Mathematics Part I Chapter 6 Application Of Derivatives
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part I

    Application Of Derivatives Here is the CBSE Mathematics Chapter 6 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Application Of Derivatives Chapter 6 NCERT Solutions for Class 12 Mathematics Application Of Derivatives Chapter 6 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12034955

    Find the rate of change of the area of a circle with respect to its radius r when r = 5 cm.

    Solution
    Let A be area of circle of radius r
    therefore space space space space space space space space space space space straight A space equals space πr squared
    Rate of change of area with respect to straight r space equals space dA over dr
                                                           equals space straight d over dr left parenthesis πr squared right parenthesis space equals space 2 πr
    when r = 5,    rate of change of area  = 2 straight pi space cross times space 5 space equals space 10 straight pi space cm squared divided by cm
    Question 2
    CBSEENMA12034957

    Find the rate of change of the area of a circle with respect to its radius r when
    (a) r = 3 cm   (b) r = 4 cm

    Solution
    Let A be area of circle of radius r
    therefore space space space space space space space space space space space space space space space straight A space equals space πr squared
    Rate of change of area with respect to straight r space equals space dA over dr
                                                             equals space straight d over dr left parenthesis πr squared right parenthesis space equals space 2 πr

    (a) When r = 3, rate of change of area = 2straight pi × 3 = 6  cm2/cm.
    (b) When r = 4, rate of change of area = 2 straight pi × 4 = 8 straight pi cm2/cm.

    Question 3
    CBSEENMA12034960

    Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 m?

    Solution
    Let V be volume of ball of radius r
    therefore space space space space space space space space space straight V equals space 4 over 3 πr cubed
    Rate of change of volume with respect to straight r space equals space dV over dr
                                    equals space straight d over dr open parentheses 4 over 3 πr cubed close parentheses space equals space 4 over 3 straight pi straight d over dr left parenthesis straight r cubed right parenthesis space equals fraction numerator 4 straight pi over denominator 3 end fraction cross times 3 straight r squared space equals space 4 πr squared
    When r = 2 m, rate of change of volume = 4 straight pi (2)2 = 16 straight pi m3/m.
    Question 4
    CBSEENMA12034962

    How fast is the volume of a ball changing with respect to its radius when the radius is 3 m?

    Solution
    Let V be volume of ball of radius r.
     therefore space space space space space space space straight V space equals space 4 over 3 πr cubed
    Rate of change of volume with respect to straight r space equals space dV over dr
                                              equals space straight d over dr open parentheses fraction numerator 4 straight pi over denominator 3 end fraction straight r cubed close parentheses space equals space fraction numerator 4 straight pi over denominator 3 end fraction cross times 3 straight r squared space equals space 4 πr squared
    When r = 3 m, rate of change of volume  = 4 space straight pi space left parenthesis 3 right parenthesis squared space equals space 36 space straight pi space space straight m cubed divided by straight m
    Question 5
    CBSEENMA12034963

    A balloon which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the latter is 10 cm.

    Solution

    Let V be volume of balloon of radius r
    therefore space space space space space space straight V space equals space 4 over 3 πr cubed
    Rate of increase of volume w.r.t radius
     equals space dV over dr space equals straight d over dr open parentheses 4 over 3 πr cubed close parentheses
space equals space fraction numerator 4 straight pi over denominator 3 end fraction cross times space 3 straight r squared space equals space 4 πr squared
    when r = 10 cm, rate of increase of volume = 4 space straight pi space left parenthesis 10 right parenthesis squared space equals space 400 space straight pi space cm cubed divided by cm

    Question 6
    CBSEENMA12034966

    The cost function C(x), in rupees, of producing x items (x ≥ 15) in a certain factory is given by straight C left parenthesis straight x right parenthesis space equals space 20 plus 10 straight x squared plus 15 over straight x.  Determine the marginal cost function and the marginal cost of producing 100 items. 

    Solution

    Here,   straight C left parenthesis straight x right parenthesis space equals space 20 plus 10 straight x squared plus 15 over straight x space space space space rightwards double arrow space space space space space space straight C space equals space 20 plus 10 straight x squared plus 15 straight x to the power of negative 1 end exponent
    Marginal cost function equals space dC over dx space equals space 0 plus 20 straight x minus 15 straight x to the power of negative 2 end exponent space equals space 20 straight x minus space 15 over straight x squared
    When x = 100,  marginal cost  = 20 (100)  - fraction numerator 15 over denominator left parenthesis 100 right parenthesis squared end fraction
                                                equals space 2000 minus 15 over 10000 space equals space left parenthesis 2000 minus.001 right parenthesis space nearly space equals space Rs. space 2000 space nearly.

    Question 7
    CBSEENMA12034967

    The total cost C(x) in Rupees,   associated with the production of x units of an item is given by C(x) = 0.005 x- 0.02 x+ 30 x + 5000.
    Find the marginal cost when 3 units are produced, where by marginal cost we mean the instantaneous rate of change of total cost at any level of output.

    Solution

    Here C(x) = 0.005 x- 0.02 x+ 30 x + 5000
    therefore space space space space space straight C space equals space 0.005 space straight x cubed minus space space 0.02 space straight x squared space plus space 30 space straight x space plus space 5000
     Marginal cost = dC over dx space equals space 3 left parenthesis 0.005 right parenthesis space straight x squared minus space 2. space left parenthesis 0.02 right parenthesis space straight x space space plus space 30
        When x = 3,   Marginal cost = 3 (0.005) (3) - 2 (0.02) (3) + 30
                                                     = 27(0.005) - 6 (0.02) + 30
                                                      =0.0135 - 0.12 + 30 = 30.015 = Rs. 30.02 nearly

    Question 8
    CBSEENMA12034971

    The total cost C(x) in Rupees associated with the production of x units of an item is given by C(x) = 0.007 x – 0.003 x2 + 15 x + 4000.
    Find the marginal cost when 17 units are produced.

    Solution

    Here straight C left parenthesis straight x right parenthesis space equals space 0.07 space straight x cubed minus space 0.003 space straight x squared space plus space 15 straight x plus space 4000
    therefore space space space space space straight C space equals space 0.007 space straight x cubed minus space 0.003 space straight x squared plus space 15 straight x space plus space 4000
    Marginal cost     equals space dC over dx space equals space 3 left parenthesis 0.007 right parenthesis space straight x squared minus space 2. space left parenthesis 0.003 right parenthesis space straight x space plus space 15 
                             equals space 0.021 space straight x squared minus space 0.006 space straight x space plus space space 15
    When x = 17,   marginal cost  = (0.021) (17)- (0.006) (17) + 15
                                  equals space 0.021 space cross times space 289 space minus space 0.006 space cross times space 17 space plus space 15
equals space 6.069 space minus space 0.102 space space plus space 15 space equals space Rs space 20.967

    Question 10
    CBSEENMA12034973

    The total revenue in Rupees received from the sale of x units of a product is given by
                          R(x) = 13x2 + 26x + 15.
    Find the marginal revenue when x = 7.

    Solution

    R(x) = 13x2 + 26x + 15               rightwards double arrow space space space space space straight R space equals space 13 straight x squared plus 26 straight x plus 15
    Marginal revenue  = dR over dx space equals space 26 straight x plus 26
    When x = 7, marginal revenue = 26(7) + 26 = 182 + 26 = Rs. 208

    Question 11
    CBSEENMA12034976

    A ballon which always remain spherical, has a variable diameter 3 over 2 left parenthesis 2 straight x plus 3 right parenthesis. Determine the rate of charge of its volume with respect to x.

    Solution

    Let r be the radius of the balloon.
     From given condition,         diameter =3 over 2 left parenthesis 2 straight x plus 3 right parenthesis
    therefore space space space space space space 2 straight r space equals space 3 over 2 left parenthesis 2 straight x plus 3 right parenthesis space space space space space space space space space space space space rightwards double arrow space space space space straight r space equals space 3 over 4 left parenthesis 2 straight x plus 3 right parenthesis
    Let V be the volume of spherical balloon.
    therefore space space space space space straight V space equals space fraction numerator 4 straight pi over denominator 3 end fraction straight r cubed space equals space fraction numerator 4 straight pi over denominator 3 end fraction. space space space 27 over 64 left parenthesis 2 straight x plus 3 right parenthesis cubed space space space space space space space space space space space space space space rightwards double arrow space space space space straight V space equals space fraction numerator 9 straight pi over denominator 16 end fraction left parenthesis 2 straight x plus 3 right parenthesis cubed
therefore space space space space rate space of space change space of space volume space straight w. straight r. straight t. space straight x space equals space dV over dx
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight d over dx open square brackets fraction numerator 9 straight pi over denominator 16 end fraction left parenthesis 2 straight x plus 3 right parenthesis cubed close square brackets space equals space fraction numerator 9 straight pi over denominator 16 end fraction. straight d over dx left parenthesis 2 straight x plus 3 right parenthesis cubed
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 9 straight pi over denominator 16 end fraction.3 space space left parenthesis 2 straight x plus 3 right parenthesis squared space. space 2 space equals space fraction numerator 27 space straight pi over denominator 8 end fraction left parenthesis 2 straight x plus 3 right parenthesis squared.

    Question 12
    CBSEENMA12034978

    The radius of a circle is increasing at 0.7 cm/sec. What is the rate of increase of its circumference when r = 4.9 cm?

    Solution

    Let C be the circumference of the circle whose radius is r at any time t.
    therefore space space space space straight C space equals space 2 space straight pi space straight r space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space dC over dt space equals space 2 straight pi dr over dt
But space space space dr over dt space equals space 0.7 space cm divided by sec space space space space space space space space space space space space space rightwards double arrow space space space space dC over dt space equals space 2 straight pi space cross times space 0.7 space equals space 1.4 space straight pi
therefore space space space rate space of space increase space of space circumference space space equals space 1.4 space straight pi space cm divided by sec.
When space straight r space equals space 49 space cm comma space space space rate space of space increase space of space circumference space equals space 1.4 space straight pi space cm divided by sec

    Question 14
    CBSEENMA12034980

    The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.

    Solution

    Let r cm be the radius of the circle.
    From given condition, rate of increase  = 3 cm per second
    therefore space space space space space space dr over dt space equals space 3
    Let A be the area of circle,               therefore space space space space straight A space equals space πr squared
    therefore space space space space space rate space of space increase space of space area space space equals space dA over dt space equals space straight d over dt left parenthesis πr squared right parenthesis space equals space 2 space πr space dr over dt
space space space space space space space space
                                equals space 2 πr cross times 3 space equals space 6 πr                                     open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    When r = 10,   rate of increase of area  = 6 straight pi cross times 10 space equals space 60 straight pi space cm squared divided by sec
     

    Question 16
    CBSEENMA12034984
    Question 17
    CBSEENMA12034986

    Sponsor Area

    Question 18
    CBSEENMA12034988

    The radius of a balloon is increasing at the rate of 10 cm per second. At what rate is the surface area of the balloon increasing when its radius is 15 cm?

    Solution

    Let r be the radius of the balloon.
    therefore space space space space space space dr over dt space equals space 10 space cm divided by sec.                               ...(1)
    Let S be the surface area of the balloon.
    therefore space space space space space space space space space straight S space equals space 4 space straight pi space straight r squared
therefore space space space space space space space space ds over dt space equals space straight d over dt left parenthesis 4 πr squared right parenthesis space equals space 4 space straight pi space straight d over dt left parenthesis straight r squared right parenthesis space equals space 4 space straight pi space open parentheses 2 straight r space dr over dt close parentheses equals space 8 space straight pi space straight r space dr over dt space space space space space space space space space space space space space space space space space space space space space space
                                         equals space 8 πr space cross times space 10 space equals space 80 space straight pi space straight r space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    When r = 15,     dS over dt space equals space 80 space cross times space straight pi space cross times space 15 space equals space 1200 space straight pi
    therefore space space space space space space rate space of space increase space of space surface space area space equals space 1200 space straight pi space sq. space cm divided by sec.

    Question 19
    CBSEENMA12034991

    The radius of an air-bubble is increasing at the rate of 1 half cm space per space second. At what rate is the volume of the bubble increasing when the radius is 1 cm?

    Solution
    Let V be the volume of the air-bubble whose radius is r at any time t.
    therefore space space space space space space space straight V space equals space 4 over 3 πr cubed space space space space space space space space space space space space space space space space space rightwards double arrow space space space space dV over dt space equals space 4 over 3 straight pi cross times 3 straight r squared dr over dt equals space 4 πr squared dr over dt
    But dr over dt space equals 1 half cm divided by sec.           therefore space space space space dV over dt space equals space 4 πr squared space cross times space 1 half space equals space 2 space πr squared
    When  straight r space equals 1 comma space space space space dV over dt space equals space 2 straight pi space cross times space left parenthesis 1 right parenthesis squared space equals space 2 space straight pi
    therefore space space space space space rate space of space increase space of space volume space space equals space 2 space straight pi space cubic space cm divided by sec.
    Question 20
    CBSEENMA12034993

    An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when edge is 10 cm long?

    Solution
    Let x cm. be the length of an edge of a variable cube and V be its volume at any time t.
    therefore space space space space space straight V space equals space straight x cubed space space space space space space space space space space space space space space space rightwards double arrow space space space space space dV over dt space equals space 3 straight x squared dx over dt
    But   dx over dx space equals space 3 space cm divided by straight s                                                       (given)
    therefore space space space space space dV over dt space equals space 3 straight x squared.3 space equals space 9 straight x squared
    When x = 10 cm,   dV over dt space equals space 9 cross times left parenthesis 10 right parenthesis squared space equals space 900 space cm cubed divided by straight s
    ∴   volume of the cube is increasing at the rate of 900 cm3/s when the edge is 10 cm long.
    Question 21
    CBSEENMA12034996

    The surface area of a spherical bubble is increasing at the rate of 2 cm2/sec. Find the rate at which the volume of the bubble is increasing at the instant its radius is 6 cm.

    Solution

    Let S be the surface of the spherical bubble of radius r.
    therefore space space space space space space space straight S space equals space 4 πr cubed
    From given condition,
                          dS over dt space equals space 2 space cm squared divided by sec comma space space space space space space space space therefore space space space space straight d over dt left parenthesis 4 πr squared right parenthesis space equals space 2
    rightwards double arrow space space space space space space 8 space straight pi space straight r space dr over dt space equals space 2 space space space space space space rightwards double arrow space space space space dr over dt space equals space fraction numerator 1 over denominator 4 πr end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let V be the volume of the spherical bubble.
    therefore space space space space space space straight V space equals space space 4 over 3 πr cubed
    Rate of increase of volume = dV over dt space equals space straight d over dt open parentheses fraction numerator 4 πr cubed over denominator 3 end fraction close parentheses
                         equals space 4 over 3 straight pi. space 3 straight r squared space dr over dt space equals space 4 πr squared space dr over dt
space equals space 4 πr squared space cross times space space fraction numerator 1 over denominator 4 πr end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
space space space equals space straight r space
when space straight r space equals space 6 comma space space rate space of space increase space of space volume space space equals space 6 space cm cubed divided by sec.

    Question 22
    CBSEENMA12034998

    The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when its radius is 5 cm.

    Solution
    Let V be volume of sphere of radius r.
     therefore space space space space space space space space space space space space straight V space equals space 4 over 3 πr cubed
    From given condition,                            dV over dt space equals space 25 space cm cubed divided by straight s comma space space space space space space space space space space space space space space space space space space therefore space space space space straight d over dt open parentheses 4 over 3 πr cubed close parentheses space equals space 25 space space space space space rightwards double arrow space space space space 4 over 3 straight pi. space 3 straight r. space dr over dt space equals space 25
    therefore space space space space space space space dr over dt space equals space fraction numerator 25 over denominator 4 πr squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let S be surface area of balloon.
    therefore space space space space space space space space space straight S space equals space 4 πr squared
    Rate of increase of surface area  = dS over dt space equals space straight d over dt left parenthesis 4 πr squared right parenthesis
                                                        equals space 8 space πr space dr over dt space equals space 8 space πr space cross times space fraction numerator 25 over denominator 4 πr squared end fraction space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space space left parenthesis 1 right parenthesis close square brackets
                                                         equals space 50 over straight r
    When r =5,   rate of increase of surface area  = 50 over 5 space equals space 10 space cm squared divided by straight s.
    Question 23
    CBSEENMA12035000
    Question 24
    CBSEENMA12035001
    Question 25
    CBSEENMA12035004
    Question 26
    CBSEENMA12035005

    A ballon which always remains spherical on inflation,  is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate of which the radius of the balloon is increasing when the radius is 15 cm.

    Solution

    Let r be the radius of the ballon and V be its volume at any time t. Then
    therefore space space space straight V space equals space 4 over 3 πr cubed space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space dV over dt space equals 4 over 3 straight pi. space space 3 straight r squared space dr over dt space equals space 4 πr squared space dr over dt
    But dV over dt space equals space 900 space cm squared divided by straight s                              (given)
    therefore space space space space 4 πr squared space dr over dt space equals space 900 space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space dr over dt space equals space 225 over πr squared
When space straight r space equals space 15 comma space space space dr over dt space equals space fraction numerator 225 over denominator straight pi space cross times space left parenthesis 15 right parenthesis squared end fraction space equals space 1 over straight pi space cm divided by straight s.
therefore space space space radius space of space the space balloon space is space increasing space at space the space rate space of space 1 over straight pi space cm divided by straight s space when space the space radius space is space 15 space cm.

    Question 27
    CBSEENMA12035006

    The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of an edge is 10 centimeters?

    Solution

    Let V be volume of cube of side x
     therefore space space space space space space space space space straight V space equals space straight x cubed
From space given space conditions comma
space space space space space space space space space space space space space space space space space space space space space space dV over dt space equals space 9 space cm cubed divided by straight s
therefore space space space space space space straight d over dt left parenthesis straight x cubed right parenthesis space equals space 9 space space space space space space space space space space space space space space rightwards double arrow space space space space 3 straight x squared dx over dt space equals 9 space space space space space space space space space space space space space space space rightwards double arrow space space space dx over dt space space equals space 3 over straight x squared space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let S be surface area of cube
    therefore space space space space space space space straight S space equals space 6 straight x squared
    Rate of increasing of surface area  = dS over dt space equals space straight d over dt left parenthesis 6 straight x squared right parenthesis
                                                           equals space 12 straight x dx over dt space equals space 12 straight x space cross times space 3 over straight x squared space space space space space space space space space space space space space space space space open square brackets because space space space of space left parenthesis 1 right parenthesis close square brackets
equals space 36 over straight x
    When x = 10,  rate of increase of surface area  = 36 over 10 space equals space 3.6 space cm squared divided by straight s

    Question 28
    CBSEENMA12035008

    The volume of a cube is increasing at a rate of 7 cubic centimeters per second. How fast is the surface area increasing when the length of an edge is 12 centimeters?

    Solution
    Let V be volume of cube of side x.
    therefore space space space space space space space space space straight V space equals space straight x cubed
    From given condition,
                      dV over dt space equals space 7 space cm cubed divided by straight s
    therefore space space straight d over dt left parenthesis straight x cubed right parenthesis space equals space 7 space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space 3 straight x squared dx over dt space equals space 7 space space space space space space space space space space space rightwards double arrow space dx over dt space equals space fraction numerator 7 over denominator 3 straight x squared end fraction space space space space space... left parenthesis 1 right parenthesis
    Let S be surface area of cube
    therefore space space space space space space straight S space equals space 6 straight x squared
    Rate of increase of surface area  = dS over dt equals straight d over dt left parenthesis 6 space straight x squared right parenthesis
                                                       equals space 12 space straight x space dx over dt space equals 12 space straight x space cross times fraction numerator 7 over denominator 3 space straight x squared end fraction space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
equals space 28 over straight x
    When x = 12,  rate of increase of surface area  = 28 over 12 space equals space 7 over 3 cm squared divided by straight s.
    Question 29
    CBSEENMA12035009

    The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the surface area increasing when the length of an edge is 12 cm?

