    = (x2 + x + 6)(x2 + 2x - x - 2)
    = (x2 + x + 6)[x(x + 2) - 1(x + 2)]
    = (x2 + x + 6)(x + 2)(x - 1).

    Question 173
    CBSEENMA9001837

    Simplify:

    fraction numerator 73 cross times 73 cross times bold 73 bold cross times bold 27 bold cross times bold 27 bold cross times bold 27 over denominator bold 73 bold cross times bold 73 bold minus bold 73 bold cross times bold 27 bold plus bold 27 bold cross times bold 27 end fraction

    Solution
    fraction numerator 73 cross times 73 cross times bold 73 bold cross times bold 27 bold cross times bold 27 bold cross times bold 27 over denominator bold 73 bold cross times bold 73 bold minus bold 73 bold cross times bold 27 bold plus bold 27 bold cross times bold 27 end fraction
equals fraction numerator left parenthesis 73 right parenthesis cubed plus left parenthesis 27 right parenthesis cubed over denominator left parenthesis 73 right parenthesis squared minus left parenthesis 73 right parenthesis left parenthesis 27 right parenthesis plus left parenthesis 27 right parenthesis squared end fraction
space space space space space space space space space space space space space
                                | Using Identity VI
    = 73 +27 = 100
    Question 174
    CBSEENMA9001838

    Factorise: 7 square root of 2 straight x squared minus 10 straight x minus 4 square root of 2

    Solution
    7 square root of 2 straight x squared minus 10 straight x minus 4 square root of 2
space space space space space equals space 7 square root of 2 straight x squared minus 14 straight x plus 4 straight x minus 4 square root of 2
space space space space space equals space 7 square root of 2 straight x left parenthesis straight x minus square root of 2 right parenthesis plus 4 left parenthesis straight x minus square root of 2 right parenthesis
space space space space space equals space space left parenthesis straight x minus square root of 2 right parenthesis space left parenthesis 7 space square root of 2 straight x space plus 4 right parenthesis
    Question 175
    CBSEENMA9001839

    Factorise: 2 square root of 2 straight a cubed plus 8 straight b cubed minus 27 straight c cubed plus 18 square root of 2 space abc


    Solution
    2 square root of 2 straight a cubed plus 8 straight b cubed minus 27 straight c cubed plus 18 square root of 2 space abc
equals left parenthesis square root of 2 straight a right parenthesis cubed plus left parenthesis 2 straight b right parenthesis cubed plus left parenthesis negative 3 straight c right parenthesis cubed minus 3 left parenthesis square root of 2 straight a right parenthesis left parenthesis 2 straight b right parenthesis left parenthesis negative 3 straight c right parenthesis
equals space open parentheses square root of 2 straight a plus 2 straight b minus 3 straight c close parentheses
left parenthesis 2 straight a squared plus 4 straight b squared plus 9 straight c squared minus 2 square root of 2 ab plus 6 bc plus 3 square root of 2 space ac right parenthesis.
    Question 176
    CBSEENMA9001840

    If  straight x minus 1 over straight x equals 3 comma then find the value of straight x cubed minus 1 over straight x cubed.

    Solution
    We know that
    open parentheses straight x minus 1 over straight x close parentheses cubed equals x cubed minus 1 over x cubed minus 3 left parenthesis x right parenthesis open parentheses 1 over x close parentheses open parentheses x minus 1 over x close parentheses
rightwards double arrow space open parentheses straight x minus 1 over straight x close parentheses cubed equals x cubed minus 1 over x cubed minus 3 open parentheses x minus 1 over x close parentheses
rightwards double arrow space space space space left parenthesis 3 right parenthesis cubed equals x cubed minus 1 over x cubed minus 3 left parenthesis 3 right parenthesis
rightwards double arrow x cubed minus 1 over x cubed space equals space 36
    Question 177
    CBSEENMA9001841

    Factorise: a7 + ab6.

    Solution
    straight a to the power of 7 plus ab to the power of 6
equals space straight a left parenthesis straight a to the power of 6 plus straight b to the power of 6 right parenthesis
equals space straight a left curly bracket left parenthesis straight a squared right parenthesis cubed plus left parenthesis straight b squared right parenthesis cubed right curly bracket
equals space straight a left parenthesis straight a squared plus straight b squared right parenthesis space left curly bracket left parenthesis straight a squared right parenthesis squared plus left parenthesis straight b squared right parenthesis squared minus left parenthesis straight a squared right parenthesis left parenthesis straight b squared right parenthesis right curly bracket
equals space straight a left parenthesis straight a squared plus straight b squared right parenthesis left parenthesis straight a to the power of 4 plus straight b to the power of 4 minus straight a squared straight b squared right parenthesis
equals space straight a left parenthesis straight a squared plus straight b squared right parenthesis left parenthesis straight a to the power of 4 plus straight b to the power of 4 plus 2 straight a squared straight b squared space minus space 2 straight a squared straight b squared space minus straight a squared straight b squared right parenthesis
equals straight a left parenthesis straight a squared plus straight b squared right parenthesis space left curly bracket left parenthesis straight a squared plus straight b squared right parenthesis squared minus left parenthesis square root of 3 ab right parenthesis squared right curly bracket
equals space straight a left parenthesis straight a squared plus straight b squared right parenthesis left parenthesis straight a squared plus straight b squared minus square root of 3 space ab right parenthesis space
space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis straight a squared plus straight b squared plus square root of 3 space ab right parenthesis
    Question 178
    CBSEENMA9001842