    Solution
    Let V be volume of cube of side x.
    therefore space space space space space space space space space space space space space straight V space equals space straight x cubed
    From given condition,
                    dV over dt space equals space 8 space cm cubed divided by straight s
    therefore space space space space straight d over dt left parenthesis straight x cubed right parenthesis space equals space 8 space space space space space space space space space space space space rightwards double arrow space space space space 3 straight x squared dx over dt space equals space 8 space space space rightwards double arrow space space space space dx over dt space equals fraction numerator 8 over denominator 3 straight x squared end fraction space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let S be surface area of cube
    therefore space space space space space straight S space equals space 6 straight x squared
    Rate of increase of surface area  = dS over dt space equals space straight d over dt left parenthesis 6 straight x squared right parenthesis
                                                 equals space 12 straight x space dx over dt space equals space 12 straight x space cross times space fraction numerator 8 over denominator 3 straight x squared end fraction space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
equals space 32 over straight x
When space straight x space equals space 12 comma space space rate space of space increase space of space surface space area space space equals space 32 over 12 equals space 8 over 3 cm squared divided by straight s.

    Tips: -

    Since the rate of change is represented by derivative with respect to time, it is taken to be positive if the quantity is increasing and negative if the quantity is decreasing.
    Question 30
    CBSEENMA12035016

    The length x of a rectangle is decreasing at the rate of 2 cm/s and the width y is increasing at the rate of 2 cm/s. When x = 12 cm and y = 5 cm, find the rate of change of (a) the perimeter and (b) the area of the rectangle.

    Solution

    Since the length x is decreasing and the width y is increasing
    therefore space space space space space space dx over dt space equals space minus 2 space cm divided by straight s space space space and space dy over dt space equals space 2 space cm divided by straight s                      ...(1)
    (a) The perimeter P of the rectangle is given by 
                             straight P space equals space 2 left parenthesis straight x plus straight y right parenthesis
    therefore space space space space space space dP over dt space equals space 2 open parentheses dx over dt plus dy over dt close parentheses space equals space 2 space left parenthesis negative 2 plus 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space space space dP over dt space equals space 0 space cm divided by sec
    (b) The area A of the rectangle is given by 
                       straight A space equals space xy
    therefore space space space space space dA over dt space equals space straight x dy over dt plus straight y dx over dt space equals space 12 left parenthesis 2 right parenthesis space plus space 5 left parenthesis negative 2 right parenthesis space space space space space space space space space space space space space space space open square brackets therefore space space straight x space equals space 12 comma space space space straight y space equals space 5 space and space of space left parenthesis 1 right parenthesis close square brackets
space space space space space space space space space space space space space space space space space space equals 24 minus 10 space equals space 14 space cm squared divided by straight s

    Question 31
    CBSEENMA12035018

    The length x of a rectangle is decreasing at the rate of 3 cm/minute and the width y is increasing at the rate of 2 cm/minute. When x = 10 cm and y = 6 cm, find the rate of change of (a) the perimeter and (b) the area of rectangle

    Solution

    Since the length x is decreasing and the width y is increasing
    therefore space space space space space dx over dt space equals space minus 3 space space cm divided by minute space space space and space space dy over dt space equals space 2 cm divided by minute                ...(1)
    (a) The perimeter P of the rectangle is given by 
                                   straight P space equals space 2 left parenthesis straight x plus straight y right parenthesis
    therefore space space space space space space dP over dt space equals space 2 space open parentheses dx over dt plus dy over dt close parentheses space equals space 2 left parenthesis negative 3 plus 2 right parenthesis space equals space minus 2 space cm divided by minute
    (b) The area A of the rectangle is given by 
                    A = xy
    therefore space space space space space space dx over dt space equals space straight x dy over dt plus straight y dx over dt space equals space 10 left parenthesis 2 right parenthesis space plus space 6 left parenthesis negative 3 right parenthesis space space space space space space space space space space space open square brackets because space space space straight x space equals space 10 comma space space straight y space equals space 6 space and space because space space of space left parenthesis 1 right parenthesis close square brackets
                      equals 20 minus 18 space equals space 2 space cm squared divided by minute

    Question 32
    CBSEENMA12035020

    The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minutc. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.

    Solution

    Since the length x is decreasing and the width y is increasing
              therefore space space space dx over dt space equals space minus 5 space cm divided by minute space space space and space dy over dt space equals space 4 space cm divided by minute          ...(1)
    (a) The perimeter P of the rectangle is given by
                                   straight P space equals space 2 left parenthesis straight x plus straight y right parenthesis
    therefore space space space space space space space space dP over dt space equals space 2 space open parentheses dx over dt plus dy over dt close parentheses space equals space 2 left parenthesis negative 5 plus 4 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space equals space minus 2 space cm divided by minute space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space space of space left parenthesis 1 right parenthesis close square brackets
    (b) The area A of the rectangle is given by
                               straight A space equals space xy
    therefore space space space space space dA over dt space equals space straight x dy over dt plus straight y dx over dt
          equals space 8 left parenthesis 4 right parenthesis space plus space 6 left parenthesis negative 5 right parenthesis space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space straight x space equals space 8 comma space space space straight y space equals space 6 space and space space because space space of space left parenthesis 1 right parenthesis close square brackets
space equals space 32 minus 30 space equals space 2 space cm squared divided by minute.

    Question 33
    CBSEENMA12035023

    The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base? 

    Solution
    Let ABC be an isosceles triangle in which AB = AC = x (say), BC = b.
    From A, draw AL perpendicular BC comma so that BL space equals space straight b over 2
    In right angle straight d space space space increment space ALB comma
                        AL space equals space square root of AB squared minus BL squared end root space equals space square root of straight x squared minus straight b squared over 4 end root
    Let increment be area of increment ABC.
      therefore space space space space space space space increment space equals space 1 half BC space cross times space space AL space equals space 1 half straight b square root of straight x squared minus straight b squared over 4 end root

    therefore space space space space fraction numerator straight d increment over denominator dt end fraction space equals space 1 half straight b. space fraction numerator 2 straight x over denominator 2 square root of straight x squared minus begin display style straight b squared over 4 end style end root end fraction dx over dt space equals space fraction numerator bx over denominator 2 square root of straight x squared minus begin display style straight b squared over 4 end style end root end fraction. space left parenthesis negative 3 right parenthesis space space space space space space space space space space space open square brackets because space space space dx over dt space equals space 3 space left parenthesis given right parenthesis close square brackets
                     equals space fraction numerator negative 3 space bx over denominator 2 square root of straight x squared minus begin display style straight b squared over 4 end style end root end fraction
    space When space space space space space straight x space equals space straight b comma space space space fraction numerator straight d increment over denominator dt end fraction space equals space fraction numerator negative 3 straight b space cross times space straight b over denominator 2 square root of straight b squared minus begin display style straight b squared over 4 end style end root end fraction space equals space fraction numerator negative 3 straight b squared over denominator square root of 3 space straight b squared end root end fraction space equals space minus square root of 3 space straight b squared end root space equals space minus square root of 3 space straight b
therefore space space space space required space rate space of space decrease space space equals space square root of 3 space straight b space cm squared divided by sec.
    Question 34
    CBSEENMA12035026

    A particle moves along the curve  6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

    Solution

    Here,   6y = x3 + 2.                                    ...(1)
    Differentiating both sides, w.r.t 't'
                       6 dy over dt space equals space 3 straight x squared dx over dt
    But  dy over dt space equals space 8 dx over dt                                               (given)
    therefore space space space space space space space 6 open parentheses 8 dx over dt close parentheses space equals space 3 straight x squared dx over dt space space space space space rightwards double arrow space space space space 16 space equals space straight x squared space space space space space space space space space space rightwards double arrow space space space space straight x space equals space 4 comma space space space minus 4
    When space space space space straight x space equals space 4 space from space left parenthesis 1 right parenthesis comma space we space get comma space space space space space straight y space equals space fraction numerator left parenthesis 4 right parenthesis cubed plus 2 over denominator 6 end fraction space equals space 66 over 6 space equals space 11
When space space space straight x space equals space minus 4 space space from space left parenthesis 1 right parenthesis comma space we space get comma space space space straight y space equals space fraction numerator left parenthesis negative 4 right parenthesis cubed plus 2 over denominator 6 end fraction space equals space fraction numerator negative 62 over denominator 6 end fraction space equals space minus 31 over 3
therefore space space space space required space points space on space the space curve space are space left parenthesis 4 comma space 11 right parenthesis comma space space open parentheses negative 4 comma space space space space space space minus 31 over 3 close parentheses.
                      

    Question 35
    CBSEENMA12035027

    At what points of the ellipse 16x2 + 9y2 = 400, does the ordinate decrease at the same rate at which the abscissa increases?

    Solution

    Here,     16x2 + 9y2 = 400                                   ...(1)
    Differentiating both sides w.r.t. 't', we get,
                  32 straight x dx over dt plus 18 straight y dy over dt space equals space 0 space space space or space space 9 straight y dy over dt space equals space minus 16 straight x space dx over dt space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    But    negative dy over dt space equals space dx over dt
    therefore space space space space from space space left parenthesis 2 right parenthesis comma space space space minus 9 straight y dx over dt space equals space minus 16 straight x dx over dt
therefore space space space space space space 9 straight y space equals space 16 straight x space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight y space equals space 16 over 9 straight x space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    Putting straight y space equals space 16 over 9 straight x space in space left parenthesis 1 right parenthesis comma space we space get comma
                    16 straight x squared plus 9.256 over 81 straight x squared space equals space space 400
    therefore space space space space space straight x squared plus 16 over 9 straight x squared space equals space 25 space space space space space space space space space space space space space space space rightwards double arrow space space space space space fraction numerator 25 straight x squared over denominator 9 end fraction space equals space 25 space space space space space space rightwards double arrow space space space straight x squared space equals space 9 space space space space rightwards double arrow space space space straight x space equals negative 3 comma space space 3
therefore space space space space space space from space left parenthesis 3 right parenthesis comma space space space straight y space equals space 16 over 9 left parenthesis negative 3 right parenthesis comma space space 16 over 9 left parenthesis 3 right parenthesis space equals space fraction numerator negative 16 over denominator 3 end fraction comma space space space space 16 over 3
therefore space space space space space space required space points space are space space open parentheses negative 3 comma space space fraction numerator negative 16 over denominator 3 end fraction close parentheses comma space space space space open parentheses 3 comma space space 16 over 3 close parentheses

    Question 36
    CBSEENMA12035028

    A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4m away from the wall? 

    Solution

    Let  the foot A of the ladder be at a distance x metres from the wall and y metres be the height of the wall at any time t.
                 therefore space space space space space straight x squared plus straight y squared space equals space 25 space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Differentiating both sides w.r.t. 't', we get,
                      2 straight x dx over dt plus 2 straight y dy over dt space equals space 0
    rightwards double arrow space space space space space straight x dx over dt plus straight y dy over dt space equals space 0
    But space dx over dt space equals space 2 space cm divided by straight s space space equals space space 0.02 space straight m divided by straight s space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space               (given)
    therefore space space space space 0.02 space straight x space plus space straight y dy over dt space equals space 0 space space space space space space space space space space space space space rightwards double arrow space space space space dy over dt space equals space minus fraction numerator 0.02 space straight x over denominator straight y end fraction space space space space space space space space space space... left parenthesis 2 right parenthesis
When space straight x space equals space 4 comma space space space from space left parenthesis 1 right parenthesis comma space we space get comma space space space 16 plus straight y squared space equals space 25 space space space space space space space rightwards double arrow space space space space space straight y squared space equals space 9 space space space space space rightwards double arrow space space space space straight y space equals space 3
When space straight x space equals space 4 comma space space straight y space equals space 3 space then space from space left parenthesis 2 right parenthesis comma space we space get comma space space space dy over dt space equals space minus fraction numerator 0.02 space cross times space 4 over denominator 3 end fraction
or space space space space space space space dy over dt space equals space minus fraction numerator 0.08 over denominator 3 end fraction straight m divided by straight s space equals space minus fraction numerator 8 space cross times space 100 over denominator 100 space cross times 3 end fraction space cm divided by straight s space equals space minus 8 over 3 cm divided by straight s
therefore space space space space height space of space the space wall space is space decreasing space at space the space rate space of space 8 over 3 cm divided by straight s.

    Question 37
    CBSEENMA12035031

    Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way what the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand-cone increasing when the height is 4 cm?

    Solution
    Let r be the radius and h be the height of the right circular cone formed by the falling sand at any time t.
    therefore space space space space space straight h space equals space 1 over 6 straight r space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight r space equals space 6 space straight h
    Let V be the volume of the sand-cone at time t.
     therefore space space space space space straight V equals 1 third πr squared straight h space equals space 1 third straight pi left parenthesis 6 straight h right parenthesis squared straight h space equals space 12 space πh cubed
therefore space space space space space space dV over dt space equals space 12 straight pi. space space 3 straight h squared space dh over dt space equals space 36 space πh squared space dh over dt
space space space space space space
                 But space space space dV over dt space equals space 12 space cm cubed divided by straight s                              (given)
       therefore space space space space space 12 space equals space 36 space straight pi space straight h squared space dh over dt space space space space space space space space space space space space space space space space rightwards double arrow space space space space dh over dt space equals space fraction numerator 1 over denominator 3 πh squared end fraction
space space space When space straight h space equals space 4 comma space space space space space dh over dt space equals space fraction numerator 1 over denominator 3 straight pi cross times 16 end fraction space equals space fraction numerator 1 over denominator 48 space straight pi end fraction cm divided by straight s
    therefore space space space space space the space height space of space the space sand minus cone space is space increasing space at space the space rate space of space fraction numerator 1 over denominator 48 space straight pi end fraction cm divided by straight s space when space its space height space is space 4 space cm.
    Question 39
    CBSEENMA12035034

    A man 2 metres high walks at a uniform speed of 6 metre/sec away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.

    Solution

    Let AB be the lamp-post and PQ the man, CP be his shadow at time t. Let AP = x, PC = y. Also AB = 6 m, PQ = 2 m.
    Now ∆CAB and ∆CPQ are equiangular and hence similar.
    therefore space space space PC over AC space equals space PQ over AB space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space 2 over 6 space space space or space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space 1 third
therefore space space space space space space 3 straight y space equals space straight x plus straight y comma space space space space space space space space space space space space space space space or space space space 2 straight y space equals space straight x
           therefore space space space space space straight y equals space 1 half straight x space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space space dy over dx space equals space 1 half space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space space space Also comma space space space space space dx over dt space equals space 6
Now space space space dy over dt space equals space dy over dx space dx over dt space equals space 1 half cross times 6 space equals space 3
therefore space space space space length space of space shadow space increases space at space the space rate space of space 3 straight m divided by sec.

    Sponsor Area

    Question 40
    CBSEENMA12035036

    A man of height 2 metres walks at a uniform speed of 5 km/h away from a lamp post which is 6 metres high. Find the rate at which the length of his shadow increases.

    Solution

    Let AB be the lamp-post and PQ the man, CP be his shadow at time t.
    Let AP PC = y. Also AB = 6 m, PQ = 2 m. Now ∆CAB and ∆CPQ are equiangular and hence similar.

    therefore space space space space space PC over AC space equals space PQ over AB space space space space space space space rightwards double arrow space space space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space 2 over 6 space space space space space or space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space 1 third
therefore space space space space space space 3 straight y space equals space straight x plus straight y comma space space space space space space space or space space space space 2 straight y space equals space straight x
therefore space space space space space space space space space space space space space space space space space straight x space equals space 2 straight y
therefore space space space space space space space space space dx over dt space equals space 2 dy over dt
But space dx over dt space equals space 5 space km divided by straight h
therefore space space space space space 5 space equals space 2 space dy over dt space space space rightwards double arrow space space space space space dy over dt space equals space 5 over 2 km divided by straight h
therefore space space space space length space of space the space shadow space increases space at space the space rate space of space 5 over 2 km divided by straight h.

    Question 41
    CBSEENMA12035039

    A point source of light along a straight road is at a height of ‘a’ metres. A boy ‘b’ metres in height is walking along the road. How fast is his shadow increasing if he is walking away from the light at the rate of c metres per minute?

    Solution

    Let AB = a metres be the lamp-post and PQ = b metres the boy, CP = y be his shadow at time t. Let AP = x.
    Now ∆CAB and ∆CPQ are equiangular and hence similar

    therefore space space space space space space space PC over AC space equals space PQ over AB
rightwards double arrow space space space space space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space straight b over straight a
therefore space space space space space space space space space space space space space space space space space space space space space space space space cy space equals space bx plus by
rightwards double arrow space space space space space space space space space space space space space space space space left parenthesis straight a minus straight b right parenthesis space straight y space equals space bx
therefore space space space space space space space space space space space space space space space space space space space space space straight y space equals space fraction numerator straight b over denominator straight a minus straight b end fraction straight x
therefore space space space space space space space space space space space space space space space space space space dy over dx space equals space fraction numerator straight b over denominator straight a minus straight b end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also comma space space space space space space space space space space space dx over dt space equals space straight c space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Now space space space space space dy over dt space equals space dy over dx space. dx over dt space space equals space fraction numerator straight b over denominator straight a minus straight b end fraction cross times straight c space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis close square brackets
therefore space space space space space dy over dt space space equals space fraction numerator bc over denominator straight a minus straight b end fraction comma space space space space space space which space gives space the space rate space at space which space boy apostrophe straight s space shadow space is space increasing. space space

    Question 42
    CBSEENMA12035041
    Question 43
    CBSEENMA12035045

    Water is running into a conical vessel, 15 cm deep and 5 cm in radius, at the rate of 0.1 cm2/sec. When the water is 6 cm deep, find at what rate is
    (i) the water level rising?
    (ii) the water surface area increasing?
    (iii) the wetted surface of the vessel increasing?