    Prove that

    fraction numerator 0.75 cross times 0.75 cross times 0.75 plus 0.25 cross times 0.25 cross times 0.25 over denominator 0.75 cross times 0.75 minus 0.75 cross times 0.25 plus 0.25 cross times 0.25 end fraction equals 1

    Solution
    fraction numerator 0.75 cross times 0.75 cross times 0.75 plus 0.25 cross times 0.25 cross times 0.25 over denominator 0.75 cross times 0.75 minus 0.75 cross times 0.25 plus 0.25 cross times 0.25 end fraction

equals space fraction numerator left parenthesis 0.75 right parenthesis cubed plus left parenthesis 0.25 right parenthesis cubed over denominator left parenthesis 0.75 right parenthesis squared plus left parenthesis 0.75 right parenthesis left parenthesis 0.25 right parenthesis plus left parenthesis 0.25 right parenthesis squared end fraction
equals space fraction numerator left parenthesis 0.75 plus 0.25 right parenthesis left curly bracket left parenthesis 0.75 right parenthesis squared minus left parenthesis 0.75 right parenthesis left parenthesis 0.25 right parenthesis plus left parenthesis 0.25 right parenthesis squared right curly bracket over denominator left parenthesis 0.75 right parenthesis squared left parenthesis 0.75 right parenthesis left parenthesis 0.25 right parenthesis plus left parenthesis 0.25 right parenthesis squared end fraction
equals space 1
    Question 179
    CBSEENMA9001843

    Simplify:

    open parentheses straight x minus 2 over 3 straight y close parentheses cubed minus open parentheses x plus 2 over 3 y close parentheses cubed

    Solution
    open parentheses straight x minus 2 over 3 straight y close parentheses cubed minus open parentheses straight x plus 2 over 3 straight y close parentheses cubed
equals space open square brackets straight x cubed minus open parentheses 2 over 3 straight y close parentheses cubed minus 3 left parenthesis straight x right parenthesis open parentheses 2 over 3 straight y close parentheses open curly brackets open parentheses straight x close parentheses minus open parentheses 2 over 3 straight y close parentheses close curly brackets close square brackets
equals space open square brackets straight x cubed minus open parentheses 2 over 3 straight y close parentheses cubed plus 3 left parenthesis straight x right parenthesis open parentheses 2 over 3 straight y close parentheses open curly brackets open parentheses straight x close parentheses plus open parentheses 2 over 3 straight y close parentheses close curly brackets close square brackets
equals open square brackets straight x cubed minus 8 over 27 straight y cubed minus 2 straight x squared straight y plus 4 over 3 xy squared close square brackets minus open square brackets straight x cubed plus 8 over 27 straight y cubed plus 2 straight x squared straight y plus 4 over 3 xy squared close square brackets
equals space minus 16 over 27 straight y cubed minus 4 straight x squared straight y
    Question 180
    CBSEENMA9001844

    Factorise: 

    straight x squared plus fraction numerator 1 over denominator straight x squared plus 2 end fraction minus 2 minus 2 straight x minus 2 over straight x

    Solution
    straight x squared plus fraction numerator 1 over denominator straight x squared plus 2 end fraction minus 2 minus 2 straight x minus 2 over straight x

equals space open parentheses straight x plus 1 over straight x close parentheses squared minus 2 open parentheses straight x plus 1 over straight x close parentheses
equals space open parentheses straight x plus 1 over straight x close parentheses space open parentheses straight x plus 1 over straight x minus 2 close parentheses
    Question 181
    CBSEENMA9001845

    Expand the following:

    (i) (x - 2y - 3z)2       (ii)   open parentheses y minus square root of 3 close parentheses squared

    Solution

    (i) (x - 2y - 3z)2    

       = {(x) + (- 2y) + (- 3z)}
       
      = (x)2 + (- 2y)2 + (- 3z)2 +2(x) (- 2y) +2(-2y)(-3z)+2(-3z)(x)
        
       
    = x2 + 4y+ 9z- 4xy + 12yz - 6zx
      left parenthesis ii right parenthesis space space space space left parenthesis straight y space minus space square root of 3 right parenthesis squared
space space space space space space space space space space space space space space space space equals space straight y squared minus 2 left parenthesis straight y right parenthesis space left parenthesis square root of 3 right parenthesis plus left parenthesis square root of 3 right parenthesis squared
space space space space space space space space space space space space space space space space space equals space straight y squared minus 2 square root of 3 straight y plus 3
    Question 182
    CBSEENMA9001846