    Solution

    Let V be the volume of the water in the cone i.e. the volume of the water cone CA 'B' at any time t.
    Let CO' = h, O' A' = r and CA' = I.
    Let α be the semi-vertical angle of the cone. CAB where CO = 15 cm, OA = 5 cm
    CO = 15 cm
    OA = 5 cm
    Then,      tan space straight alpha space equals space OA over CO space equals space 5 over 15 space equals space 1 third space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
     Also,         tan space straight alpha space equals space fraction numerator straight O apostrophe straight A apostrophe over denominator CO apostrophe end fraction space equals space straight r over straight h                              ...(2)
    From (1) and (2), we get,
           therefore space space space space space space space space space space space space space space space space space space space space space space space space 1 third space equals space straight r over straight h

    rightwards double arrow space space space space space space space space space 3 straight r space equals space straight h                                                        ...(3)
    Now,      straight V space equals space 1 third πr squared straight h space equals space space 1 third straight pi open parentheses straight h over 3 close parentheses squared straight h space equals space straight pi over 27 straight h cubed             
    therefore space space space space space space space dV over dt space equals space fraction numerator 3 straight pi over denominator 27 end fraction straight h squared space dh over dt
rightwards double arrow space space space space space space 0.1 space equals space fraction numerator 3 straight pi over denominator 27 end fraction straight h squared dh over dt space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space dV over dt space equals space 0.1 space cm cubed divided by sec space left parenthesis given right parenthesis close square brackets
rightwards double arrow space space space space space space space dh over dt space equals space fraction numerator 2.7 over denominator 3 πh squared end fraction
rightwards double arrow space space space space space space space space space open parentheses dh over dt close parentheses subscript straight h equals 6 end subscript space equals space fraction numerator 2.7 over denominator 3 space straight pi space left parenthesis 36 right parenthesis end fraction space equals space fraction numerator 1 over denominator 40 space straight pi end fraction
therefore space space space space space the space water space level space is space rising space at space the space rate space of space fraction numerator 1 over denominator 40 space straight pi end fraction cm divided by sec.
    (ii) Let A be the water surface area at any time t. Then, A = πr squared 
    therefore space space space space space space straight A space equals space straight pi straight h squared over 9 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 3 right parenthesis close square brackets
rightwards double arrow space space space space space dA over dt space equals space fraction numerator 2 πh over denominator 9 end fraction space dh over dt
When space straight h space equals space 6 comma space space space space dh over dt space equals space fraction numerator 1 over denominator 40 space straight pi end fraction comma space space we space have
space space space space space space space space dA over dt space equals space fraction numerator 2 straight pi cross times 6 over denominator 9 end fraction cross times space fraction numerator 1 over denominator 40 space straight pi end fraction space equals space 1 over 30 cm squared divided by sec
therefore space space space space the space water space surface space area space is space increasing space at space the space rate space of space 1 over 30 cm squared divided by sec.
    (iii) Let S be the wetted surface area of the vessel at any time t. Then. S = πrl.
    Now,       straight l squared space equals space CA to the power of apostrophe squared end exponent space equals space CO to the power of apostrophe squared end exponent space plus space straight O apostrophe straight A to the power of apostrophe 2 end exponent
    space rightwards double arrow space space space space straight l squared space equals space straight h squared plus straight r squared
space rightwards double arrow space space space space straight l squared space equals space straight h squared plus straight h squared over 9 space equals space fraction numerator 10 space straight h squared over denominator 9 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 3 right parenthesis close square brackets
space rightwards double arrow space space space space space straight l space equals space fraction numerator square root of 10 space straight h over denominator 3 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis
therefore space space space space space space straight S space equals space πrl
rightwards double arrow space space space space space straight S space equals space straight pi open parentheses straight h over 3 close parentheses space open parentheses fraction numerator square root of 10 space straight h over denominator 3 end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 4 right parenthesis close square brackets
rightwards double arrow space space space space space space straight S space equals space straight pi over 9 square root of 10 space straight h squared
rightwards double arrow space space space space space space dS over dt space equals space fraction numerator 2 straight pi square root of 10 straight h over denominator 9 end fraction dh over dt
Since space straight h space equals 6 comma space space space dh over dt space equals space fraction numerator 1 over denominator 40 space straight pi end fraction
therefore space space space space space space space dS over dt space equals space fraction numerator 2 space straight pi space square root of 10 over denominator 9 end fraction cross times 6 cross times fraction numerator 1 over denominator 40 space straight pi end fraction space equals space fraction numerator square root of 10 over denominator 30 end fraction space cm squared divided by sec.
therefore space space space the space wetted space surface space area space of space the space vessel space is space increasing space at space the space rate space of space fraction numerator square root of 10 over denominator 30 end fraction cm squared divided by sec.

    Question 44
    CBSEENMA12035048

    An inverted cone has a depth of 10 cm and a base of radius 5 cm. Water is poured into it at the rate of 3 over 2 straight c. straight c. space per space minute. Find the rate at which the level of water in the cone is rising when the depth is 4 cm.

    Solution
    Let α be the semi-vertical angle of the cone CAB whose height CO is 10 cm and radius OB = 5 cm. Then
    tan space straight alpha space equals space 5 over 10 space equals space 1 half
tan space straight alpha space equals space fraction numerator straight O apostrophe straight B apostrophe over denominator CO apostrophe end fraction space equals space fraction numerator straight O apostrophe straight B apostrophe over denominator straight h end fraction
rightwards double arrow space space space space straight O apostrophe straight B apostrophe space space equals space straight h space tan space straight alpha

    Let V be the volume of the water in the cone i.e. the volume of the cone CA 'B' after time t minutes and h be the height of water. Then,
                                straight V space equals space 1 third straight pi left parenthesis OB apostrophe right parenthesis squared space left parenthesis CO apostrophe right parenthesis
    rightwards double arrow space space space space space space space space space space straight V space equals space 1 third πh cubed tan squared straight alpha
rightwards double arrow space space space space space space space space space space space space space space space space space straight V space equals space straight pi over 12 straight h cubed space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space tan space straight alpha space equals space 1 half close square brackets
therefore space space space space space space dV over dt space space equals space straight pi over 12 space 3 space straight h squared space dh over dt space equals straight pi over 4 straight h squared dh over dt space
rightwards double arrow space space space space space space 3 over 2 space space equals space fraction numerator straight pi space straight h squared over denominator 4 end fraction space space dh over dt space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space dV over dt space equals 3 over 2 cm cubed divided by minute space left parenthesis given right parenthesis close square brackets space
rightwards double arrow space space space space dh over dt space equals space 6 over πh squared
rightwards double arrow space space space space space open parentheses dh over dt close parentheses subscript straight h space equals space 4 end subscript space space equals space fraction numerator 6 over denominator straight pi left parenthesis 4 right parenthesis squared end fraction space equals space fraction numerator 3 over denominator 8 space straight pi end fraction space space cm divided by min. space
therefore space space space space required space rate space space equals space fraction numerator 3 over denominator 8 space straight pi end fraction cm divided by sec. space space space space space space space space space space space space space space
                           
    Question 45
    CBSEENMA12035050

    Water is running out of a conical funnel at the rate of 5 cm3/sec. If the radius of the base of the funnel is 10 cm and the altitude is 20 cm, find the rate at which the water level is dropping when it is 5 cm from the top.

    Solution
    Let r be the radius and h the height of the surface of water at time t. Let V be the volume of water in the funnel.
    therefore space space space space straight V space equals space 1 third πr squared straight h                                   ...(1)
    Also, by similar triangles, we have
              straight r over straight h space equals space 10 over 20 space space space space space space space space rightwards double arrow space space space space space straight r space equals space 1 half straight h
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space straight V space equals space 1 third straight pi open parentheses straight h over 2 close parentheses squared space straight h space equals space πh squared over 12 space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Since water is running out of the funnel at the rate of 5 space cm cubed divided by sec.
    therefore space space space space space dV over dt space equals space minus 5 space space space space space space space space space space space space space space space space space space space open parentheses dV over dt space is space minus ve space because space straight V space decreases space as space straight t space increases close parentheses
From space left parenthesis 2 right parenthesis comma space space dt over dt space equals straight pi over 12 straight d over dt left parenthesis straight h cubed right parenthesis space equals space fraction numerator 3 πh cubed over denominator 12 end fraction dh over dt
therefore space space space minus 5 space equals space fraction numerator straight pi space straight h squared over denominator 4 end fraction dh over dt
therefore space space space space dh over dt equals negative fraction numerator 20 over denominator straight pi space straight h squared end fraction
therefore space space space rate space of space dropping space of space water space level space left parenthesis straight i. straight e. space of space straight h right parenthesis space straight w. straight r. straight t space time space straight t space equals space dh over dt space equals space fraction numerator negative 20 over denominator πh squared end fraction.
When space water space level space is space 5 space cm space from space the space top comma space space straight h space equals space 20 minus 5 space equals space 15.
therefore space space space space rate space of space dropping space of space water space level space straight w. straight r. straight t. space apostrophe straight t apostrophe space when space straight h space equals space 5 space is
space space space space space space space space space space space space space space space space space space space space space fraction numerator negative 20 over denominator straight pi left parenthesis 15 right parenthesis squared end fraction space equals space fraction numerator negative 20 over denominator straight pi cross times 225 end fraction space equals space fraction numerator negative 4 over denominator 45 space straight pi end fraction cm divided by sec.

    Question 46
    CBSEENMA12035051

    The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
    • 10 straight pi
    • 12 straight pi
    • 8 straight pi
    • 11 straight pi

    Solution

    B.

    12 straight pi

    Let A be area of circle of radius r
             therefore space space space space space space space space space straight A space equals space πr squared
    Rate of change of area w.r.t. r = dA over dr space equals space straight d over dr left parenthesis πr squared right parenthesis space equals space 2 πr
    When r = 6,   rate of change of area  = 2 straight pi cross times 6 space equals space 12 space straight pi.
    therefore space space space space left parenthesis straight B right parenthesis thin space is space correct space answer.

    Question 47
    CBSEENMA12035052

    The total revenue in Rupees received from the sale of x units of a product is given by R(x) = 3x 2 + 36x + 5.

    • 116
    • 96

    • 90

    • 126

    Solution

    D.

    126

    straight R left parenthesis straight x right parenthesis space equals space 3 straight x squared plus 36 straight x plus 5 space space space space space space space space space space rightwards double arrow space space space straight R space equals space 3 straight x squared plus 36 straight x plus 5
    Marginal revenue equals space dR over dx space space equals space 6 straight x plus 36
    When x = 15,   marginal revenue = 6(15) + 36 = 90 + 36 = 126
    therefore space space space left parenthesis straight D right parenthesis space is space correct space answer.
    Question 49
    CBSEENMA12035055

    Prove that the tangents to the curve Y = x2 – 5x + 6 at the points (2, 0) and (3, 0) are at right angles.

    Solution

    The equation of the curve is
    y = x– 5x + 6
    therefore space space space space dy over dx space equals 2 straight x minus 5
    Let straight m subscript 1 comma space space straight m subscript 2 be slopes of tangents to the curve at the points (2, 0), (3, 0).
    therefore space space space space straight m subscript 1 equals space space value space of space dy over dx space at space left parenthesis 2 comma space 0 right parenthesis space equals 2 left parenthesis 2 right parenthesis minus 5 space equals 4 minus 5 space equals space minus 1
space space space space space space space space straight m subscript 2 space equals space value space of space dy over dx space at space left parenthesis 3 comma space 0 right parenthesis space equals space 2 left parenthesis 3 right parenthesis space minus space 5 space equals space 6 minus 5 space equals space 1
therefore space space space straight m subscript 1 straight m subscript 2 space equals space left parenthesis negative 1 right parenthesis thin space left parenthesis 1 right parenthesis space equals space minus 1
therefore space tangents space to space the space given space curve space at space left parenthesis 2 comma space 0 right parenthesis comma space left parenthesis 3 comma space 0 right parenthesis space are space perpendicular space to space each space other.

    Question 50
    CBSEENMA12035057

    Show that the tangent to the curve y = 7x3 + 11 at the points where x = 2 and x = – 2 are parallel.

    Solution

    The equation of curve is
                          y = 7x3 + 11
    therefore space space space space dy over dx space equals space 21 space straight x squared
    At   straight x space equals space 2 comma space space space space dy over dx space equals space 21 left parenthesis 2 right parenthesis squared space equals space 21 space cross times space 4 space equals space 84
    At  straight x space equals negative 2 comma space space space dy over dx space equals space 21 left parenthesis negative 2 right parenthesis squared space equals space 21 space cross times space 4 space equals space 84
    therefore space space space space slopes space of space the space tangents space to space the space given space curve space straight y space equals space 7 straight x cubed plus 11
space space space space space space space space space when space straight x space equals space 2 space and space straight x space equals space minus 2 space are space equal
therefore space space space space tangents space to space the space given space curve space at space the space points comma space when space straight x space equals space 2 space and space straight x space equals negative 2 space are space parallel.

    Question 51
    CBSEENMA12035058

    Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.

     

    Solution

    The equation of curve is straight y space equals space straight x cubed
    therefore space space space space dy over dx space equals space 3 straight x squared
    Let space space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space be space the space point.
    At space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space dy over dx space equals space 3 straight x subscript 1 squared comma space space space which space is space straight a space slope space of space tangent. space
    From given condition,
                            3 straight x subscript 1 squared space equals space straight y subscript 1                                         ...(1)
    Also,    left parenthesis straight x subscript 1 comma space straight y subscript 1 right parenthesis comma space lies space on space straight y space equals space straight x cubed
    therefore space space space space space space space straight y subscript 1 space equals space straight x subscript 1 cubed
    From (1) and (2),  straight x subscript 1 cubed space equals space 3 straight x subscript 1 squared space space space space rightwards double arrow space space space space straight x subscript 1 squared left parenthesis straight x subscript 1 minus 3 right parenthesis space equals space 0 space space space space rightwards double arrow space space space space straight x subscript 1 space equals space 0 comma space space 3
    From (1),  straight y subscript 1 space equals 0 comma space 27
    therefore space space space space space space points space are space left parenthesis 0 comma space 0 right parenthesis comma space space space left parenthesis 3 comma space 27 right parenthesis.

    Question 52
    CBSEENMA12035059

    Find the slope of the tangent to the curve x = at2, y = 2at at  t = 1.

    Solution

    The curve is x = at2, y = 2at
    therefore space space space space dx over dt space equals space 2 at comma space space dy over dt space equals space 2 straight a comma space space space space space space space space space space space space space space space therefore space space space space dy over dx space equals fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction space equals fraction numerator 2 straight a over denominator 2 at end fraction space equals 1 over straight t
therefore space space space space value space of space dy over dx at space straight t space equals 1 space is space equals space 1 over 1 space equals space 1
Hence space the space slope space of space the space tangent space of space the space curve space at space straight t space equals space 1 space is space 1.

    Question 53
    CBSEENMA12035060

    Find the slope of the tangent to the curve y = x3 – x at x = 2.

    Solution

    The equation of curve is
                               y = x3 – x 
    therefore space space space space space space space space space space space space space space dy over dx space equals space 3 straight x squared minus 1
At space space straight x space equals 2 comma space space space space space dy over dx space equals space 3 left parenthesis 2 right parenthesis squared minus 1 equals space space 3 cross times 4 minus 1 space equals space 12 minus 1 space equals space 11
which space is space required space slope space of space the space tangent space to space the space curve.

    Question 54
    CBSEENMA12035062

    Find the slope of the tangent to the curve y = 3x4 – 4x  at (i) x = 1 (ii) x = 4.

    Solution

    The equation of curve is
                  straight y space equals space 3 straight x to the power of 4 minus 4 straight x
    therefore space space space space dy over dx space equals space 12 straight x cubed minus 4 comma space space which space is space slope space of space tangent space to space the space curve.
    (i)  At x = 1,   dy over dx space equals space 12 left parenthesis 1 right parenthesis cubed space minus space 4 space equals space 12 space minus 4 space space equals space 8
    which is required slope of tangent to the curve.
    (ii) At space straight x space equals space 4 comma space space space dy over dx space equals space 12 left parenthesis 4 right parenthesis cubed space minus space 4 space equals space 12 space cross times space 64 space minus space 4 space equals space 768 space minus space 4 space equals space space 764
    which is required slope of tangent to the curve

    Question 55
    CBSEENMA12035063

    Find the slope of the tangent to the curve straight y space equals fraction numerator straight x minus 1 over denominator straight x minus 2 end fraction comma space space space straight x not equal to space 2 space space at space straight x space equals space 10.

    Solution

    The equation of curve is
                         straight y space equals space fraction numerator straight x minus 1 over denominator straight x minus 2 end fraction comma space space space space space space straight x space not equal to space 2
    therefore space space space space space space dy over dx space equals space fraction numerator left parenthesis straight x minus 2 right parenthesis. space begin display style straight d over dx end style left parenthesis straight x minus 1 right parenthesis minus left parenthesis straight x minus 1 right parenthesis begin display style straight d over dx end style left parenthesis straight x minus 2 right parenthesis over denominator left parenthesis straight x minus 2 right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space equals space fraction numerator left parenthesis straight x minus 2 right parenthesis. space 1 minus space left parenthesis straight x minus 1 right parenthesis. space 1 over denominator left parenthesis straight x minus 2 right parenthesis squared end fraction space equals space fraction numerator straight x minus 2 minus straight x plus 1 over denominator left parenthesis straight x minus 2 right parenthesis squared end fraction space equals space minus fraction numerator 1 over denominator left parenthesis straight x minus 2 right parenthesis squared end fraction
At space straight x space equals space 10 comma space space space dy over dx space equals space minus fraction numerator 1 over denominator left parenthesis 10 minus 2 right parenthesis squared end fraction space equals space minus 1 over 64
    which is required slope of tangent to the curve.

    Question 56
    CBSEENMA12035064

    For the curve y = 3x2 + 4 x , find the slope of the tangent to the curve at the point whose x-coordrnate is – 2.

    Solution

    The equation of curve is
                         y = 3x2 + 4 x
    therefore space space space space dy over dx space equals space 6 straight x plus 4 comma space space which space is space slope space of space tangent space to space the space curve
    At x = 2,   dy over dx space equals space 6 left parenthesis negative 2 right parenthesis plus 4 space equals space minus 12 plus 4 space equals space minus 8
    which is required slope of tangent to the curve.

    Question 57
    CBSEENMA12035065

    Find the slope of the tangent to the curve y = x3 – x + 1 at the point whose x-coordmate is 2.

    Solution

    The equation of curve is
                           straight y space equals space straight x cubed minus straight x plus 1
    therefore space space space space space dy over dx space equals space 3 straight x squared minus 1 comma space space space which space is space slope space of space tangent space to space the space curve.
At space straight x space equals space 2 comma space space dy over dx space equals space 3 left parenthesis 2 right parenthesis squared space minus space 1 space equals space space 12 space minus space 1 space equals space space 11
which space is space required space slope space of space tangent space to space the space curve

    Question 58
    CBSEENMA12035066

    Find the slope of the tangent to the curve y = x3 – 3x + 2 at the point whose. x-coordinate is 3. 

    Solution

    The equation of curve is
                        y = x3 – 3x + 2
    therefore space space dy over dx space equals space 3 straight x squared minus 3 comma space space space space which space is space slope space of space tangent space to space the space curve
At space straight x space equals space 3 comma space space dy over dx space equals space 27 minus 3 space equals space 24
which space is space required space slope space of space tangent space to space the space curve.

    Question 59
    CBSEENMA12035068

    Find the slope of the normal to the curve straight x equals space straight a space cos cubed straight theta comma space space space straight y space equals space straight a space sin cubed straight theta space space space at space straight theta space equals space straight pi over 4.

    Solution
    straight x equals space straight a space cos cubed straight theta comma space space space straight y space equals space straight a space sin cubed straight theta space space space at space straight theta space equals space straight pi over 4
    The equation of curve are
                              straight x space equals space straight a space cos cubed straight theta comma space space space space space straight y equals space straight a space sin cubed straight theta space
    therefore space space space space space space space dx over dθ space equals space minus 3 straight a space cos squared straight theta space space sin space straight theta comma space space space space dy over dθ space equals space 3 straight a space space sin squared straight theta space cos space straight theta
space space space space space space space space space space space space space space dy over dx space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator 3 straight a space sin squared straight theta space space cos space straight theta over denominator negative 3 space straight a space cos squared straight theta space sin space straight theta end fraction space equals negative fraction numerator sin space straight theta over denominator cos space straight theta end fraction space equals space minus tan space straight theta comma
which space is space slope space of space tangent space to space the space curve
    therefore space space space space space slope space of space normal space to space the space curve space equals space minus fraction numerator 1 over denominator begin display style dy over dx end style end fraction space equals space minus fraction numerator 1 over denominator negative tan space straight theta end fraction space equals space cot space straight theta
At space space space straight theta space equals space straight pi over 4 comma space space space space slope space of space normal space to space the space curve space equals space cot space straight pi over 4 space equals space 1
    Question 60
    CBSEENMA12035069

    Find the slope of the normal to the curve straight x space equals space 1 minus straight a space sin space straight theta comma space space space straight y space equals space space straight b space cos squared straight theta space space at space straight theta space equals space straight pi over 2.

    Solution
    straight x space equals space 1 minus straight a space sin space straight theta comma space space space straight y space equals space space straight b space cos squared straight theta space space at space straight theta space equals space straight pi over 2.
      The equations of the curve are straight x space equals space space 1 minus straight a space sin space straight theta comma space space space space straight y space equals space straight b space cos squared straight theta
    therefore space space space space space dx over dθ space equals space minus straight a space cos space straight theta comma space space dy over dθ space equals space minus 2 straight b space cos space straight theta space sin space straight theta
    Now dy over dx space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator negative 2 straight b space sinθ space cosθ over denominator negative straight a space cosθ end fraction space equals space fraction numerator 2 straight b over denominator straight a end fraction sin space straight theta
    At straight theta space equals space straight pi over 2 comma space  dy over dx space equals space fraction numerator 2 straight b over denominator straight a end fraction sin space straight pi over 2 space equals space fraction numerator 2 straight b over denominator straight a end fraction cross times 1 space equals space fraction numerator 2 straight b over denominator straight a end fraction
    This is slope of tangent to the curve
    therefore space space space space slope space of space normal space to space the space curve space equals space minus fraction numerator 1 over denominator begin display style fraction numerator 2 straight b over denominator straight a end fraction end style end fraction space equals space minus fraction numerator straight a over denominator 2 straight b end fraction
    Question 61
    CBSEENMA12035071

    Find the slope of the normal at the point (am3 , am2 ) to the curve a x2 = y3.

    Solution

    The equation of the curve is a x2 = y3
    Differentiating both sides w.r.t. x, we get,
                       2 ax space equals space 3 straight y squared dy over dx space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space dy over dx space equals space fraction numerator 2 ax over denominator space 3 space straight y squared end fraction
    At space left parenthesis am cubed comma space space space am squared right parenthesis comma space space dy over dx space equals space fraction numerator 2 straight a left parenthesis am cubed right parenthesis over denominator 3 left parenthesis am squared right parenthesis squared end fraction space space equals space fraction numerator 2 straight a squared straight m cubed over denominator 3 straight a squared straight m to the power of 4 end fraction space equals space fraction numerator 2 over denominator 3 space straight m end fraction
space therefore space space space space space space space At left parenthesis straight a space straight m cubed comma space space space straight a space straight m squared right parenthesis comma space space space slope space of space tangent space equals space fraction numerator 2 over denominator 3 straight m end fraction
therefore space space space space space space At left parenthesis am cubed comma space space am squared right parenthesis comma space space slope space of space normal space space equals space minus fraction numerator 1 over denominator begin display style fraction numerator 2 over denominator 3 straight m end fraction end style end fraction space equals space minus fraction numerator 3 straight m over denominator 2 end fraction

    Question 62
    CBSEENMA12035072

    Find a point on the curve y = (x – 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

    Solution

    The equation of curve is
                                 straight y space equals space left parenthesis straight x minus 2 right parenthesis squared
    therefore space space space space dy over dx space equals space 2 space left parenthesis straight x minus 2 right parenthesis
therefore space space space space slope space of space tangent space equals space 2 left parenthesis straight x minus 2 right parenthesis
    Also slope of line joining (2, 0) and (4, 4) equals space fraction numerator 4 minus 0 over denominator 4 minus 2 end fraction space equals space 4 over 2 space equals space 2
    because space space tangent space is space parallel space to space the space line space joining space left parenthesis 2 comma space 0 right parenthesis space and space left parenthesis 4 comma space 4 right parenthesis
therefore space space space their space slopes space are space equal
therefore space space space space space 2 left parenthesis straight x minus 2 right parenthesis space equals space 2 space space space space space rightwards double arrow space space space space space straight x minus 2 space equals space 1 space space space space rightwards double arrow space space space straight x space equals space 3
When space straight x space equals space 3 comma space space space straight y space equals space left parenthesis 3 minus 2 right parenthesis squared space equals space 1
therefore space space space space space space required space point space is space left parenthesis 3 comma space 1 right parenthesis.

    Question 63
    CBSEENMA12035074

    Find the point at which the tangent to the curve straight y equals space square root of 4 straight x minus 3 end root space minus 1 has its slope 2 over 3.

    Solution

    The equation of curve is
                             straight y space equals space square root of 4 straight x minus 3 end root space minus space 1 space equals space left parenthesis 4 straight x minus 3 right parenthesis to the power of 1 half end exponent space minus space 1
    therefore space space space space space space dy over dx space equals space 1 half left parenthesis 4 straight x minus 3 right parenthesis to the power of 1 half end exponent space 4 space minus 0 space equals space fraction numerator 2 over denominator square root of 4 straight x minus 3 end root end fraction.
    which is slope of tangent to the curve.
    From given condition.
                   dy over dx space equals space 2 over 3 space space space space space space space or space space space space space space space fraction numerator 2 over denominator square root of 4 straight x minus 3 end root end fraction space equals space 2 over 3 space space space space rightwards double arrow space space space space fraction numerator 1 over denominator square root of 4 straight x minus 3 end root end fraction space equals space 1 third
rightwards double arrow space space space space space square root of 4 straight x minus 3 end root space equals space 3 space space rightwards double arrow space space space space 4 straight x minus 3 space equals space 9 space space space space space space space rightwards double arrow space space space space 4 straight x space equals space 12 space space space space space space rightwards double arrow space space space space space straight x space equals space 3
When space straight x space equals 3 comma space space space straight y space equals space square root of 4 space cross times 3 minus 3 end root space minus 1 space equals space square root of 9 space minus space 1 space equals space 3 minus 1 space equals space 2
therefore space space space space space required space point space is space left parenthesis 3 comma space 2 right parenthesis.

    Question 64
    CBSEENMA12035075

    Find the equation of the normal to the curve y2 = 4x at the point (1, 2).

    Solution

    The equation of curve is
    y2 = 4x
    Differentiating both sides w.r.t. x, we get,
                               2 straight y dy over dx space equals space 4 space space space space space space space or space space space dy over dx space equals space 2 over straight y
    therefore space space space space at space left parenthesis straight x comma space straight y right parenthesis. space slope space of space tangent space space equals space 2 over straight y
therefore space space space space space at space left parenthesis 1 comma space 2 right parenthesis comma space slope space of space tangent space equals space 2 over 2 space equals space 1
therefore space space space space space slope space of space normal space space equals space minus 1 over 1 space equals space minus 1
therefore space space space space space equation space of space normal space at space left parenthesis 1 comma space 2 right parenthesis space is space
space space space space space space space space space space space space space space space space space space space space space space space space straight y space minus space 2 space equals space minus space 1 left parenthesis straight x minus 1 right parenthesis space space space space space space or space space space straight y minus 2 space equals space space minus straight x plus 1
or space space space space space space space space space straight x plus straight y minus 3 space equals space 0.

    Question 65
    CBSEENMA12035077

    Find the equation of tangent to the ellipse straight x squared over straight a squared plus straight y squared over straight b squared space equals space 1 space space space at space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis.

    Solution

    The equation of ellipse is straight x squared over straight a squared plus straight y squared over straight b squared space equals space 1
    Differentiating both sides w.r.t.x,
                    fraction numerator 2 straight x over denominator straight a squared end fraction plus fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals space 0 space space space space space space space space or space space space fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals space minus fraction numerator 2 straight x over denominator straight a squared end fraction
    therefore space space space space dy over dx equals negative straight b squared over straight a squared straight x over straight y
    space At space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis. space space dy over dx space equals space minus straight b squared over straight a squared straight x subscript 1 over straight y subscript 1 comma space which space is space slope space of space tangent
space therefore space space space space space the space equation space of space tangent space at space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space is
space space space space space space space space space space space space space space straight y minus straight y subscript 1 space equals space minus straight b squared over straight a squared straight x subscript 1 over straight y subscript 1 left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space is
or space space space space straight y subscript 1 over straight b squared left parenthesis straight y minus straight y subscript 1 right parenthesis space equals space minus straight x subscript 1 over straight a squared left parenthesis straight x minus straight x subscript 1 right parenthesis space space space space or space space space space space yy subscript 1 over straight b squared minus straight y subscript 1 squared over straight a squared space equals space minus xx subscript 1 over straight a squared plus straight x subscript 1 squared over straight a squared
or space space space space space xx subscript 1 over straight a squared plus yy subscript 1 over straight b squared space equals space straight x subscript 1 squared over straight a squared plus straight y subscript 1 squared over straight b squared space space space space space space space space or space space space space space space space xx subscript 1 over straight a squared plus yy subscript 1 over straight b squared space equals space 1
                                                                            open square brackets table row cell because space space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space lies space on space straight x squared over straight a squared plus straight y squared over straight b squared space equals space 1 end cell row cell therefore space straight x subscript 1 squared over straight a squared plus fraction numerator space straight y subscript 1 squared over denominator straight b squared end fraction equals space 1 end cell end table close square brackets

    Question 66
    CBSEENMA12035079

    Find the equation of tangent and normal to the hyperbola straight x squared over straight a squared minus straight y squared over straight b squared space equals space 1 space space at space space left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis.

    Solution

    The equation of hyperbola is straight x squared over straight a squared minus straight y squared over straight b squared space equals 1
    Differentiating both sides w.r.t. x,
                      fraction numerator 2 straight x over denominator straight a squared end fraction minus fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals space 0 comma space space space space space or space space space space fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals fraction numerator 2 straight x over denominator straight a squared end fraction space space space space rightwards double arrow space space space space dy over dx space equals space straight b squared over straight a squared straight x over straight y
    At space left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis comma space space space dy over dx space equals space straight b squared over straight a squared straight x subscript 0 over straight y subscript 0 comma space which space is space slope space of space tangent.
therefore space space space space space space space the space equation space of space tangent space at space left parenthesis straight x subscript 0 comma space straight y subscript 0 right parenthesis space is
space space space space space space space space space space space space space space space space space straight y minus straight y subscript 0 space equals space straight b squared over straight a squared straight x subscript 0 over straight y subscript 0 left parenthesis straight x minus straight x subscript 0 right parenthesis
or space space space space space space space straight y subscript 0 over straight b squared left parenthesis straight y minus straight y subscript 0 right parenthesis space equals space straight x subscript 0 over straight a squared left parenthesis straight x minus straight x subscript 0 right parenthesis space space space or space space space space space space yy subscript 0 over straight b squared minus straight y subscript 0 squared over straight b squared space equals space fraction numerator straight x space straight x subscript 0 over denominator straight a squared end fraction minus straight x subscript 0 squared over straight a squared
or space space space space space space fraction numerator straight x space straight x subscript 0 over denominator straight a squared end fraction minus fraction numerator straight y space straight y subscript 0 over denominator straight b squared end fraction space equals space straight x subscript 0 squared over straight a squared minus straight y subscript 0 squared over straight b squared
or space space space space space fraction numerator straight x space straight x subscript 0 over denominator straight a squared end fraction minus fraction numerator straight y space straight y subscript 0 over denominator straight b squared end fraction space equals space 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because space space space space left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis space lies space on space straight x squared over straight a squared minus straight y squared over straight b squared equals 1 end cell row cell therefore space space space straight x subscript 0 squared over straight a squared minus straight y subscript 0 squared over straight b squared space equals space 1 end cell end table close square brackets

    Question 67
    CBSEENMA12035081

    Find the equation of the normal at the point (am2, am3) for the curve ay= x3.

    Solution

    The equation of the curve is a y2 = x3
    Differentiating both sides w.r.t. x,
                        2 ay dy over dx space equals space 3 straight x squared space space space space space space space space space space space space space space or space space space space space dy over dx space equals space fraction numerator 3 straight x squared over denominator 2 ay end fraction
At space left parenthesis am squared comma space space am cubed right parenthesis comma space space space dy over dx space equals space fraction numerator 3 space cross times space straight a squared space straight m to the power of 4 over denominator 2 space straight a space cross times space straight a space straight m cubed end fraction space equals space fraction numerator 3 straight a squared straight m to the power of 4 over denominator 2 straight a squared straight m cubed end fraction space equals space 3 over 2 straight m
which space is space slope space of space tangent.
therefore space space space space space space space space slope space of space normal space space equals space fraction numerator 2 over denominator 3 straight m end fraction
therefore space space space space space space the space equation space of space normal space at space left parenthesis am to the power of minus comma space space space space am cubed right parenthesis space is
space space space space space space space space space space space space space space space space space space straight y minus straight a space straight m cubed space equals space minus fraction numerator 2 over denominator 3 straight m end fraction left parenthesis straight x minus am cubed right parenthesis space space space or space space space space space space 3 my minus 3 am to the power of 4 space equals space minus 2 straight x plus 2 am squared
or space space space space space 2 straight x plus 3 my minus 3 am to the power of 4 minus 2 am squared space equals space 0
or space space space space space space 2 straight x plus 3 my minus am squared left parenthesis 3 straight m squared plus 2 right parenthesis space equals space 0

    Question 68
    CBSEENMA12035083

    Find the equation of the tangent and the normal to the curve straight x to the power of 2 over 3 end exponent plus straight y to the power of 2 over 3 end exponent space equals space 2 space space at space left parenthesis 1 comma space 1 right parenthesis

    Solution

    The equation of curve is
                             straight x to the power of 2 over 3 end exponent plus straight y to the power of 2 over 3 end exponent space equals space 2
    Differentiating both sides w.r.t.x, we get.
    2 over 3 straight x to the power of negative 1 third end exponent plus 2 over 3 straight y to the power of negative 1 third end exponent dy over dx space equals space 0 space space space space space space space or space space space space straight y to the power of negative 1 third end exponent dy over dx space equals space minus straight x to the power of negative 1 third end exponent
    therefore space space space space space space space dy over dx space equals space minus straight x to the power of negative begin display style 1 third end style end exponent over straight y to the power of negative begin display style 1 third end style end exponent space equals space straight y to the power of begin display style 1 third end style end exponent over straight x to the power of begin display style 1 third end style end exponent space equals space minus open parentheses straight y over straight x close parentheses to the power of 1 third end exponent
    At (1, 1), slope of tangent equals negative open parentheses 1 over 1 close parentheses to the power of 1 third end exponent space equals space minus 1
    therefore space space space space space space equation space of space tangent space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space straight y space minus 1 space equals space minus left parenthesis straight x minus 1 right parenthesis comma space space space or space space space space straight y minus 1 space equals space minus straight x plus 1 space space space or space space straight x plus straight y minus 2 space equals space 0
At space left parenthesis 1 comma space 1 right parenthesis comma space slope space of space normal space space equals space minus fraction numerator 1 over denominator negative 1 end fraction space equals space 1
therefore space space equaiton space of space normal space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space space space space space space straight y space minus 1 space space equals space 1 space left parenthesis straight x minus 1 right parenthesis space space space space space or space space space space space straight y space minus 1 space equals space straight x minus 1 space space space or space space straight x minus straight y space equals space 0

    Question 69
    CBSEENMA12035085
    Question 70
    CBSEENMA12035086

    Find the equation of the tangent and normal to the curve
    straight x space equals space 1 minus cos space straight theta comma space space space space space straight y space equals space straight theta minus sin space straight theta space space space space at space straight theta equals space straight pi over 4

    Solution

    The equations of the curve are       straight x space equals space 1 minus space cos space straight theta comma space space space straight y space equals space straight theta minus sin space straight theta
    At space straight theta space equals straight pi over 4 comma space space space space straight x space equals space 1 minus cos space straight pi over 4 space equals space 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space space space space straight y space equals space straight theta minus sinθ space equals straight pi over 4 minus sin space straight pi over 4 space equals space straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction
therefore space space space space space space point space of space contact space is space open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space space straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses
Also comma space space space space space dx over dθ space equals space sin space straight theta comma space space space space dy over dθ space equals space 1 minus space cos space straight theta
therefore space space space space space space space space space space dy over dx space equals space fraction numerator begin display style dy over dx end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction
At space straight theta space equals straight pi over 4 comma space space space space space space space dy over dx equals space fraction numerator 1 minus cos begin display style straight pi over 4 end style over denominator sin space begin display style straight pi over 4 end style end fraction space equals space fraction numerator 1 minus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator square root of 2 end fraction space equals space square root of 2 minus 1
therefore space space space space space at space straight theta space equals space straight pi over 4 comma space space space slope space of space tangent space equals space square root of 2 minus 1
therefore space space space equation space of space tangent space is space space straight y minus open parentheses straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space left parenthesis square root of 2 minus 1 right parenthesis space open square brackets straight x minus open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets
Slope space of space tangent space equals space square root of 2 minus 1
therefore space space space slope space of space normal space space equals space minus fraction numerator 1 over denominator square root of 2 minus 1 end fraction space equals space minus fraction numerator 1 over denominator square root of 2 minus 1 end fraction cross times fraction numerator square root of 2 plus 1 over denominator square root of 2 plus 1 end fraction equals negative fraction numerator square root of 2 plus 1 over denominator 2 minus 1 end fraction space equals negative left parenthesis square root of 2 plus 1 right parenthesis
    therefore space space space equation space of space normal space is
space space space space space space space straight y minus open parentheses straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space minus left parenthesis square root of 2 plus 1 right parenthesis space open square brackets straight x minus open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets

    Question 71
    CBSEENMA12035088

    Find the equation of the tangent and normal to the curve x = a t2 , y = 2 at at the point ‘t’.

    Solution

    The equations of curve are x = at2 , y = 2at
    therefore space space space dx over dt space equals space 2 at comma space space dy over dt equals 2 straight a space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space space space dy over dx space equals space fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction equals space fraction numerator 2 straight a over denominator 2 at end fraction space equals 1 over straight t
    therefore space space space space slope space of space tangent space space equals space 1 over straight t
    therefore space space space space space the space equation space of space tangent space at space left parenthesis at squared comma space space 2 at right parenthesis space is
space space space space space space space space space space space space space space straight y minus 2 at space equals space 1 over straight t left parenthesis straight x minus at squared right parenthesis space space space space space or space space space space ty minus 2 at squared space equals space straight x minus at squared space space space space or space space space space straight x minus ty plus at squared space equals space 0
Also space slope space of space normal space space equals space minus fraction numerator 1 over denominator begin display style 1 over straight t end style end fraction space equals space minus straight t
therefore space space space space space equation space of space normal space at space left parenthesis at squared comma space space space 2 at right parenthesis space is
space space space space space space space space space space space space space space space space space space straight y minus 2 at space equals space minus straight t left parenthesis straight x minus at squared right parenthesis
space or space space space space space space space space space space straight y minus 2 at space equals space minus tx plus at cubed space space space space space space space space space space space or space space tx plus straight y minus 2 at minus at cubed space equals space 0

    Question 72
    CBSEENMA12035089

    Find the equation of the tangent at straight t space equals space straight pi over 4 space to space the space curve space straight x space equals sin space 3 straight t comma space space space space space straight y space equals space cos 2 straight t.