    Factorise the following using appropriate identities:

    9x2 + 6xy + y2

    Solution

    9x2 + 6xy + y2
    9x2 + 6xy + y= (3x)+ 2(3x)(y) + (y)2
    = (3x + y) = (3x + y) (3x + y)
        
                            | Using Identity 1
     

    Question 183
    CBSEENMA9001847

    Factorise the following using appropriate identities:

    4y2 - 4y + 1

    Solution

    4y2 - 4y + 1
    4y2 - 4y + 1 = (2y)2 - 2(2y)(1)+(1)2
                       = (2y - 1)2 = (2y - 1)  (2y - 1)
                                       | Using Identity II
                             
                       
                       

    Question 184
    CBSEENMA9001848

    Factorise the following using appropriate identities:

    straight x squared minus straight y squared over 100

    Solution
    straight x squared minus straight y squared over 100
straight x squared minus straight y squared over 100 equals left parenthesis straight x right parenthesis squared minus open parentheses straight y over 10 close parentheses squared
space space space space space space space space space space space space
space space space space space space space space space space space space space equals space open parentheses straight x plus straight y over 10 close parentheses space open parentheses straight x minus straight y over 10 close parentheses.
                                    | Using Identity III]
    Question 185
    CBSEENMA9001849

    Expand each of the following using suitable identities:
    (x + 2y + 4z)2

    Solution

    (x + 2y + 4z)2
    (x + 2y + 4z)2 = (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
    | Using Identity V
    = x2 + 4y2 + 16z2 + 4xy + 16yz + 8 zx

    Question 186
    CBSEENMA9001850

    Expand each of the following using suitable identities:
    (- 2x + 3y + 2z)2

    Solution

    (2x - y + z)2

    (2x - y + z)2 = {2x + (- y) + z}2
    = (2x)2 + (- y)2 + (z)2 + 2(2x)(- y) + 2(- y)(z) + 2(z)(2x)
    | Using Identity V
    = 4x2 + y2 + z2- 4xy -2yz + 4 zx

    Question 187
    CBSEENMA9001851

    Expand each of the following using suitable identities:
    (- 2x + 3y + 2z)2

    Solution

    (- 2x + 3y + 2z)2

    (- 2x + 3y + 2 z)2 = {(- 2x) + 3y + 2z)}2
    = (- 2x)2 + (3y)2 + (2z)2 + 2(- 2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)
    | Using Identity V
    = 4x2 + 9y2 + 4z- 12xy + 12yz - 8zx

    Question 188
    CBSEENMA9001852

    Expand each of the following using suitable identities:
    (3a -7b - c)2

    Solution

    (3a -7b - c)1

    (3a - 7b - c)2 = {3a + (- 7b) + (- c)}2
    = (3a)2 + (- 7b)2 + (- c)2 + 2(3a)(- 7b) + 2(- 7b)(- c) + 2(- c)(3a)
    = 9a2 + 49b2 + c2 - 42ab + 14bc - 6ca

    Question 189
    CBSEENMA9001853

    Expand each of the following using suitable identities:
    (- 2x + 5y - 3z)2 

    Solution

    (- 2x + 5y - 3z)2 (-2x + 5y - 3z)2 
    ={(-2x) + 5y + (- 3z)}2
    = (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2(5y)(- 3z) + 2(- 3z)(- 2x)
    = 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12zx

    Question 191
    CBSEENMA9001855

    Factorise

    4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz

    Solution

    4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
    4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
    = (2x)2 + (3y)2 + (- 4z)2 + 2(2x) (3y) + (3y) (- 4z) + (- 4z) (- 2x) 
    = {2x + 3y) + (- 4z)}2 = (2x + 3y - 4z)2 
    = (2x + 3y - 4z) (2x + 3y - 4z)

    Question 192
    CBSEENMA9001856

    Factorise

    2 straight x squared plus straight y squared plus 8 straight z squared minus 2 square root of 2 xy plus 4 square root of 2 yz minus 8 zx

    Solution
    2 straight x squared plus straight y squared plus 8 straight z squared minus 2 square root of 2 xy plus 4 square root of 2 yz minus 8 zx
2 straight x squared plus straight y squared plus 8 straight z squared minus 2 square root of 2 xy plus 4 square root of 2 yz minus 8 zx
equals space open parentheses negative square root of 2 straight x close parentheses squared plus straight y squared plus open parentheses 2 square root of 2 straight z close parentheses squared plus 2 open parentheses negative square root of 2 straight x close parentheses straight y plus 2 straight y open parentheses 2 square root of 2 straight z close parentheses plus 2 open parentheses 2 square root of 2 straight z close parentheses left parenthesis negative square root of 2 straight z end root right parenthesis
equals space left parenthesis negative square root of 2 straight x plus straight y plus 2 square root of 2 straight z end root right parenthesis squared
equals space left parenthesis negative square root of 2 straight x end root plus straight y plus 2 square root of 2 straight z end root right parenthesis space left parenthesis negative square root of 2 straight x end root plus straight y plus 2 square root of 2 straight x right parenthesis.
    Question 193
    CBSEENMA9001857

    Write the following cubes in expanded form:
    (2x + 1)3

    Solution

    (2x + 1)3
    (2x + 1)3 = (2x)3 + (1)3 + 3(2x)(1)(2x + 1)
    | Using Identity VI
    = 8x3 + 1 + 6x(2x + 1)
    = 8x3 + 1 + 12x2 + 6x
    = 8x3+ 12x2 + 6x + 1

    Question 194
    CBSEENMA9001858

    Write the following cubes in expanded form:
    (2a - 3b)3

    Solution

    (2a - 3b)3
    (2a - 3b)3 = (2a)3 - (3b)3 - 3(2a)(3b)(2a - 3b)
    | Using Identity VII = 8a3 - 27b3 - 18ab(2a - 3b)
    = 8a3 - 27b3 - 36a2b + 54ab2

    Question 195
    CBSEENMA9001859

    Write the following cubes in expanded form:

    open square brackets 3 over 2 straight x plus 1 close square brackets cubed

    Solution
    open square brackets 3 over 2 straight x plus 1 close square brackets cubed
open square brackets 3 over 2 straight x plus 1 close square brackets cubed space equals space open parentheses 3 over 2 x close parentheses cubed plus left parenthesis 1 right parenthesis cubed space plus space 3 open parentheses 3 over 2 x close parentheses left parenthesis 1 right parenthesis open parentheses 3 over 2 x plus 1 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
                                                   | Using Identity VI 
    equals space 27 over 8 x cubed plus 1 plus 9 over 2 x open parentheses 3 over 2 x plus 1 close parentheses
equals space 27 over 8 x cubed plus 1 plus 27 over 4 x squared plus 9 over 2 x
equals space 27 over 8 x cubed plus 27 over 4 x squared plus 9 over 2 x plus 1
    Question 196
    CBSEENMA9001860

    Write the following cubes in expanded form:

    open parentheses straight x minus 2 over 3 straight y close parentheses cubed

    Solution
    open parentheses straight x minus 2 over 3 straight y close parentheses cubed equals x cubed minus open parentheses 2 over 3 y close parentheses cubed minus 3 left parenthesis x right parenthesis open parentheses 2 over 3 y close parentheses open parentheses x minus 2 over 3 y close parentheses
                                              | Using Identity VII
    equals space straight x cubed minus 8 over 27 straight y cubed minus 2 xy open parentheses straight x minus 2 over 3 straight y close parentheses
equals space straight x cubed minus 8 over 27 straight y cubed minus 2 straight x squared straight y plus 4 over 3 xy squared
equals space straight x cubed minus 2 straight x squared straight y plus 4 over 3 xy squared minus 8 over 27 straight y cubed.
    Question 197
    CBSEENMA9001861

    Evaluate the following using suitable identities:
    (99)3 

    Solution

    (99)3
    (99)3 = (100 - 1)3
    = (100)3 - (1)3 - 3(100)(1)(100 - 1)
    | Using Identity VII
    = 1000000 - 1 - 300(100 - 1)
    = 1000000 - 1 - 30000 + 300
    = 970299

    Question 198
    CBSEENMA9001862

    Evaluate the following using suitable identities:
    (102)3

    Solution

    (102)3
    (102)3 = (100 + 2)3
    = (100)3 + (2)3 + 3(100)(2)(100 + 2)
    | Using Identity VI
    = 1000000 + 8 + 600(100 + 2)
    = 1000000 + 8 + 60000 + 1200
    =1061208

    Question 199
    CBSEENMA9001863

    Evaluate the following using suitable identities:
    (998)3

    Solution

    (998)3
    (998)3 = (1000 - 2)3
    = (1000)3 - (2)2 - 3( 1000)(2)( 1000 - 2)
    | Using Identity VII
    = 1000000000 - 8 - 6000(1000 - 2)
    = 1000000000 - 8 - 6000000 + 12000
    = 994011992.

    Question 200
    CBSEENMA9001864

    Factorise each of the following:
     8a3 + b3 + 12a2b + 6ab2

    Solution

    8a3 + b3+ 12a2b + 6ab2
    8a3 + b3+ 12a2b + 6ab2
    = (2a)3 + (b)3 + 3(2a)(b) (2a + b)
    = (2a + b)3 | Using Identity VI
    = (2a + b)(2a + b)(2a + b)

    Question 201
    CBSEENMA9001865

    Factorise each of the following:
    8a3 - b3 - 12a2b + 6ab2

    Solution

    8a3 - b3 - 12a2b + 6ab2
    8a3 - b3 - 12a2b + 6ab2
    = (2a)3 - (b)3 - 3(2a)(b) (2a - b)
    = (2a - b)3 | Using Identity VII
    = (2a - b)(2a - b)(2a - b)