    Solution

    The equations of curve are
                              straight x space equals sin space 3 space straight t comma space space space space straight y space equals space cos space 2 straight t
    At   straight t space equals space straight pi over 4 comma space space space space space space space straight x space equals space sin space fraction numerator 3 straight pi over denominator 4 end fraction space equals space sin space open parentheses straight pi minus straight pi over 4 close parentheses space equals space sin space straight pi over 4 space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space space straight y space equals space cos straight pi over 2 space equals space 0
    therefore space space space space space space point space of space contact space is space open parentheses fraction numerator 1 over denominator square root of 2 end fraction comma space space 0 close parentheses
space space space space space space dx over dt space equals space 3 space cos 3 straight t comma space space dy over dt space equals space minus 2 space sin space 2 straight t
space space space space space dy over dx space equals space fraction numerator begin display style dy over dt end style over denominator begin display style dx over dt end style end fraction space equals space fraction numerator negative 2 space sin space 2 straight t over denominator 3 space cos space 3 straight t end fraction
    At space straight t space equals space straight pi over 4 comma space space space dy over dx space equals space minus 2 over 3 fraction numerator sin space begin display style straight pi over 2 end style over denominator cos space begin display style fraction numerator 3 straight pi over denominator 4 end fraction end style end fraction space equals space minus 2 over 3 fraction numerator 1 over denominator cos space open parentheses straight pi minus begin display style straight pi over 4 end style close parentheses end fraction space equals space fraction numerator 2 over denominator 3 cos space begin display style straight pi over 4 end style end fraction space equals space fraction numerator 2 over denominator 3 cross times begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals space fraction numerator 2 square root of 2 over denominator 3 end fraction
    therefore space space space space slope space of space tangent space space equals space fraction numerator 2 square root of 2 over denominator 3 end fraction
therefore space space space space the space equation space of space tangent space at space open parentheses fraction numerator 1 over denominator square root of 2 end fraction comma space 0 close parentheses space is
space space space space space space space straight y minus 0 space equals space fraction numerator 2 square root of 2 over denominator 3 end fraction open parentheses straight x minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space space space space or space space space space space space 3 straight y space equals space 2 square root of 2 straight x minus 2 space space space space or space space 2 square root of 2 straight x minus 3 straight y minus 2 space equals space 0

    Question 74
    CBSEENMA12035092

    Find the equation of tangent to the curve:
    straight x space equals space straight theta plus space sin space straight theta comma space space space straight y space equals space 1 plus space cos space straight theta space space at space straight theta equals space straight pi over 4

    Solution

    The equations of curve are straight x space equals straight theta space plus space sin space straight theta comma space space space space straight y space equals space 1 plus space cos space straight theta
    At space straight theta space equals space straight pi over 4 comma space space space straight x space equals space straight pi over 4 plus sin space straight pi over 4 space equals space straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space straight y space equals 1 plus cos space straight pi over 4 space equals space 1 plus fraction numerator 1 over denominator square root of 2 end fraction
therefore space space space space point space of space contact space is space open parentheses straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction comma space space 1 plus fraction numerator 1 over denominator square root of 2 end fraction space close parentheses.
space space space space space space space space space space space space space space space dx over dθ space equals space 1 plus cos space straight theta. space dy over dθ space equals space minus sin space straight theta
space space space space dy over dx space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space minus fraction numerator sin space straight theta over denominator 1 plus cos space straight theta end fraction
    At space space space straight theta space equals space straight pi over 4 comma space dy over dx space equals space minus fraction numerator sin space begin display style straight pi over 4 end style over denominator 1 plus cos space begin display style straight pi over 4 end style end fraction space equals space minus fraction numerator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator 1 plus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals negative fraction numerator 1 over denominator square root of 2 plus 1 end fraction comma which is slope of tangent
    therefore space space space space space space equation space of space tangent space to space the space curve space at space straight theta space equals space straight pi over 4 space space is
                        straight y minus open parentheses 1 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space minus fraction numerator 1 over denominator square root of 2 plus 1 end fraction open square brackets straight x minus open parentheses straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets
    or          straight y minus open parentheses 1 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space minus left parenthesis square root of 2 minus 1 right parenthesis space open square brackets straight x minus open parentheses straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets
                                                                   open square brackets because space space space space space fraction numerator 1 over denominator square root of 2 plus 1 end fraction space equals space fraction numerator 1 over denominator square root of 2 plus 1 end fraction cross times fraction numerator square root of 2 minus 1 over denominator square root of 2 minus 1 end fraction space equals space fraction numerator square root of 2 minus 1 over denominator 2 minus 1 end fraction space equals space square root of 2 minus 1 close square brackets

    Question 75
    CBSEENMA12035093

    Find the equation of tangent to the curve:
    straight x space equals space 1 minus cos space straight theta comma space space space straight y space equals space straight theta space plus space sin space straight theta space space at space straight theta space equals space straight pi over 4.


    Solution

    The equations of the curve are  straight x equals 1 minus cos space straight theta comma space space space space straight y space equals space straight theta plus sin space straight theta
         At space space straight theta space equals space straight pi over 4 comma
                               straight x equals space space 1 minus cos space straight pi over 4 space equals space 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space straight y space equals space straight pi over 4 plus sin space straight pi over 4 space equals space straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space space space space point space of space contact space is space open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses
      Also comma space dx over dθ space equals space sin space straight theta comma space space space dy over dθ space equals space 1 plus cos space straight theta
therefore space space space space space space dy over dx space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator 1 plus cos space straight theta over denominator sin space straight theta end fraction
    At At space space space straight theta space equals space straight pi over 4. space space dy over dx space equals space fraction numerator 1 plus cos space begin display style straight pi over 4 end style over denominator sin space begin display style straight pi over 4 end style end fraction space space equals space fraction numerator 1 plus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals space square root of 2 plus 1
    therefore space space space space at space space space straight theta space equals space straight pi over 4 comma space space space dy over dx space equals space fraction numerator 1 plus cos space begin display style straight pi over 4 end style over denominator sin space begin display style straight pi over 4 end style end fraction space equals space fraction numerator 1 plus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals space square root of 2 plus 1
therefore space space space space space space equation space of space tangent space is
space space space space space space space space space space space space space space space space space space space space space space straight y minus open parentheses straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space left parenthesis square root of 2 plus 1 right parenthesis space open square brackets straight x minus open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets

    Question 76
    CBSEENMA12035095

    Find the equation of tangent to the curve:
    straight x space equals space 1 plus cos space straight theta comma space space space space straight y equals space straight theta plus sinθ space space at space straight theta space equals space straight pi over 4.



    Solution

    The equations of the curve are straight x equals 1 plus cos space straight theta comma space space space space straight y space equals space straight theta plus sinθ
    At straight theta space equals space straight pi over 4 comma
          straight x space equals space 1 plus space cos space straight pi over 4 space equals space 1 plus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space straight y space equals space straight pi over 4 plus sin straight pi over 4 space equals space straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction
therefore space space space space point space of space contact space is space open parentheses 1 plus fraction numerator 1 over denominator square root of 2 end fraction comma space space straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses
Also comma space space space dx over dθ space equals space minus sin space straight theta comma space space space dy over dθ space equals space 1 plus space cos space straight theta
therefore space space space space space space space dy over dx space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator 1 plus cos space straight theta over denominator negative sin space straight theta end fraction
    At space straight theta space equals space straight pi over 4 comma space space space space space space dy over dx space equals space minus fraction numerator 1 plus cos space begin display style straight pi over 4 end style over denominator sin space begin display style straight pi over 4 end style end fraction space equals negative fraction numerator 1 plus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction space equals space minus left parenthesis square root of 2 plus 1 right parenthesis
space space therefore space space space space at space straight theta space equals space straight pi over 4 comma space space space slope space of space tangent space space equals space minus left parenthesis square root of 2 plus 1 right parenthesis
space space space therefore space space space equation space of space tangent space is space space space straight y minus open parentheses straight pi over 4 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space minus left parenthesis square root of 2 plus 1 right parenthesis space open square brackets straight x minus open parentheses 1 plus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets

    Question 77
    CBSEENMA12035100

    Find the equation of the tangent and normal to the curve
    straight x space equals space cost comma space space space space space straight y space equals space sin space straight t space space space at space straight t space equals space straight pi over 4

    Solution

    The equations of the curve are straight x space equals space cos space straight t comma space space space space straight y space equals space sin space straight t  At space space space straight t space equals space straight pi over 4 comma space space space straight x space equals space cos space straight pi over 4 space equals space fraction numerator 1 over denominator square root of 2 end fraction comma space space space straight y space equals space sin space straight pi over 4 space equals space fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space space space point space of space contact space is space open parentheses fraction numerator 1 over denominator square root of 2 end fraction comma space space space space fraction numerator 1 over denominator square root of 2 end fraction close parentheses
    Also,     dx over dt space equals space minus sin space straight t comma space space space dy over dt space equals space cot space space space space space space space space space space space rightwards double arrow space space space space dy over dx space equals space fraction numerator begin display style dy over dx end style over denominator begin display style dx over dt end style end fraction space equals space fraction numerator cos space straight t over denominator negative sin space straight t end fraction space equals space minus cot space straight t
     At space straight t space equals space straight pi over 4 comma space space space dy over dx space equals space minus cot straight pi over 4 space equals space minus 1
    therefore space space space space space space at space straight t space equals space straight pi over 4 comma space space slope space of space tangent space space equals space minus 1
    therefore space space space space the space equation space of space tangent space at space straight t space equals space straight pi over 4 space is space
                       straight y minus fraction numerator 1 over denominator square root of 2 end fraction space equals space minus 1 open parentheses straight x minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space space space space space or space space space space space straight y minus fraction numerator 1 over denominator square root of 2 end fraction space equals space minus straight x plus fraction numerator 1 over denominator square root of 2 end fraction
    or     straight x plus straight y minus square root of 2 space equals space 0
    Also slope of normal  = negative fraction numerator 1 over denominator negative 1 end fraction space equals space 1
    therefore space space space space space equation space of space normal space at space straight t space equals space straight pi over 4 space is
                                 straight y minus fraction numerator 1 over denominator square root of 2 end fraction space equals space 1 open parentheses straight x minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space space space space or space space space space straight x minus straight y space equals space 0

    Question 78
    CBSEENMA12035105

    Find the equation of the tangent to the curve
    straight y space equals space fraction numerator 1 plus sinx over denominator cosx end fraction space at space straight x space equals space straight pi over 4.

    Solution

    The equation of curve is
                        straight y space equals space fraction numerator 1 plus sinx over denominator cosx end fraction space equals space 1 over cosx plus sinx over cosx space equals space secx plus tanx
    At space straight x space equals space straight pi over 4 comma space space space straight y space equals sec straight pi over 4 plus tan straight pi over 4 space equals space square root of 2 plus 1
therefore space space space space points space is space open parentheses straight pi over 4 comma space space square root of 2 plus 1 close parentheses
space space space space space space space space space space space space space space dy over dx space equals space sec space straight x space tanx space plus sec squared straight x space equals space secx left parenthesis tanx space plus sec space straight x right parenthesis
At space space space straight x space equals straight pi over 4 comma space space dy over dx space equals space sec straight pi over 4 open parentheses tan space straight pi over 4 space plus space sec space straight pi over 4 close parentheses space equals space square root of 2 left parenthesis 1 plus square root of 2 right parenthesis
therefore space space space space equation space of space tangent space at space open parentheses straight pi over 4 comma space space space square root of 2 plus 1 close parentheses space space space is
space space space space space space space space space space space space space space space straight y minus left parenthesis square root of 2 plus 1 right parenthesis space equals space square root of 2 left parenthesis 1 plus square root of 2 right parenthesis space open parentheses straight x minus straight pi over 4 close parentheses
or space space space space space space space space space space straight y minus left parenthesis square root of 2 plus 1 right parenthesis space equals space square root of 2 left parenthesis 1 plus square root of 2 right parenthesis straight x minus fraction numerator square root of 2 left parenthesis 1 plus square root of 2 right parenthesis straight pi over denominator 4 end fraction space
or space space space space space space space space space space 4 square root of 2 left parenthesis 1 plus square root of 2 right parenthesis straight x minus 4 straight y plus 4 left parenthesis square root of 2 plus 1 right parenthesis minus square root of 2 left parenthesis 1 plus square root of 2 right parenthesis space straight pi space equals space 0 space

    Question 79
    CBSEENMA12035106

    Find the equation of the tangent and normal lines to the curve
    straight y space equals sin squared straight x space at space space space straight x space equals space straight pi over 2.

    Solution

    The equation of curve is straight y space equals space sin squared straight x                                  ...(1)
    therefore space space space space dy over dx space equals space 2 space sinx space cosx space space equals space sin space 2 straight x
    At space space straight x space equals space straight pi over 2 comma space space space dy over dx space equals space sin space straight pi space equals space 0
therefore space space space space slope space of space tangent space space equals space 0
When space straight x space equals space straight pi over 2 comma space space space space space space space straight y space equals space sin squared straight pi over 2 space equals space 1
therefore space space space point space is space open parentheses straight pi over 2 comma space space 1 close parentheses
The space equation space of space tangent space at space open parentheses straight pi over 2 comma space space 1 close parentheses space is
space space space space space space space space space space space space space space space space space space space space space space space space space straight y space minus space 1 space equals space 0 space open parentheses straight x minus straight pi over 2 close parentheses space space space or space space space space straight y minus 1 space equals space 0
    Since tangent is parallel to x-axis.
    therefore space space space space space normal space is space parallel space to space straight y minus axis
therefore space space space space space space equation space of space normal space through space open parentheses straight pi over 2 comma space space 1 close parentheses space is
space space space space space space space space space space space space space straight x space equals space straight pi over 2 space space space space space or space space space space space straight x minus straight pi over 2 space equals space 0.

    Sponsor Area

    Question 80
    CBSEENMA12035107

    Find the equations of the tangent and normal to the curve y = x2 + 4x + 1 at the point whose abscissa is 3.

    Solution

    The equation of curve is y = x2 + 4x + 1                              ...(1)
    When x = 3,   y = 9 + 12 + 1 = 22
    therefore point with abscissa 3 is (3, 22)
    Diff. (1) w.r.t.x,  dy over dx space equals space 2 straight x plus 4
    At (3, 22),   dy over dx space equals space 6 plus 4 space equals space 10
    therefore space space space space space slope space of space tangent space space equals space 10
therefore space space space space space space equation space of space the space tangent space at space left parenthesis 3 comma space 22 right parenthesis space is
space space space space space space space space space space space space space space space space space space straight y space minus 22 space equals space 10 left parenthesis straight x minus 3 right parenthesis
or space space space space space space space space space space space straight y minus 22 space equals space 10 straight x minus 30 space space space space or space space space 10 straight x minus straight y minus 8 space equals space 0
Also space slope space of space normal space space equals space minus 1 over 10
therefore space space space equation space of space normal space at space left parenthesis 3 comma space 222 right parenthesis space is
space space space space space space straight y minus 22 space equals space minus 1 over 10 left parenthesis straight x minus 3 right parenthesis space space space space or space space space space space space 10 straight y minus 220 space equals space minus straight x plus 3 space space space or space space space straight x plus 10 straight y minus 223 space equals space 0

    Question 82
    CBSEENMA12035114

    Find the equation of the tangent and normal to the given curves at the points given:
    y = x2 at (0,0).

    Solution

    The equations of curve is y = x2              rightwards double arrow space space space space space space space space space dy over dx space equals space 2 straight x
    At space left parenthesis 0 comma space 0 right parenthesis space dy over dx space equals space 2 left parenthesis 0 right parenthesis space equals space 0
therefore space space space space space straight m space equals space 0 comma space space space space where space straight m space is space slope space of space tangent.
therefore space space space space space space the space equation space of space tangent space at space left parenthesis 0 comma space 0 right parenthesis space is
space space space space space space space space space space space space space space straight y minus 0 space equals space 0 left parenthesis straight x minus 0 right parenthesis space space space space or space space space straight y space equals space 0
Now space the space normal space passes space through space the space origin space and space is space perpendicular space to space the space tangent space straight y space equals 0
therefore space space space space space space its space equation space is space straight x space equals 0
       

    Question 83
    CBSEENMA12035115

    Find the equation of the tangent and normal to the given curves at the points given:
    y2 = 4ax at (0, 0).

    Solution

    The equation of curve is y2 = 4ax
    Differentiating both sides w.r.t.x,   2 straight y dy over dx space equals space 4 straight a space space space space space space space rightwards double arrow space space space space space dy over dx space equals space fraction numerator 2 straight a over denominator straight y end fraction
    At (0, 0) dy over dx does not exist
    therefore space space space space space tangent space at space left parenthesis 0 comma space 0 right parenthesis space is space vertical
therefore space space space space its space equation space is space straight x space equals space 0

    Question 84
    CBSEENMA12035116

    Find the equation of the tangent and normal to the given curves at the points given:
    y = x3 at (1, 1)

    Solution

    The equation of curve is y = x3
    therefore space space space space space dy over dx space equals space 3 straight x squared
    At (1, 1),   dy over dx space equals space 3 left parenthesis 1 right parenthesis squared space equals space 3
    therefore space space space space straight m space equals space 3 comma space space where space straight m space is space slope space of space tangent.
therefore space space space space space the space equation space of space tangent space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space straight y minus 1 space equals space 3 left parenthesis straight x minus 1 right parenthesis semicolon space space space space space space or space space space straight y minus 1 space equals space 3 straight x minus 3 space space space space or space space space 3 straight x minus straight y minus 2 space equals space 0
Slope space of space normal space space equals space 1 third
therefore space space space space equation space of space normal space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space space space straight y minus 1 space equals space minus 1 third left parenthesis straight x minus 1 right parenthesis comma space space space space or space space space 3 straight y minus 3 space equals space minus straight x plus 1 space space space space or space space straight x plus 3 straight y minus 4 space equals space 0

    Question 85
    CBSEENMA12035117

    Find the equation of the tangent and normal to the given curves at the points given:
    y = x2 at (2, 8)

    Solution

    The equation of curve is y = x2
    therefore space space space space space space dy over dx space equals space 3 straight x squared
    At (2, 8),  dy over dx space equals space 3 left parenthesis 2 right parenthesis squared space equals space 12 comma which is the slope of tangent
    therefore space space space equation space of space tangent space at space left parenthesis 2 comma space 8 right parenthesis space is
space space space space space space space space space space straight y minus 8 space equals space 12 left parenthesis straight x minus 2 right parenthesis comma space space space space or space space space space space straight y minus 8 space equals space 12 straight x minus 24 space space space space or space space space space space 12 straight x minus straight y minus 16 space equals space 0
Slope space of space normal space space equals space minus 1 over 12
    The equation of normal at (2, 8) is
                             straight y minus 8 space equals space minus 1 over 12 left parenthesis straight x minus 2 right parenthesis space space or space space space 12 straight y space minus 96 space equals space minus straight x plus 2 space space space or space space space straight x plus 12 straight y minus 98 space equals space 0

    Question 86
    CBSEENMA12035122

    Find the equation of tangent and normal to the hyperbola straight x squared over straight a squared minus straight y squared over straight b squared space equals space 1 space space space space at space the space point space space left parenthesis straight x subscript 0 comma space space space straight y subscript 0 right parenthesis

    Solution

    The equation of hyperbola is straight x squared over straight a squared minus straight y squared over straight b squared equals 1
    Differentiating both sides w.r.t.x,
                      fraction numerator 2 straight x over denominator straight a squared end fraction minus fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals space 0 space space space space space space or space space space space space fraction numerator 2 straight y over denominator straight b squared end fraction dy over dx space equals space fraction numerator 2 straight x over denominator straight a squared end fraction space space space space space space space space space space space space space rightwards double arrow space space space space space dy over dx space equals space straight b squared over straight a squared straight x over straight y
    At left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis comma space   dy over dx space equals space straight b squared over straight a squared straight x subscript 0 over straight y subscript 0 comma space space which space is space slope space of space tangent. space
therefore space space space space space the space equation space of space tangent space at space left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis space is
space space space space space space space space space straight y minus straight y subscript 0 space equals space straight b squared over straight a squared straight x subscript 0 over straight y subscript 0 left parenthesis straight x minus straight x subscript 0 right parenthesis
or space space space space space space straight y subscript 0 over straight b squared left parenthesis straight y minus straight y subscript 0 right parenthesis space equals space straight x subscript 0 over straight a squared left parenthesis straight x minus straight x subscript 0 right parenthesis space space or space space space space space space fraction numerator straight y space straight y subscript 0 over denominator straight b squared end fraction space minus space straight y subscript 0 squared over straight b squared space equals space fraction numerator straight x space straight x subscript 0 over denominator straight a squared end fraction minus straight x subscript 0 squared over straight a squared
or space space space space space space space space fraction numerator straight x space straight x subscript 0 over denominator straight a squared end fraction minus fraction numerator straight y space straight y subscript 0 over denominator straight b squared end fraction space equals space straight x subscript 0 squared over straight a squared minus straight y subscript 0 squared over straight b squared
or space space space space space space space xx subscript 0 over straight a squared minus fraction numerator straight y space straight y subscript 0 over denominator straight b squared end fraction space equals space 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because space space space space left parenthesis straight x subscript 0 comma space space straight y subscript 0 right parenthesis space lies space on space straight x squared over straight a squared minus straight y squared over straight b squared space equals space 1 end cell row cell therefore space space space space straight x subscript 0 squared over straight a squared minus straight y subscript 0 squared over straight b squared space equals space 1 end cell end table close square brackets

    Question 87
    CBSEENMA12035124

    Find the equation of the normal at the point (am2, am3) for the curve ay= x3.

    Solution
    The equation of the curve is a y2 = x3
    Differentiating both sides w.r.t. x,
                          2 ay dy over dx space equals space 3 straight x squared. space space space space space space space space space space or space space space space space space dy over dx space equals space fraction numerator 3 straight x squared over denominator 2 ay end fraction
    At left parenthesis am squared comma space space am cubed right parenthesis comma space space dy over dx space equals space fraction numerator 3 cross times space straight a squared straight m to the power of 4 over denominator 2 straight a cross times space am cubed end fraction space equals space fraction numerator 3 straight a squared straight m to the power of 4 over denominator 2 straight a squared straight m cubed end fraction space equals space 3 over 2 straight m
    which is slope of tangent.
    therefore space space space space slope space of space normal space space equals space fraction numerator 2 over denominator 3 straight m end fraction
therefore space space space space space the space equation space of space normal space at space left parenthesis am to the power of minus comma space space space am cubed right parenthesis space is
space space space space space space space space space space straight y minus am cubed space equals space minus fraction numerator 2 over denominator 3 straight m end fraction left parenthesis straight x minus am cubed right parenthesis space space space space space or space space space space space space 3 my minus 3 am to the power of 4 space equals space minus 2 straight x plus 2 am squared
or space space space space space 2 straight x plus 3 my minus 3 am to the power of 4 minus 2 am squared space equals space 0
or space space space space space space 2 straight x plus 3 my minus am squared left parenthesis 3 straight m squared plus 2 right parenthesis space equals space 0

    Question 88
    CBSEENMA12035127

    Find the equation of the tangent and the normal to the curve straight x to the power of 2 over 3 end exponent plus straight y to the power of 2 over 3 end exponent space equals space 2 space space space at space space left parenthesis 1 comma space 1 right parenthesis.

    Solution

    The equations of curve is
                     straight x to the power of 2 over 3 end exponent plus straight y to the power of 2 over 3 end exponent space equals space 2
    Differentiating both sides w.r.t. x, we get,    
    2 over 3 straight x to the power of minus to the power of 1 third end exponent end exponent space plus space 2 over 3 straight y to the power of negative 1 third end exponent dy over dx space equals space 0 space space space space space space space space or space space space space space space straight y to the power of negative 1 third end exponent dy over dx space equals negative straight x to the power of negative 1 third end exponent
therefore space space space space space space space dy over dx space equals space minus straight x to the power of negative begin display style 1 third end style end exponent over straight y to the power of negative begin display style 1 third end style end exponent space equals space minus straight y to the power of begin display style 1 third end style end exponent over straight x to the power of begin display style 1 third end style end exponent space equals space minus open parentheses straight y over straight x close parentheses to the power of 1 third end exponent
At space left parenthesis 1 comma space 1 right parenthesis comma space slope space of space tangent space equals space minus open parentheses 1 over 1 close parentheses to the power of 1 third end exponent space equals space minus 1
therefore space space space space space space space space equation space of space tangent space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space space space straight y minus 1 space equals space minus left parenthesis straight x minus 1 right parenthesis comma space space space or space space space straight y minus 1 space equals space minus straight x plus 1 space space space or space space space space straight x plus straight y minus 2 space equals space 0
At space left parenthesis 1 comma space 1 right parenthesis comma space slope space of space normal space space equals space minus fraction numerator 1 over denominator negative 1 end fraction space equals space 1
therefore space space space space space space space equation space of space normal space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus 1 space equals space 1 left parenthesis straight x minus 1 right parenthesis space space space space space or space space space space space space space space straight y minus 1 space equals space straight x minus 1 space space space space space space or space space space straight x minus straight y space equals space 0

    Question 89
    CBSEENMA12035128
    Question 90
    CBSEENMA12035130

    Find the equation of the tangent and normal to the curve
    straight x equals space 1 minus cos space straight theta comma space space space space straight y space equals space straight theta space minus sin space straight theta space space space at space straight theta space equals space straight pi over 4

    Solution

    The equations of the curve are   straight x equals space 1 minus cos space straight theta comma space space space space straight y space equals space straight theta minus sin space straight theta
      At space space straight theta space equals space straight pi over 4 comma space space space space straight x space equals 1 minus cos space straight pi over 4 space equals space 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space space straight y space equals space straight theta minus sin space straight theta space equals space straight pi over 4 minus sin space straight pi over 4 space equals space sin space straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction
    therefore space space space space space point space of space contact space is space open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction comma space space space space straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses
    Also  dx over dθ space equals space fraction numerator begin display style dy over dθ end style over denominator begin display style dx over dθ end style end fraction space equals space fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction
    At straight theta space equals space straight pi over 4 comma space space space space space space dy over dx space equals space fraction numerator 1 minus cos space begin display style straight pi over 4 end style over denominator sin space begin display style straight pi over 4 end style end fraction space equals space fraction numerator 1 minus begin display style fraction numerator 1 over denominator square root of 2 end fraction end style over denominator square root of 2 end fraction space equals space square root of 2 minus 1
    therefore space space space space space at space straight theta space equals space straight pi over 4 comma space space space space slope space of space tangent space equals space square root of 2 minus 1
    therefore space space space space equation space of space tangent space is space straight y minus open parentheses straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space left parenthesis square root of 2 minus 1 right parenthesis space open square brackets straight x minus open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets
slope space of space tangent space space equals space square root of 2 minus 1
therefore space space space space space slope space of space normal space space equals space minus fraction numerator 1 over denominator square root of 2 minus 1 end fraction space equals space minus fraction numerator 1 over denominator square root of 2 minus 1 end fraction cross times fraction numerator square root of 2 plus 1 over denominator square root of 2 plus 1 end fraction space equals negative fraction numerator square root of 2 plus 1 over denominator 2 minus 1 end fraction space equals space minus left parenthesis square root of 2 plus 1 right parenthesis
therefore space space space space space space equation space of space normal space is
space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus open parentheses straight pi over 4 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses space equals space minus left parenthesis square root of 2 plus 1 right parenthesis space open square brackets straight x minus open parentheses 1 minus fraction numerator 1 over denominator square root of 2 end fraction close parentheses close square brackets

    Question 91
    CBSEENMA12035133

    Find the equation of the tangent and normal to the given curves at the points given:
    y = x4 – 6x3 + 13x2 – 10x + 5  at ( 0 , 5 )

    Solution

    The equations of curve is y = x4 – 6x3 + 13x2 – 10x + 5
    therefore space space space space dy over dx space equals space 4 straight x cubed minus 3 bx squared plus 26 straight x minus 10
    At (0, 5). dy over dx space equals space 0 minus 0 plus 0 minus 10 space equals space minus 10 comma space space which space is space slope space of space tangent
    therefore space space space space space space equation space of space tangent space at thin space left parenthesis 0 comma space 5 right parenthesis space is space
space space space space space space straight y space minus space 5 space space equals space minus 10 left parenthesis straight x minus 0 right parenthesis comma space space space space or space space space space straight y minus 5 space equals space minus 10 space straight x space space space space space or space space space 10 straight x plus straight y minus 5 space equals space 0
Slope space of space normal space equals space 1 over 10
therefore space space space space space space space equation space of space normal space at space left parenthesis 0 comma space 5 right parenthesis space is
space space space space space space space space space space straight y minus 5 space equals space 1 over 10 left parenthesis straight x minus 0 right parenthesis
or space space space space 10 straight y minus 50 space equals space straight x space space space space space space or space space space straight x minus 10 straight y plus 50 space equals space 0

    Question 92
    CBSEENMA12035135
    Question 93
    CBSEENMA12035137

    Find the equation of the tangent and normal to the given curves at the points given:
    straight y squared space equals space fraction numerator straight x cubed over denominator 4 minus straight x end fraction space space at space space left parenthesis 2 comma space space minus 2 right parenthesis

    Solution

    The equation of the curve is straight y squared space equals space fraction numerator straight x cubed over denominator 4 minus straight x end fraction
    Differentiating both sides w.r.t x,
                        2 straight y dy over dx space equals space fraction numerator left parenthesis 4 minus straight x right parenthesis. space 3 straight x squared minus space straight x cubed left parenthesis negative 1 right parenthesis over denominator left parenthesis 4 minus straight x right parenthesis squared end fraction
    therefore space space space space space 2 straight y dy over dx space equals space fraction numerator 12 straight x squared minus 3 straight x cubed plus straight x cubed over denominator left parenthesis 4 minus straight x right parenthesis squared end fraction space space space space space rightwards double arrow space space space space space dy over dx space equals space fraction numerator 12 straight x squared minus 2 straight x cubed over denominator 2 straight y left parenthesis 4 minus straight x right parenthesis squared end fraction
         At space left parenthesis 2 comma space minus 2 right parenthesis space comma space dy over dx space equals space fraction numerator 12 left parenthesis 2 right parenthesis squared minus 2 left parenthesis 2 right parenthesis cubed over denominator 2 left parenthesis negative 2 right parenthesis thin space left parenthesis 4 minus 2 right parenthesis squared end fraction space equals space fraction numerator 48 minus 16 over denominator negative 4 space cross times space 4 end fraction space equals space fraction numerator 32 over denominator negative 16 end fraction space equals space minus 2 comma
which space is space slope space of space tangent
therefore space space space space space the space equation space of space tangent space at space left parenthesis 2 comma space minus 2 right parenthesis space is
space space space space space space space space space space space space space space space space space space space straight y minus left parenthesis negative 2 right parenthesis space equals space minus 2 left parenthesis straight x minus 2 right parenthesis
or space space space space straight y plus 2 space equals space minus 2 straight x plus 4 space space space space space or space space space 2 straight x plus straight y minus 2 space equals space 0
Sloe space of space normal space equals space 1 half
therefore space space space space the space equation space of space normal space at space left parenthesis 2 comma space minus 2 right parenthesis space is
space space space space space space space space space space space space space space space space straight y minus left parenthesis negative 2 right parenthesis space equals space 1 half left parenthesis straight x minus 2 right parenthesis comma space space space space space space or space space space straight y plus 2 space equals space 1 half left parenthesis straight x minus 2 right parenthesis
or space space space space space space 2 straight y plus 4 space equals space straight x minus 2 space space space space space space space space or space space space straight x minus 2 straight y minus 6 space equals space 0

    Question 94
    CBSEENMA12035138
    Question 95
    CBSEENMA12035139

    Find the equation of the tangent and normal to the given curves at the points given:
    square root of straight x plus square root of straight y space equals space 5

    Solution

    The equation of curve is
                       square root of straight x plus square root of straight y space equals space 5
    Differentiating both sides w.r.t x,
                                fraction numerator 1 over denominator 2 square root of straight x end fraction plus fraction numerator 1 over denominator 2 square root of straight y end fraction dy over dx space equals space 0 comma space space space space space space or space space space space fraction numerator 1 over denominator 2 square root of straight x end fraction dy over dx space equals negative fraction numerator 1 over denominator 2 square root of straight x end fraction
    therefore space space space space dy over dx space equals space minus fraction numerator square root of straight y over denominator square root of straight x end fraction
At space left parenthesis 9 comma space 4 right parenthesis comma space space space dy over dx space equals negative fraction numerator square root of 4 over denominator square root of 9 end fraction space equals space minus 2 over 3 comma space space space which space is space slope space of space tangent.
therefore space space space space space space the space equation space of space tangent space at space left parenthesis 9 comma space 4 right parenthesis space is
space space space space space space space space space space space space space space space space space space space space space straight y minus 4 space equals space minus 2 over 3 left parenthesis straight x minus 9 right parenthesis comma space space space space or space space 3 straight y minus 12 space equals space minus 2 straight x plus 18 space space space or space space space space 2 straight x plus 3 straight y minus 30 space equals space 0
Slope space of space normal space space equals space 3 over 2
therefore space space space space the space equation space of space normal space at space left parenthesis 9 comma space 4 right parenthesis space is
space space space space space space space space space space space space space space space space straight y minus 4 space equals space 3 over 2 left parenthesis straight x minus 9 right parenthesis comma space space space space or space space 2 straight y minus 8 space equals space 3 straight x minus 27 space space space or space space space 3 straight x minus 2 straight y minus 19 space equals space 0

    Question 96
    CBSEENMA12035143

    Find the equation of the tangent and normal to the given curves at the points given:
    16 straight x squared plus 9 straight y squared space equals space 144 space space space at space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space space space where space straight x subscript 1 space equals space 2 space space space and space straight y subscript 1 greater than 0
    Also find the points of intersection where both tangent and normal cut the x-axis.


    Solution

    The equation of curve is 16 straight x squared plus 9 straight y squared space equals space 144                                 ...(1)
    Now,     left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis lies on it
      therefore space space space space 16 straight x subscript 1 squared plus 9 straight y subscript 1 squared space equals space 144
    Put straight x subscript 1 space equals space 2
    therefore space space space space 64 plus 9 straight y subscript 1 squared space equals space 144 comma space space space space space space or space space space 9 straight y subscript 1 squared space equals space 80
therefore space space space space space space straight y subscript 1 squared space equals space 80 over 9 space space space space space space space rightwards double arrow space space space space space straight y subscript 1 space equals space fraction numerator square root of 80 over denominator 3 end fraction space space space space space space space space space space space space space space space space space space space space space space left parenthesis because space space space straight y subscript 1 greater than 0 right parenthesis
space space therefore space space space space space space point space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space is space open parentheses 2 comma space fraction numerator square root of 80 over denominator 3 end fraction close parentheses
space space space space Differentiating space both space sides space straight w. straight r. straight t. straight x. comma space
space space space space space space space space space space space space space space space 32 straight x plus 18 straight y dy over dx space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space dy over dx space equals negative fraction numerator 32 straight x over denominator 18 straight y end fraction equals negative 16 over 9 straight x over straight y
space space At space open parentheses 2 comma space fraction numerator square root of 80 over denominator 3 end fraction close parentheses comma space space dy over dx space equals space minus 16 over 9 fraction numerator 2 over denominator begin display style fraction numerator square root of 80 over denominator 3 end fraction end style end fraction space equals space minus 16 over 9 cross times fraction numerator 6 over denominator 4 square root of 5 end fraction equals negative fraction numerator 8 over denominator 3 square root of 5 end fraction
therefore space space space space space equation space of space tangent space at space open parentheses 2 comma space fraction numerator square root of 80 over denominator 3 end fraction close parentheses space is
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus fraction numerator square root of 80 over denominator 3 end fraction space equals space minus fraction numerator 8 over denominator 3 square root of 5 end fraction left parenthesis straight x minus 2 right parenthesis
    or          3 square root of 5 straight y space minus space square root of 400 space equals negative 8 straight x plus 16 space space space space or space space space space 8 straight x plus 3 square root of 5 straight y minus 36 space equals space 0
    Slope of normal  = fraction numerator 3 square root of 5 over denominator 8 end fraction
    therefore     the equation of normal at open parentheses 2 comma space space fraction numerator square root of 80 over denominator 3 end fraction close parentheses space is
    straight y minus fraction numerator square root of 80 over denominator 3 end fraction space equals space fraction numerator 3 square root of 5 over denominator 8 end fraction left parenthesis straight x minus 2 right parenthesis space space space space space space or space space 24 straight y minus 8 square root of 80 space equals space 9 square root of 5 left parenthesis straight x minus 2 right parenthesis
    or space space space space 24 straight y minus 32 square root of 5 space equals space 9 square root of 5 straight x minus 18 square root of 5 space space space space or space space space 9 square root of 5 straight x minus 24 straight y plus 14 square root of 5 space equals space 0
    The tangent 8 straight x plus 3 square root of 5 straight y minus 36 space equals space 0  cuts x-axis where y = 0,  So putting y = 0, we get,
                   8 straight x minus 36 space equals space 0 space space space space rightwards double arrow space space space space space straight x space equals space 9 over 2
therefore space space space space space space required space point space is space open parentheses 9 over 2 comma space space 0 close parentheses
    The normal 9 square root of 5 straight x minus 24 straight y plus 14 square root of 5 space equals space 0 cut x-axis where y = 0. So putting y = 0, we get.
                         9 square root of 5 straight x plus 14 square root of 5 space equals space 0 space space space space rightwards double arrow space space space space space straight x space equals space minus 14 over 9
    therefore space space space space space required space point space is space minus open parentheses 14 over 9 comma space 0 close parentheses.

    Question 97
    CBSEENMA12035144

    Find the equation of the tangent and normal to the given curves at the points given:
    square root of straight x plus square root of straight y space equals space straight a space space space at space space open parentheses straight a squared over 4 comma space space straight a squared over 4 close parentheses
    Also find the points of intersection where both tangent and normal cut the x-axis.


    Solution

    The equation of curve is square root of straight x plus square root of straight y space equals space square root of straight a
    Differentiating both sides w.r.t. x,  we get,.
    fraction numerator 1 over denominator 2 square root of straight x end fraction plus fraction numerator 1 over denominator 2 square root of straight y end fraction dy over dx space equals space 0 space space space space space space space space space space space space space space rightwards double arrow space space space space space dy over dx space equals space minus fraction numerator square root of straight y over denominator square root of straight x end fraction
    At space open parentheses straight a squared over 4 comma straight a squared over 4 space close parentheses space space dy over dx space equals space fraction numerator negative square root of begin display style straight a squared over 4 end style end root over denominator square root of begin display style straight a squared over 4 end style end root end fraction space equals space minus 1
therefore space space space space space slope space of space tangent space space equals space minus 1
therefore space space space space space space the space equation space of space tangent space at space open parentheses straight a squared over 4 comma space straight a squared over 4 close parentheses space is
space space space space space space space space space space space space space space space space space space straight y minus straight a squared over 4 space equals space minus open parentheses straight x minus straight a squared over 4 close parentheses space space space or space space space space straight y minus straight a squared over 4 space equals space minus straight x plus straight a squared over 4 space space space space or space space straight x plus straight y minus straight a squared over 2 space equals space 0
or space space space 2 straight x plus 2 straight y minus straight a squared space equals space 0
slope space of space normal space space equals space minus fraction numerator 1 over denominator negative 1 end fraction space equals 1
therefore space space space space space equation space of space normal space at space open parentheses straight a squared over 4 comma space space space straight a squared over 4 close parentheses space space is
space space space straight y minus straight a squared over 4 space equals space 1 space open parentheses straight x minus straight a squared over 4 close parentheses space space space space or space space space space straight y minus straight a squared over 4 space equals space straight x minus straight a squared over 4 space space space or space space space straight x minus straight y space equals space 0
                            

    Question 98
    CBSEENMA12035145

    Find the equation of the tangent to the curve y = (x3 – 1) (x – 2) at points where the curve cuts the x-axis.