    Question 202
    CBSEENMA9001866

    Factorise each of the following:
     27 - 125a3 - 135a + 225a2

    Solution

    27 - 125a3 - 135a + 225a2
    27 - 125a3 - 135a + 225a2
    = (3)3 - (5a)3 - 3(3)(5a)(3 - 5a)
    = (3 - 5a)3 | Using Identity VII
    = (3 - 5a)(3 - 5a)(3 - 5a)

    Question 203
    CBSEENMA9001867

    Factorise each of the following:
    64a3 - 27b3 - 144a2* + 108ab2

    Solution

    64a3 - 27b3 - 144a2* + 108ab2
    64a3 - 27b3 - 144a2b + 108ab2
    = (4a)3 - (3b)3 - 3(4a)(3b) (4a - 3b)
    = (4a - 3b)3 | Using Identity VII
    = (4a - 3b)(4a - 3b)(4a - 3b)

    Question 204
    CBSEENMA9001868
    Question 205
    CBSEENMA9001869

    Verify:  x3 + y3 = (x + y)(x2 - xy + y2)

    Solution

    We know that
    (x + y)3 = x3 + y3 + 3xy(x + y)
    | Using Identity VI
    ⇒ x3 + y3 = (x + y)3 - 3xy(x + y)
    ⇒ x3 + y3 = (x + y){(x + y)2 - 3xy)
    ⇒ x3 + y3 = (x + y)(x2 + 2xy + y2 - 3xy)
    | Using Identity I
    ⇒ x3 + y3 = (x + y)(x2 - xy + y2)

    Question 206
    CBSEENMA9001870

    Verify:  x3 - y3 = (x - y)(x2 + xy + y2).

    Solution

    We know that
    (x - y)3 = x3 - y3 - 3xy(x - y)
    | Using Identity VII
    ⇒ x3 - y3 = (x - y)3 + 3xy(x - y)
    x3 - y3 = (x - y){(x - y)2 + 3xy}
    ⇒ x3 - y3 = (x - y)(x2 - 2xy + y2 + 3ry)
    | Using Identity IV
    ⇒ x3 - y3 = (x - y)(x2 + xy + y2).

    Question 207
    CBSEENMA9001871

    Factorise each of the following: 27y3 + 125z3 

    Solution

    27y3 + 125z3
    27y3 + 125z3 = (3y)3 + (5z)3
    = (3y + 5z){(3y)2 - (3y)(5z) + (5z)2}
    = (3y + 5z)(9y2 - 15yz + 25z2)

    Question 208
    CBSEENMA9001872

    Factorise each of the following: 64m3 - 343n3.

    Solution

    64m3 - 343n3
    64m3 - 343n3 = (4m)3 - (7n)3
    = (4m - 7n){(4m)2 + (4m)(7n) + (7n)2}
    = (4m - 7n)(16m2 + 28mn + 49n2).

    Question 209
    CBSEENMA9001873

    Factorise: 27x3 + y3 + z3 - 9xyz.

    Solution

    27x3 + y3 + z3 - 9xyz

    = (3x)3 + (y)3 + (z)3 - 3(3x)(y)(z)
    = (3x + y + z){(3x)2 + (y)2 + (z)2 - (3x)(y) - (y)(z) - (z)(3x)}
    | Using Identity VIII
    = (3x + y + z)(9x2 + y2 + z2 - 3xy - yz - 3zx).

    Question 210
    CBSEENMA9001874

    Verify that x3 + y3 + z3 - 3xyz = 1 half (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2].

    Solution

    L.H.S.  = x+ y3 + z3 -3xyz
    = (x + y + x) (x2 + y+ z2 -xy - yz -zx) 
                                    | Using Identity VIII
    equals 1 half (x+y+z){2x2 + 2y2 + z2 -xy -yz -zx)
    equals 1 half (x+y+z){2x2 + 2y2 + 2z2 -2xy -2yz -2zx)
    equals 1 half (x + y + z) {x2 - 2xy + y2 ) (y-2yz + z2) + (z- 2zx + x2 )}
    equals 1 half left parenthesis straight x plus straight y plus straight z right parenthesis left curly bracket left parenthesis straight x minus straight y right parenthesis squared plus left parenthesis straight y space minus space straight z right parenthesis squared plus space left parenthesis straight z space minus straight x right parenthesis squared right square bracket
                                              | Using Identity II

    Question 211
    CBSEENMA9001875

     If x + y + z = 0, show that x3 + y3 + Z3 = 3xyz.

    Solution

    We know that
    x3 + y3 + z3 - 3xyz
    = (x + y + z)(x2 + y2 + z- xy - yz - zx)
    | Using Identity VIII
    = (0)(x2 + y2 + z2 - xy - yz - zx)
    | ∵ x + y + z = 0
    = 0
    ⇒ x3 + y3 + z3 = 3xyz.

    Question 212
    CBSEENMA9001876

    Without actually calculating the cubes, find the value of each of the following:
     (- 12)+ (7)3 + (5)3

    Solution

    (28)3 + (- 15)3 + (- 13)3.
    (- 12)3 + (7)3 + (5)3
    (- 12)3 + (7)3 + (5)3 = 3(- 12)(7)(5)
    | ∵ (- 12) + (7) + (5) = 0
    = - 1260

    Question 213
    CBSEENMA9001877

    Without actually calculating the cubes, find the value of each of the following:
    (28)3 + (- 15)3 + (- 13)3

    Solution

    (28)3 + (- 15)3 + (- 13)3
    (28)3 + (- 15)3 + (- 13)3
    = 3(28)(- 15)(- 13)
    | ∵ (28) + (- 15) + (- 13) = 0
    = 16380.

    Question 214
    CBSEENMA9001878

    Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

    box enclose bold space bold Area bold space bold colon bold space bold 25 bold a to the power of bold 2 bold minus bold 35 bold a bold plus bold 12 end enclose

    Solution

    25a2 - 35a + 12
    = 25a2 - 20a - 15a + 12
    = 5a(5a - 4) - 3(5a - 4)
    = (5a - 4)(5a - 3)
    ∴ The possible expressions for the length and breadth of the rectangle are 5a - 3 and 5a - 4.

    Question 215
    CBSEENMA9001879

    Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

    box enclose bold Area bold space bold colon bold space bold 35 bold y to the power of bold 2 bold plus bold 13 bold y bold minus bold 12 end enclose

    Solution

    35y2 + 13y - 12
    = 35y2 + 28y - 15y - 12
    = 7y (5y + 4) - 3(5y + 4)
    = (5y + 4)(7y - 3)
    ∴ The possible expressions for the length and breadth of the rectangle are 7y - 3 and 5y + 4.

    Question 216
    CBSEENMA9001880

    What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

    box enclose bold Volume bold space bold colon bold space bold 3 bold x to the power of bold 2 bold minus bold 12 bold x end enclose

    Solution

    3x3 - 12x
    = 3x(x - 4)
    ∴ The possible expressions for the dimensions of the cuboid are 3, x and x - 4.

    Question 217
    CBSEENMA9001881

    What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

    box enclose bold Volume bold space bold colon bold space bold 12 bold ky to the power of bold 2 bold plus bold 8 bold ky bold minus bold 20 bold k end enclose

    Solution

    12ky2 + 8ky - 20k
    = 4k(3y2 + 2y - 5)
    = 4k(3y2 + 5y - 3y - 5)
    = 4k{y(3y + 5) - 1(3y +5)}
    = 4k(3y + 5)(y - 1)
    ∴ The possible expressions for the dimensions of the cuboid are 4k, 3y + 5 and y - 1.

    Question 218
    CBSEENMA9001882

    Evaluate 105 × 106 without direct multiplying.

    Solution

    Solution not provided.
    Ans. 11130

    Question 219
    CBSEENMA9001883

    Factorise:

    49a2 + 70ab + 25b

    Solution

    Solution not provided.
    Ans.  (7a + 5b)2

    Question 220
    CBSEENMA9001884

    Factorise:

    25 over 4 x squared minus y cubed over 9.

    Solution

    Solution not provided.
    Ans.  open parentheses 5 over 2 straight x plus straight y over 3 close parentheses open parentheses 5 over 2 straight x minus straight y over 3 close parentheses

    Question 221
    CBSEENMA9001885

    Write (3a + 4b + 5c)2 in expanded form.


    Solution

    Solution not provided.
    Ans.  9a2 + 16b+ 25c2 + 24ab + 40bc + 30ac

    Question 222
    CBSEENMA9001886

    Expanded (4a - 2b - 3c)2.

    Solution

    Solution not provided.
    Ans.  16a2 + 4b+ 9c2 - 16ab + 12bc - 24ac

    Question 223
    CBSEENMA9001887

    Factorise: 4x2 + y2 + z2 - 4xy - 2yz + 4xz.

    Solution

    Solution not provided.
    Ans.  (2x - y + z)

    Question 224
    CBSEENMA9001888

    Write the following cubes in the expanded form:

    (3a + 4b)3

    Solution

    Solution not provided.
    Ans.  27a+ 64b+ 108a2b + 144ab2

    Question 225
    CBSEENMA9001889

    Write the following cubes in the expanded form:

    (5p - 3q)3

    Solution

    Solution not provided.
    Ans.  125p- 27q- 225p2q + 135pq2

    Question 226
    CBSEENMA9001890

    Write the following cubes in the expanded form:

    (i) (104)3    (ii) (999)3.

    Solution

    Solution not provided.
    Ans.  (i) 1124864             (ii) 997002999

    Question 227
    CBSEENMA9001891

    Factorise: 8x3 + 27y3 + 36x2y + 54xy2.

    Solution

    Solution not provided.
    Ans.  (2x + 3y)3

    Question 228
    CBSEENMA9001892

    Factorise: 8x3 + y3 + 27z3 - 18xyz.

    Solution

    Solution not provided.
    Ans.  (2x + y + 3z) (4x2 + y2 + 9z2 - 2xy - 3yz - 6xz)

    Question 229
    CBSEENMA9001893

    If a2 + b2 + c2 = 250 and ab + bc + ca = 3, find a + b + c.  