    Solution

    The equation of given curve is
                            straight y space equals space left parenthesis straight x cubed minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x squared plus straight x plus 1 right parenthesis
    It meets x-axis where y = 0
    Putting y = 0,   we get,
                  0 space equals space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x squared plus straight x plus 1 right parenthesis
    rightwards double arrow space space space space space space straight x space equals space 1 comma space 2 comma space fraction numerator negative 1 plus-or-minus square root of 1 minus 4 end root over denominator 2 end fraction space space space space space space rightwards double arrow space space space straight x space equals 1 comma space space 2 comma space space fraction numerator negative 1 plus-or-minus square root of negative 3 end root over denominator 2 end fraction
therefore space space space space space space straight x space equals space 1 comma space space space 2 space space space are space only space real space values
therefore space space space space space space space space space straight y space equals space 0 comma space space 0
therefore space space space space space space points space are space left parenthesis 1 comma space 0 right parenthesis comma space left parenthesis 2 comma space 0 right parenthesis.
Now space dy over dx space equals space left parenthesis straight x cubed minus 1 right parenthesis. space 1 space plus space left parenthesis straight x plus 2 right parenthesis.3 space straight x squared space equals space straight x cubed minus 1 plus 3 straight x cubed minus 6 straight x squared
space space space space space space space space space space space space space space space space space space equals space 4 straight x cubed minus 6 straight x squared minus 1 comma space space which space is space slope space of space tangent.

    At (1, 0), slope of tangent = 4 (1)3 – 6 (1)–1 = 4 – 6 – 1 = – 3
    At (2, 0), slope of tangent = 4 (2)3 – 6 (2)2 – 1 = 4 × 8 – 6 × 4 – 1 = 7
    ∴  equation of tangent at (1, 0) with slope – 3 is
    y – 0 = – 3(x – 1) or y = – 3x + 3 or 3x + y – 3 = 0
    The equation of tangent at (2, 0) with slope 7 is
    y – 0 = 7(x – 2), or y = 7x – 14 or  7x – y - 14 = 0

    Question 99
    CBSEENMA12035146

    Find the equation of the tangent to the curve straight y equals space fraction numerator straight x minus 7 over denominator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis end fraction at the point where  it cuts the x-axis.

    Solution

    The equation of curve is
                              straight y space equals space fraction numerator straight x minus 7 over denominator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis end fraction                         ...(1)
    It meets x-axis where y = 0
    Putting y = 0 in (1), we get
                                  fraction numerator straight x minus 7 over denominator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis end fraction space equals space 0 space space space space space or space space space straight x minus 7 space equals space 0 space space space space or space space space straight x space equals space 7
    therefore space space space space space curve space left parenthesis 1 right parenthesis space meets space straight x minus axis space in space left parenthesis 7 comma space 0 right parenthesis
From space left parenthesis 1 right parenthesis comma space space space space space straight y space equals space fraction numerator straight x minus 7 over denominator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis end fraction space equals space fraction numerator straight x minus 7 over denominator straight x squared minus 5 straight x plus 6 end fraction
space space space space space space space space space space space space space space dy over dx space equals space fraction numerator left parenthesis straight x squared minus 5 straight x plus 6 right parenthesis thin space 1 minus left parenthesis straight x minus 7 right parenthesis. space left parenthesis 2 straight x minus 5 right parenthesis over denominator left parenthesis straight x squared minus 5 straight x plus 6 right parenthesis squared end fraction
At space left parenthesis 7 comma space 0 right parenthesis space space dy over dx equals space fraction numerator left parenthesis 49 minus 35 plus 6 right parenthesis space minus space left parenthesis 0 right parenthesis space left parenthesis 14 minus 5 right parenthesis over denominator left parenthesis 49 minus 35 plus 6 right parenthesis squared end fraction space equals space 1 over 20
therefore space space space space the space equation space of space tangent space at space left parenthesis 7 comma space 0 right parenthesis space is
space space space space space space space space space space space space space space space space space space space space space straight y minus 0 space equals 1 over 20 left parenthesis straight x minus 7 right parenthesis space space space space or space space 20 straight y space equals space straight x minus 7 space space space space or space space straight x minus 20 straight y minus 7 space equals space 0

    Question 100
    CBSEENMA12035148

    Prove that the line straight x over straight a plus straight y over straight b space equals space 1 is a tangent to the curve straight y space equals be to the power of negative straight x over straight a end exponent at the point where the curve cuts y-axis.

    Solution

    The equation of given curve is straight y space equals space be to the power of negative straight x over straight a end exponent                        ...(1)
    It cuts y-axis where x = 0
    therefore space space space space space space putting space straight x space equals space 0 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space space space straight y equals be to the power of 0 space equals space straight b cross times 1 space equals space straight b
therefore space space space space space curve space left parenthesis 1 right parenthesis space cuts space straight y minus axis space at space left parenthesis 0 comma space straight b right parenthesis.
    Differentiating (1), w.r.t. x, we get,
                           dy over dx space equals space minus straight b over straight a straight e to the power of negative straight x over straight a end exponent
    At space left parenthesis 0 comma space straight b right parenthesis comma space space dy over dx space equals space minus straight b over straight a straight e to the power of 0 space equals space minus straight b over straight a cross times 1 space equals space minus straight b over straight a
therefore space space space space straight m space equals space minus straight b over straight a
    The equation of tangent (0, b) with straight m space equals space minus straight b over straight a space space is
                            straight y minus straight b space equals space minus straight b over straight a left parenthesis straight x minus 0 right parenthesis                      open square brackets straight y minus straight y subscript 1 space equals space straight m left parenthesis straight x minus straight x subscript 1 right parenthesis close square brackets
     space space space space space ay minus ab space equals space minus bx comma space space space space space or space space space bx plus ay space equals space ab
space or space space space space space straight x over straight a plus straight y over straight b space space equals space 1
Hence space the space result. space

    Question 101
    CBSEENMA12035149

    Find the point on the curve y = x3 – 11 x + 5 at which the tangent has the equation y = x – 11.

    Solution

    The equation of the curve is y = x3 – 11 x + 5                               ...(1)
       therefore space space space space space dy over dx space equals space 3 straight x squared minus 11 comma space space space space which space is space slope space of space the space tangent space to space the space curve space left parenthesis 1 right parenthesis space at space left parenthesis straight x comma space straight y right parenthesis
Consider space the space line space space straight y equals straight x minus 11
Its space slope space space equals space 1
therefore space space space space space 3 straight x squared minus 11 space equals space 1 space space space space rightwards double arrow space space space space 3 straight x squared space equals space 12 space space space space rightwards double arrow space space space space space straight x squared space equals space 4 space space space space space space rightwards double arrow space space space straight x space equals space 2 comma space space minus 2
When space straight x space equals space 2 comma space space from space left parenthesis 1 right parenthesis comma space space space space straight y space equals space 8 minus 22 plus 5 space equals space minus 9
When space straight x space equals space minus 2 comma space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space minus 8 plus 22 plus 5 space equals space 19
therefore space space space space points space are space left parenthesis 2 comma space minus 9 right parenthesis space and space left parenthesis negative 2 comma space 19 right parenthesis comma space But space left parenthesis negative 2 comma space 19 right parenthesis space does space not space satisfy space the space line space
straight y space equals space straight x minus 11 space space space space space as space space 19 space equals negative 2 minus 11 space is space not space true.
space space space space space therefore space space space required space point space is space left parenthesis 2 comma space minus 9 right parenthesis.

    Question 102
    CBSEENMA12035150
    Question 103
    CBSEENMA12035152

    Find the points on the curve y = x3 – 2x2 – x at which the tangent lines are parallel to the line y = 3x – 2.

    Solution

    The equation of curve is   straight y equals straight x cubed minus 2 straight x squared minus straight x                                  ...(1)
    therefore space space space space dy over dx space equals space 3 straight x squared minus 4 straight x minus 1
At space left parenthesis straight x comma space straight y right parenthesis comma space space slope space of space tangent space equals 3 straight x squared minus 4 straight x minus 1
therefore space space space space space straight m subscript 1 space equals space 3 straight x squared minus 4 straight x minus 1 comma space space space where space straight m subscript 1 space is space slope space of space tangent
Let space space straight m subscript 2 space be space slope space of space line space straight y equals space space 3 straight x minus 2
therefore space space space space straight m subscript 2 space equals space 3
because space space tangent space is space parallel space to space line space left parenthesis 2 right parenthesis
therefore space space space space space straight m subscript 1 space equals space straight m subscript 2 space space space space rightwards double arrow space space space space space 3 straight x squared minus 4 straight x minus 1 space space space space space rightwards double arrow space space space space space 3 straight x squared minus 4 straight x minus 4 space equals space 0
rightwards double arrow space space space space space straight x space equals space fraction numerator 4 plus-or-minus square root of 16 plus 48 end root over denominator 6 end fraction space equals space fraction numerator 4 plus-or-minus 8 over denominator 6 end fraction space equals space 2 comma space space space space minus 2 over 3
When space straight x space equals space 2 comma space space space from space left parenthesis 1 right parenthesis comma space space space straight y space equals space 8 minus 8 minus 2 space equals space minus 2
When space straight x space equals space minus 2 over 3 comma space space from space left parenthesis 1 right parenthesis comma space space space straight y space equals space minus 8 over 27 minus 8 over 9 plus 2 over 3 space equals space fraction numerator negative 8 minus 24 plus 18 over denominator 27 end fraction space equals space minus 14 over 27
therefore space space space space space required space points space are space left parenthesis 2 comma space minus 2 right parenthesis comma space space space open parentheses negative 2 over 3 comma space space minus 14 over 27 close parentheses

    Question 104
    CBSEENMA12035154

    Find the equation of the tangent to the curve x2 + 3y = 3, which is parallel to the line y – 4x + 5 = 0. 

    Solution

    The equation of curve is x2 + 3y = 3                               ...(1)
    Differentiating w.r.t.x, we get,
    2 straight x plus 3 dy over dx space equals 0 space space space space rightwards double arrow space space space space dy over dx space equals space minus fraction numerator 2 straight x over denominator 3 end fraction
therefore space space space straight m subscript 1 space equals space minus fraction numerator 2 straight x over denominator 3 end fraction
Let space space straight m subscript 2 space be space slope space of space line space space straight y minus 4 straight x plus 5 space equals space 0
therefore space space space space space space straight m subscript 2 space equals 4
because space space space tangent space is space parallel space to space straight y minus 4 straight x plus 5 space equals space 0
therefore space space space space space space straight m subscript 1 space equals space straight m subscript 2
therefore space space space space space space space fraction numerator negative 2 straight x over denominator 3 end fraction space equals space 4 space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight x space equals space minus 6
therefore space space space space space space from space left parenthesis 1 right parenthesis comma space space space 36 plus 3 straight y space equals space 3 space space space space rightwards double arrow space space space space straight y space equals space minus 11
therefore space space space point space is space left parenthesis negative 6 comma space minus 11 right parenthesis
therefore space space space space equation space of space tangent space at space left parenthesis negative 6 comma space minus 11 right parenthesis space is
space space space space space straight y plus 11 space equals space 4 left parenthesis straight x plus 6 right parenthesis space space space space or space space space space space space straight y plus 11 space equals space 4 straight x plus 24 space space space space space or space space space space 4 straight x minus straight y plus 13 space equals space 0

    Question 105
    CBSEENMA12035156

    Find the equations of all lines having slope -1 that are tangents to the curve straight y equals fraction numerator 1 over denominator straight x minus 1 end fraction. straight x not equal to 1.

    Solution

    The equations of the curve is straight y equals space fraction numerator 1 over denominator straight x minus 1 end fraction space equals left parenthesis straight x minus 1 right parenthesis to the power of negative 1 end exponent
    therefore space space space space space space dy over dx space equals space left parenthesis negative 1 right parenthesis thin space left parenthesis straight x minus 1 right parenthesis to the power of negative 2 end exponent space equals space minus fraction numerator 1 over denominator left parenthesis straight x minus 1 right parenthesis squared end fraction
therefore space space space space space space slope space of space tangent space equals space minus fraction numerator 1 over denominator left parenthesis straight x minus 1 right parenthesis squared end fraction
But space slope space of space tangent space space equals space minus 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis given right parenthesis
therefore space space space space space space minus fraction numerator 1 over denominator left parenthesis straight x minus 1 right parenthesis squared end fraction space equals space minus 1 space space space space rightwards double arrow space space space space space fraction numerator 1 over denominator left parenthesis straight x minus 1 right parenthesis squared end fraction space equals space 1 space space space space rightwards double arrow space space space space left parenthesis straight x minus 1 right parenthesis squared space equals space 1
rightwards double arrow space space space space space space straight x minus 1 space equals space plus-or-minus 1 space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight x space equals space 0 comma space space 2
When space straight x space equals space 0 comma space space space space space straight y space equals space fraction numerator 1 over denominator 0 minus 1 end fraction space equals space minus 1
When space straight x space equals space 2 comma space space space space straight y space equals space fraction numerator 1 over denominator 2 minus 1 end fraction space equals space 1 over 1 space equals space 1

    ∴   there are two tangents to the given curve with slope – 1 and passing through the points (0, – 1) and (2, 1).
    The equation of tangent through (0, – 1) is
    y – (– 1) = – 1 (x – 0) or y + 1 = – x  or  x + y + 1 = 0
    The equation of tangent through (2, 1) is
    y – 1 = – 1 (x – 2) or y – 1 = – x + 2 or x + y – 3 = 0

    Question 106
    CBSEENMA12035158

    Find the equation of all lines having slope 2 and being tangent to the curve straight y plus fraction numerator 2 over denominator straight x minus 3 end fraction space equals space 0.

    Solution

    The equation of curve is
                                   straight y plus fraction numerator 2 over denominator straight x minus 3 end fraction space equals space 0 space space space space space or space space space space straight y space equals negative fraction numerator 2 over denominator straight x minus 3 end fraction
    or               straight y equals negative 2 left parenthesis straight x minus 3 right parenthesis to the power of negative 1 end exponent
    therefore space space space space space space space space space space space dy over dx space equals space left parenthesis negative 2 right parenthesis thin space left parenthesis negative 1 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis to the power of negative 2 end exponent space equals space fraction numerator 2 over denominator left parenthesis straight x minus 3 right parenthesis squared end fraction
therefore space space space space space space slope space of space tangent space space equals space fraction numerator 2 over denominator left parenthesis straight x minus 3 right parenthesis squared end fraction
But space slope space of space tangent space space equals space 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis given right parenthesis
therefore space space space space space fraction numerator 2 over denominator left parenthesis straight x minus 3 right parenthesis squared end fraction space equals space 2 space space space space space space space space space space space rightwards double arrow space space space space space space space fraction numerator 1 over denominator left parenthesis straight x minus 3 right parenthesis squared end fraction space equals space 1 space space space space space space space rightwards double arrow space space space space left parenthesis straight x minus 3 right parenthesis squared space equals space 1
therefore space space space space space space space space space space space space straight x minus 3 space equals space minus 1 comma space space 1 space space space space space space space space space space rightwards double arrow space space space straight x space equals space 2 comma space 4
When space straight x space equals space 2 comma space space space straight y space equals space minus fraction numerator 2 over denominator 2 minus 3 end fraction space equals space minus fraction numerator 2 over denominator negative 1 end fraction space equals space 2
When space straight x space equals space 4 comma space space space straight y space equals space minus fraction numerator 2 over denominator 4 minus 3 end fraction space equals space minus 2 over 1 space equals space minus 2
    there are two tangents to the given curve with slope 2 and passing through the points (2, 2) and (4, -2).
    The equation of line through (2, 2) is
    y – 2 = 2 (x – 2) or y – 2 = 2x – 4 or 2 x – 2 = 0
    The equation of line through (4, – 2) is
    y – (– 2) = 2 (x – 4) or y + 2 = 2 x – 8 or 2 x – y – 10 = 0

    Question 107
    CBSEENMA12035160
    Question 108
    CBSEENMA12035161

    Find the equation of the tangent to the curve straight y equals square root of 3 straight x minus 2 end root which is parallel to the line 4x - 2y + 5 = 0

    Solution

    The equation of curve is  straight y space equals square root of 3 straight x minus 2 end root.                        ...(1)
    therefore space space space space space dy over dx space equals fraction numerator 3 over denominator 2 square root of 3 straight x minus 2 end root end fraction
therefore space space space space at space left parenthesis straight x comma space straight y right parenthesis comma space space slope space of space tangent space space equals space fraction numerator 3 over denominator 2 square root of 3 straight x minus 2 end root end fraction
therefore space space space space space straight m subscript 1 space equals space fraction numerator 3 over denominator 2 square root of 3 straight x minus 2 end root end fraction comma space space space where space straight m subscript 1 space is space slope space of space tangent
Let space space straight m subscript 2 space be space slope space of space line space 4 straight x minus 2 straight y plus 5 space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    therefore space space space space straight m subscript 2 space equals space minus fraction numerator 4 over denominator negative 2 end fraction space equals space 2
because space space space space space space tangent space is space parallel space to space line space left parenthesis 2 right parenthesis
therefore space space space space space space space straight m subscript 1 space equals space straight m subscript 2 space space space rightwards double arrow space space space space space fraction numerator 3 over denominator 2 square root of 3 straight x minus 2 end root end fraction space equals space 2 space space space rightwards double arrow space 3 space equals space 4 space square root of 3 straight x minus 2 end root
rightwards double arrow space space space space space space 9 space equals space 16 left parenthesis 3 straight x minus 2 right parenthesis space space space space space rightwards double arrow space space space space space 9 space equals space 48 straight x minus 32 space space space space space rightwards double arrow space space space space 48 straight x space equals space 41 space space space rightwards double arrow space space space space straight x space equals space 41 over 48
When space straight x space equals 41 over 48 comma space space space space space space straight y space equals space square root of 41 over 16 minus 2 end root space equals space square root of 9 over 16 end root space equals space 3 over 4
therefore space space space space space space space point space is space open parentheses 41 over 48 comma space space space 3 over 4 close parentheses
therefore space space space space space equation space of space tangent space space is
space space space space space space space space space space space space space space space space straight y minus 3 over 4 space space equals space 2 open parentheses straight x minus 41 over 48 close parentheses comma space space space space or space space space space space space straight y minus 3 over 4 space equals space 2 straight x minus 41 over 24
or space space space space space 24 straight y minus 18 space equals space 48 straight x minus 41 space space space space space or space space space space 48 straight x minus 24 straight y minus 23 space equals space 0

    Question 109
    CBSEENMA12035164

    Find the equation of tangents to the curve
    y = cos (x + y), – 2 straight pi ≤ x ≤ 2 straight pi
    that are parallel to the line x + 2y = 0.

    Solution

    The equation of curve is
                                           y = cos (x + y)                         ...(1)
    Differentiating both sides w.r.t.x, we get,
                              dy over dx space equals space minus sin space left parenthesis straight x plus straight y right parenthesis. space space space open parentheses 1 plus dy over dx close parentheses
    or                      dy over dx space equals space minus sin space left parenthesis straight x plus straight y right parenthesis space minus space sin space left parenthesis straight x plus straight y right parenthesis. space dy over dx
    therefore space space space left square bracket 1 plus sin space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space minus sin space left parenthesis straight x plus straight y right parenthesis
therefore space space space space space space space space dy over dx space equals space minus fraction numerator sin space left parenthesis straight x plus straight y right parenthesis over denominator 1 plus sin space left parenthesis straight x plus straight y right parenthesis end fraction
    therefore space space space slope space of space tangent space at space left parenthesis straight x comma space straight y right parenthesis space space equals space minus fraction numerator sin space left parenthesis straight x plus straight y right parenthesis over denominator 1 plus sin space left parenthesis straight x plus straight y right parenthesis end fraction
Consider space the space line space space space straight x plus 2 straight y space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Its space slope space space equals space minus 1 half
Since space lines space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space are space parallel.
therefore space space space space their space slopes space are space equal.
space space space space therefore space space space space space minus fraction numerator sin space left parenthesis straight x plus straight y right parenthesis over denominator 1 plus sin space left parenthesis straight x plus straight y right parenthesis end fraction space equals space minus 1 half
space space space space space space therefore space space space space space space space 2 space sin space left parenthesis straight x plus straight y right parenthesis space equals space 1 plus sin left parenthesis straight x plus straight y right parenthesis
space space space space space space space therefore space space space space space sin space left parenthesis straight x plus straight y right parenthesis space equals space 1 space space space space space space space or space space space space sin space left parenthesis straight x plus straight y right parenthesis space equals space sin space space straight pi over 2
space space space space space space therefore space space space space space space space space straight x plus straight y space equals space nπ plus left parenthesis negative 1 right parenthesis to the power of straight n straight pi over 2 comma space space space space straight n element of straight Z space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
From space left parenthesis 1 right parenthesis comma space space space space straight y space equals space cos space open square brackets straight n space straight pi space plus space left parenthesis negative 1 right parenthesis to the power of straight n straight pi over 2 close square brackets comma space space space straight n element of straight Z
Now comma space space space space space space space minus 2 straight pi space less or equal than straight x less or equal than 2 straight pi
therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x equals negative fraction numerator 3 straight pi over denominator 2 end fraction comma space space straight pi over 2

therefore space space space space space space tangents space to space the space given space curve space left parenthesis 1 right parenthesis space are space parallel space to space the space line space straight x plus 2 space straight y space equals space 0 space at space points space open parentheses negative fraction numerator 3 straight pi over denominator 2 end fraction comma space 0 close parentheses comma space open parentheses straight pi over 2 comma space 0 close parentheses
      The equation of tangent at open parentheses negative fraction numerator 3 straight pi over denominator 2 end fraction comma space space 0 close parentheses is 
                                     straight y minus 0 space equals space minus 1 half open parentheses straight x plus fraction numerator 3 straight pi over denominator 2 end fraction close parentheses space space space or space space space space space 2 straight y space equals negative straight x minus fraction numerator 3 straight pi over denominator 2 end fraction
    or                         4 straight y space equals space minus 2 straight x plus straight pi space space space space or space space space 2 straight x plus 4 straight y minus straight pi space equals space 0
    The equation of tangent at open parentheses straight pi over 2 comma space 0 close parentheses is
                            straight y minus 0 space equals space minus 1 half open parentheses straight x minus straight pi over 2 close parentheses space space space space or space space space 2 straight y space equals negative straight x plus straight pi over 2
    or                  4 straight y space equals space minus 2 straight x plus straight pi space space space space space space space or space space space space space 2 straight x plus 4 straight y minus straight pi space equals space 0

    Question 110
    CBSEENMA12035168

    Find the point on curve 4x2 + 9y2 = 1, where the tangents are perpendicular to the line 2y + x = 0.

    Solution

    The equation of curve is 4x2 + 9y2 = 1                              ...(1)
    Diff. w.r.t. x, 8 straight x plus 18 straight y dy over dx space equals space 0
    therefore space space space dy over dx space equals space minus 4 over 9. space straight x over straight y space space space space space space rightwards double arrow space space space space space space space space space space slope space of space tangent space space equals space minus fraction numerator 4 straight x over denominator 9 straight y end fraction
therefore space space space space space space straight m subscript 1 space equals space minus 4 over 9 straight x over straight y comma space space space where space straight m subscript 1 space space is space slope space of space tangent. space
Let space straight m subscript 2 space be space slope space of space space 2 straight y plus straight x space equals space 0
therefore space space space space space space straight m subscript 2 space equals space minus 1 half space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
because space space tangent space is space perpendicular space to space line space left parenthesis 2 right parenthesis
therefore space space space space space space straight m subscript 1 straight m subscript 2 space equals space minus 1. space space space space space space space space space space space space space space space space space space rightwards double arrow space space fraction numerator 4 straight x over denominator 9 straight y end fraction cross times negative 1 half space equals space minus 1 space space space space space rightwards double arrow space space space space space straight y space equals space minus fraction numerator 2 straight x over denominator 9 end fraction
Putting space this space value space of space straight y space in space left parenthesis 1 right parenthesis comma space we space get comma
4 straight x squared plus fraction numerator 4 straight x squared over denominator 9 end fraction equals 1 comma space space space space space space space space space space space space space space space space rightwards double arrow space space straight x squared space equals space 9 over 40 comma space space space space space space space space rightwards double arrow space space space space space straight x space space equals plus-or-minus fraction numerator 3 over denominator square root of 40 end fraction space equals space plus-or-minus fraction numerator 3 over denominator 2 square root of 10 end fraction
therefore space space space space from space left parenthesis 3 right parenthesis comma space space space straight y space equals space minus 2 over 9 cross times fraction numerator 3 over denominator 2 square root of 10 end fraction comma space space fraction numerator negative 2 over denominator 9 end fraction cross times fraction numerator negative 3 over denominator 2 square root of 10 end fraction equals negative fraction numerator 1 over denominator 3 square root of 10 end fraction comma space fraction numerator 1 over denominator 3 square root of 10 end fraction
therefore space space space space space points space are space open parentheses fraction numerator 3 over denominator 2 square root of 10 end fraction comma space space space space minus fraction numerator 1 over denominator 3 square root of 10 end fraction close parentheses space and space space open parentheses negative fraction numerator 3 over denominator 2 square root of 10 end fraction comma space space fraction numerator 1 over denominator 3 square root of 10 end fraction close parentheses

    Question 111
    CBSEENMA12035174

    Find the equation of the tangent line to the curve  y = x2 – 2x + 7 which is
    (a) parallel to the line 2x – y + 9 = 0
    (ii) perpendicular to the line 5y – 15y = 13

    Solution

    The equation of curve is  y = x2 – 2x + 7                      ...(1)
    therefore space space space space space dy over dx space equals space 2 straight x minus 2
    therefore space space space at space left parenthesis straight x comma space straight y right parenthesis space slope space of space tangent space space equals space 2 straight x minus 2
    (i) consider the line 2 straight x minus straight y plus 9 space equals space 0                            ...(2)
            Its slope equals negative fraction numerator 2 over denominator negative 1 end fraction space equals space 2
    Since tangent to the curve is parallel to line (2)
    therefore space space space space their space slopes space are space space equal space
therefore space space space space 2 straight x minus 2 space equals space 2 space space space space space rightwards double arrow space space space space 2 straight x space equals space 4 space space space rightwards double arrow space space space straight x space equals space 2
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space straight y space equals space 4 minus 4 plus 7 space equals space 7
therefore space space space space space space point space is space left parenthesis 2 comma space 7 right parenthesis
therefore space space space space space space space equation space of space tangent space at space left parenthesis 2 comma space 7 right parenthesis space with space slope space 2 space is
space space space space space space space space space space space space space space space space space space space space straight y minus 7 space equals space 2 left parenthesis straight x minus 2 right parenthesis comma space space space or space space space straight y minus 7 space equals space 2 straight x minus 4 space space space or space space space 2 straight x minus straight y plus 3 space equals space 0
    (ii) Consider the line 5 straight y minus 15 straight x space equals space 13
    or space space 15 straight x minus 5 straight y plus 13 space equals space 0                                            ...(3)
    Its slope equals negative fraction numerator 15 over denominator negative 5 end fraction space equals 3
    Since target to the curve is perpendicular to line (3)
    therefore space space space space space product space of space their space slopes space space equals space minus 1
therefore space space space space space space space space left parenthesis 2 straight x minus 2 right parenthesis thin space left parenthesis 3 right parenthesis space space equals space minus 1 space space space space rightwards double arrow space space 6 straight x minus 6 space equals space minus 1 space space space rightwards double arrow space space 6 straight x space equals space 5
therefore space space space space space straight x space equals space 5 over 6
From space left parenthesis 1 right parenthesis comma space space space straight y space equals space 25 over 36 minus 5 over 3 plus 7 space equals space fraction numerator 45 minus 60 plus 252 over denominator 36 end fraction space equals space 217 over 36
therefore space space space point space is space open parentheses 5 over 6 comma space space 217 over 36 close parentheses
therefore space space space space space space equation space of space tangent space at space open parentheses 5 over 6 comma space space 217 over 36 close parentheses space with space slope space minus 1 third space is
space space space space space space space space space space space space space space space space space space space space space straight y minus 217 over 36 space equals negative 1 third open parentheses straight x minus 5 over 6 close parentheses space space space or space space space straight y minus 217 over 36 space equals negative straight x over 3 plus 5 over 18
or space space space space 36 straight y minus 217 space equals space minus 12 straight x plus 10 space space space space space space space or space space space space space space 12 straight x plus 36 straight y minus 227 space equals space 0

    Question 112
    CBSEENMA12035175

    Find the equations of normal lines to the curve y = x2 – 3 x which are parallel to the line x + 9y = 14.

    Solution

    The equations of curve is straight y equals straight x cubed minus 3 straight x                           ...(1)
    Differentiating w.r.t.x,  dy over dx space equals 3 straight x squared minus 3
    therefore space space space space at space left parenthesis straight x comma space space straight y right parenthesis comma space space slope space of space tangent space space equals space 3 straight x squared minus 3 space space space rightwards double arrow space space space space space at space left parenthesis straight x comma space straight y right parenthesis comma space slope space of space normal space equals space minus fraction numerator 1 over denominator 3 straight x squared minus 3 end fraction
therefore space space space space space space straight m subscript 1 space equals space minus fraction numerator 1 over denominator 3 straight x squared minus 3 end fraction
Let space space straight m subscript 2 space be space slope space of space line space straight x plus 9 straight y space equals space 14
therefore space space space space space space straight m subscript 2 space equals space minus 1 over 9
therefore space space space space space space space space normal space is space parallel space to space left parenthesis 2 right parenthesis space space space space space therefore space space space straight m subscript 1 space equals space straight m subscript 2
therefore space space space space space space fraction numerator 1 over denominator 3 straight x squared minus 3 end fraction space equals space minus 1 over 9 space space space space space rightwards double arrow space space space space space space fraction numerator 1 over denominator straight x squared minus 1 end fraction space equals space 1 third
rightwards double arrow space space space space space space straight x squared minus 1 space equals space 3 comma space space space space space rightwards double arrow space space space straight x squared space equals space 4 comma space space space space rightwards double arrow space space space space straight x space equals space 2 comma space space minus 2
When space straight x space equals 2 comma space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space 8 minus 6 space equals space 2
therefore space space space points space is space left parenthesis 2 comma space space 2 right parenthesis
therefore space space space space equation space of space normal space at space left parenthesis 2 comma space 2 right parenthesis space is
space straight y minus 2 space equals space minus 1 over 9 left parenthesis straight x minus 2 right parenthesis comma space space space or space space 9 straight y minus 18 space equals space minus straight x plus 2
or space space space space straight x plus 9 straight y minus 20 space equals space 0
When space straight x space equals space minus 2 comma space from space left parenthesis 1 right parenthesis comma space straight y space equals negative 8 plus 6 space equals space minus 2
therefore space space space space space points space is space left parenthesis negative 2 comma space space space minus 2 right parenthesis
therefore space space space space equation space of space normal space at space left parenthesis negative 2 comma space minus 2 right parenthesis space is space straight y minus left parenthesis negative 2 right parenthesis space equals space minus 1 over 9 left square bracket straight x minus left parenthesis negative 2 right parenthesis right square bracket
or space space space space space space 9 straight y plus 18 space equals straight x minus 2 space space space space or space space straight x plus 9 straight y plus 20 space equals space 0.

    Question 113
    CBSEENMA12035201

    Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line 14y + 4 = 0.

    Solution

    The equation of curve is  y = x3 + 2x + 6                           ...(1)
                                      dy over dx space equals space 3 straight x squared plus 2
    therefore space space space space at space left parenthesis straight x comma space straight y right parenthesis space space slope space of space tangent space space equals space 3 straight x squared plus 2
therefore space space space space space at space left parenthesis straight x comma space straight y right parenthesis comma space slope space of space normal space equals space minus fraction numerator 1 over denominator 3 straight x squared plus 2 end fraction
therefore space space space space space space space straight m subscript 1 space equals space minus fraction numerator 1 over denominator 3 straight x squared plus 2 end fraction
    Let straight m subscript 2 be slope of line straight x plus 14 straight y plus 4 space equals space 0                                    ...(2)
    therefore space space space space space straight m subscript 2 space equals space minus 1 over 14
    because space space space space normal space is space parallel space to space left parenthesis 2 right parenthesis comma space space space space space space space therefore space space space space straight m subscript 1 space equals space straight m subscript 2
    therefore space space space space space space space space minus fraction numerator 1 over denominator 3 straight x squared plus 2 end fraction space equals space minus 1 over 14 space space space space space rightwards double arrow space space space space space 3 straight x squared plus 2 space equals space 14 space space space rightwards double arrow space space space space 3 straight x squared space space equals space 12
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x squared space equals space 4 space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight x space equals space minus 2 comma space 2
therefore space space space space space space space space space space space space space from space left parenthesis 1 right parenthesis comma space space space straight y space equals space left parenthesis negative 2 right parenthesis cubed plus 2 left parenthesis negative 2 right parenthesis space plus space 6 comma space space space left parenthesis 2 right parenthesis cubed plus 2 left parenthesis 2 right parenthesis space plus space 6 space equals space minus 6 comma space space 18
therefore space space space space space points space are space left parenthesis negative 2 comma space minus 6 right parenthesis comma space left parenthesis 2 comma space 18 right parenthesis
The space equation space of space normal space at space left parenthesis negative 2 comma space space minus 6 right parenthesis space is
space space space space space space space space space space space space space space space space straight y plus 6 space equals space minus 1 over 14 left parenthesis straight x plus 2 right parenthesis comma space space space space or space space space 14 straight y plus 84 space equals negative straight x minus 2 space space space space or space space space space space straight x plus 14 straight y plus 86 space equals space 0
The space equation space of space normal space at space left parenthesis 2 comma space 18 right parenthesis thin space is
space space space straight y minus 18 space equals space minus 1 over 14 left parenthesis straight x minus 2 right parenthesis space space space or space space 14 straight y minus 252 space equals space minus straight x plus 2 space space space space or space space space straight x plus 14 straight y minus 254 space equals space 0

    Question 114
    CBSEENMA12035203

    At what point will the tangent to the curve y = 2x3 – 15x2 + 36x – 21 be parallel to x-axis ? Also, find the equations of tangents to the curve at those points.

    Solution

    The equation of curve is
                               y = 2x3 – 15x2 + 36x – 21
    Differentiating both sides w.r.t.x, we get,
                        dy over dx space equals space 6 straight x squared minus 30 straight x plus 36
    For the points on the curve, where tangents are parallel to x-axis
                         dy over dx space equals space 0 space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space 6 straight x squared minus 30 straight x plus 36 space equals space 0 space space space rightwards double arrow space space space space straight x squared minus 5 straight x plus 6 space equals space 0
    therefore space space space space space space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis space equals space 0 space space space space space space space space space rightwards double arrow space space space straight x space equals space 2 comma space space 3
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space space straight y space equals space 2 left parenthesis 2 right parenthesis cubed space minus 15 space left parenthesis 2 right parenthesis squared space plus space 36 left parenthesis 2 right parenthesis space minus 21 comma space space space 2 left parenthesis 3 right parenthesis squared space minus space 15 left parenthesis 3 right parenthesis squared space plus 36 left parenthesis 3 right parenthesis minus 21
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 16 minus 60 plus 72 minus 21 comma space space space space 54 minus 135 plus 108 minus 21 space equals space 7 comma space 6
therefore space space space space space space points space are space left parenthesis 2 comma space 7 right parenthesis comma space left parenthesis 3 comma space 6 right parenthesis
The space equation space of space tangent space at space left parenthesis 2 comma space 7 right parenthesis space parallel space to space straight x minus axis space is
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus 7 space equals space 0 space left parenthesis straight x minus 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space straight m space equals space 0 close square brackets
or space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus 7 space equals space 0
The space equation space of space tangent space at space left parenthesis 3 comma space 6 right parenthesis space parallel space to space straight x minus axis space is space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus 6 space equals space 0 left parenthesis straight x minus 3 right parenthesis space space space space or space space space straight y minus 6 space equals space 0

    Question 115
    CBSEENMA12035206

    Find the points on the curve x2 + y2 -2x – 3 = 0 at which the tangents are parallel to the x-axis.

    Solution

    The equation of curve is x2 + y2 -2x – 3 = 0                           ...(1)
    Differentiating both sides, w.r.t.x, we get,
    2 straight x plus 2 straight y dy over dx minus 2 minus 0 space equals space 0 comma space space space space or space space space 2 straight y dy over dx space equals space minus 2 straight x plus 2
therefore space space space space space space dy over dx space equals space fraction numerator negative straight x plus 1 over denominator straight y end fraction
because space space space space space dy over dx space equals space 0 space space space space rightwards double arrow space space space space space space fraction numerator negative straight x plus 1 over denominator straight y end fraction space equals space 0 space space space space rightwards double arrow space space space straight x space equals 1 comma space space space space straight y not equal to 0
Putting space straight x space equals space 1 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space space space space space space space space space space space space space 1 plus straight y squared minus 2 minus 3 space equals space 0 comma space space space space or space space space space straight y squared space equals space 4 space space space space rightwards double arrow space space space space straight y space equals space minus 2 comma space space space 2
therefore space space space space space space space space pionts space left parenthesis 1 comma space minus 2 right parenthesis comma space space left parenthesis 1 comma space 2 right parenthesis.

    Question 116
    CBSEENMA12035207

    Find points at which the tangent to the curve y = x3 – 3x2 – 9x + 7 is parallel to the x-axis.

    Solution

    The equation of curve is
                                      straight y equals straight x cubed minus 3 straight x squared minus 9 straight x plus 7
    therefore space space space space space space space space dy over dx space equals space 3 straight x squared minus 6 straight x minus 9
    For the points on the curve, where tangents are parallel to x-axis
                  dy over dx space equals space 0 space space space space space rightwards double arrow space space space space 3 straight x squared minus 6 straight x minus 9 space equals space 0 space space space space space rightwards double arrow space space space straight x squared minus 2 straight x minus 3 space equals space 0
    therefore space space space space left parenthesis straight x minus 3 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space straight x space equals space 3 comma space space minus 1
    When straight x space equals 3 comma space space space straight y equals left parenthesis 3 right parenthesis cubed minus 3 left parenthesis 3 right parenthesis squared space minus space 9 left parenthesis 3 right parenthesis plus space 7 space equals space 27 minus 27 minus 27 plus 7 space equals space minus 20
    When  straight x equals negative 1 comma space space straight y space equals space left parenthesis negative 1 right parenthesis cubed minus 3 left parenthesis negative 1 right parenthesis squared minus 9 left parenthesis negative 1 right parenthesis plus 7 space equals negative 1 minus 3 plus 9 plus 7 space equals space 12
    therefore space space space space space space required space points space are space left parenthesis 3 comma space minus 20 right parenthesis comma space left parenthesis negative 1 