    Solution

    Solution not provided.
    Ans.  16

    Question 230
    CBSEENMA9001894

    If a + b = 12 and ab = 21, find the value of a3 + b3.

    Solution

    Solution not provided.
    Ans. 756

    Question 231
    CBSEENMA9001895

    Factorise:  straight x squared plus 3 square root of 3 straight x end root plus 6

    Solution

    Solution not provided.
    Ans.  open parentheses straight x plus square root of 3 close parentheses space left parenthesis x plus 2 square root of 3 right parenthesis

    Question 232
    CBSEENMA9001896

    Factorise: x4 + 4x2 + 3

    Solution

    Solution not provided.
    Ans.  left parenthesis straight x squared plus 3 right parenthesis space left parenthesis straight x squared plus 1 right parenthesis

    Question 233
    CBSEENMA9001897

     Factorise: x6 - y6

    Solution

    Solution not provided.
    Ans. (x - y) (x2 + xy + y2) (x + y) (x- xy + y2)

    Question 234
    CBSEENMA9001898

    Factorise: 4a2 - 9b2 - 2a - 3b

    Solution

    Solution not provided.
    Ans. (2a + 3b) (2a - 3b - 1)

    Question 235
    CBSEENMA9001899

    Find the value of x3 + y3 - 12xy + 64, when x + y = -4. 

    Solution

    Solution not provided.
    Ans. 0

    Question 236
    CBSEENMA9001900

    Without finding the cubes, factorise and find the value of:  

    open parentheses 1 fourth close parentheses cubed plus open parentheses 1 third close parentheses cubed minus open parentheses 7 over 12 close parentheses cubed


    Solution

    Solution not provided.
    Ans. negative 7 over 48

    Question 237
    CBSEENMA9001901
    Question 238
    CBSEENMA9001902

    Factorise: a12y4 - a4y12.

    Solution

    Solution not provided.
    Ans. straight a to the power of 4 straight y to the power of 4 left parenthesis straight a squared plus straight y squared right parenthesis left parenthesis straight a minus straight y right parenthesis left parenthesis straight a plus straight y right parenthesis left parenthesis straight a squared plus straight y squared minus square root of 2 space ay right parenthesis space left parenthesis straight a squared plus straight y squared plus square root of 2 ay right parenthesis

    Question 239
    CBSEENMA9001903

    If a + b = 10 and a2 + b2 = 58, find the value of a3 + b3

    Solution

    Solution not provided.
    Ans.  370

    Question 240
    CBSEENMA9001904

    Factorise: 27a3 + 8b3 + 54a2b + 36ab2.

    Solution

    Solution not provided.
    Ans.  (3a + 2b)

    Question 241
    CBSEENMA9001905

    Simplify: (5a + 3b)3 - (5a - 3b)3

    Solution

    Solution not provided.
    Ans. 54b3 + 300a2b

    Question 242
    CBSEENMA9001906

    Simplify: (x + y + z)2 -(x + y - z)2

    Solution

    Solution not provided.
    Ans. 4yz + 4zx

    Question 243
    CBSEENMA9001907
    Question 245
    CBSEENMA9001909
    Question 246
    CBSEENMA9001910
    Question 247
    CBSEENMA9001911
    Question 248
    CBSEENMA9001912

    The degree of a zero polynomial is 
    • not defined
    • 1
    • 2

    Solution

    B.

    not defined
    Question 249
    CBSEENMA9001913

    The degree of a quadratic polynomial is
    • 0
    • 1
    • 3

    Solution

    C.

    Question 250
    CBSEENMA9001914
    Question 251
    CBSEENMA9001915

    The degree of 2 is
    • 0

    • 1

    • 2

    • 1 half

    Solution

    A.

    0

    Question 252
    CBSEENMA9001916
    Question 253
    CBSEENMA9001917
    Question 255
    CBSEENMA9001919
    Question 256
    CBSEENMA9001920
    Question 257
    CBSEENMA9001921
    Question 258
    CBSEENMA9001922
    Question 261
    CBSEENMA9001925
    Question 263
    CBSEENMA9001927
    Question 264
    CBSEENMA9001928
    Question 265
    CBSEENMA9001929
    Question 266
    CBSEENMA9001930
    Question 267
    CBSEENMA9001931

    A zero of 2x3 - 7x2 - 16x + 5 is
    • 5

    • 4

    • 1

    • 0 - 1

    Solution

    A.

    5

    Question 268
    CBSEENMA9001932
    Question 274
    CBSEENMA9001938

    The value of (a - b)3 + (b - c)3 + (c - a)3 is
    • 0

    • abc

    • 3abc

    •  3 (a - b) (b - c) (c - a)

    Solution

    D.

     3 (a - b) (b - c) (c - a)
    Question 278
    CBSEENMA9001942

    The expanded form of open parentheses straight x plus 1 third close parentheses cubed  is
    • straight x cubed plus 1 over 27 plus straight x over 3 plus straight x squared
    • straight x cubed plus 1 over 9 plus straight x over 3 plus straight x squared
    • straight x cubed plus 1 over 27 plus straight x squared over 3 plus straight x
    • straight x cubed plus 1 over 27 plus 3 straight x plus 3 straight x squared

    Solution

    A.

    straight x cubed plus 1 over 27 plus straight x over 3 plus straight x squared
    Question 283
    CBSEENMA9001947
    Question 285
    CBSEENMA9001949
    Question 286
    CBSEENMA9001950
    Question 288
    CBSEENMA9001952
    Question 289
    CBSEENMA9001953

     Zero of the zero polynomial is:
    • 0

    • 1

    • Any real number
    • Not defined

    Solution

    C.

    Any real number
    Question 290
    CBSEENMA9001954
    Question 291
    CBSEENMA9001955
    Question 292
    CBSEENMA9001956
    Question 293
    CBSEENMA9001957
    Question 295
    CBSEENMA9001959
    Question 301
    CBSEENMA9001965
    Question 302
    CBSEENMA9001966
    Question 303
    CBSEENMA9001967
    Question 304
    CBSEENMA9001968
    Question 306
    CBSEENMA9001970
    Question 307
    CBSEENMA9001971
    Question 308
    CBSEENMA9001972

     Factorise: a3 - b3 + 1 + 3ab

    Solution

    Solution not provided.
    Ans.  (a - b + 1) (a+ b+ 1 + ab + b - a)

    Question 309
    CBSEENMA9001973

    Factorise: straight x squared plus straight x over 4 minus 1 over 8

    Solution

    Solution not provided.
    Ans.  open parentheses straight x plus 1 half close parentheses open parentheses x minus 1 fourth close parentheses

    Question 310
    CBSEENMA9001974

    Factorise: x3 - 3x2 - 10x + 24

    Solution

    Solution not provided.
    Ans.  (x - 2) (x - 4) (x - 3)

    Question 311
    CBSEENMA9001975

    Find the value of ‘a’ if (x - a) is a factor of x5 - a2x3 + 2x + a + 3, hence factorise x2- 2ar -3.

    Solution

    Solution not provided.
    Ans.  - 1;  (x - 3) (x + 1)

    Question 312
    CBSEENMA9001976

     If x - 2y = 11 and xy = 8, find the value of x3 - 8y3

    Solution

    Solution not provided.
    Ans. 1859

    Question 313
    CBSEENMA9001977

    If x + 2y = 8 and xy = 6, find the value of x3 + 8y3

    Solution

    Solution not provided.
    Ans. 224

    Question 314
    CBSEENMA9001978

    If straight x plus 1 over straight x equals 3 comma then the value straight x squared plus 1 over straight x squared.

    Solution

    Solution not provided.
    Ans. 7

    Question 315
    CBSEENMA9001979

    Factorise: (x2 - 2x)2 - 11 (x2 - 2x) + 24

    Solution

    Solution not provided.
    Ans. (x - 3) (x + 1) (x - 4) (x + 2)

    Question 316
    CBSEENMA9001980

    If straight x plus 1 over straight x equals 5 comma then the value straight x to the power of 6 plus 1 over straight x to the power of 6.

    Solution

    Solution not provided.
    Ans.  12098

    Question 317
    CBSEENMA9001981
    Question 318
    CBSEENMA9001982

    If x2 - 3x + 2 is a factor of x4 - ax2 + b, then find a and b.

    Solution

    Solution not provided.
    Ans.  a = 5, b = 4

    Question 319
    CBSEENMA9001983

    The volume of a cube is given by the polynomial
    p(x) = 8x3 - 36x2 + 54x - 27

    Solution

    Solution not provided.
    Ans.  2x - 3

    Question 320
    CBSEENMA9001984

    Using factor theorem, factorise the polynomial:
    x4 + 3x3 + 2x2 - 3x - 3.

    Solution

    Solution not provided.
    Ans.  (x - 1) (x + 1) (x - 4) (x + 2)

    Question 322
    CBSEENMA9001986

    Divide the polynomial 3x4 - 4x3 - 3x - 1 by x - 1 and find its quotient and remainder.

    Solution

    Solution not provided.
    Ans.  3x- x-x -4 ; - 5

    Question 323
    CBSEENMA9001987

    Simplify:  

    fraction numerator left parenthesis straight a squared minus straight b squared right parenthesis space plus space left parenthesis straight b squared minus straight c squared right parenthesis cubed plus left parenthesis straight c squared minus straight a squared right parenthesis cubed over denominator left parenthesis straight a minus straight b right parenthesis cubed plus left parenthesis straight b minus straight c right parenthesis cubed plus left parenthesis straight c minus straight a right parenthesis cubed end fraction

    Solution

    Solution not provided.
    Ans.  3(a + b) (b + c) (c + a)

    Question 324
    CBSEENMA9001988
    Question 325
    CBSEENMA9001989

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation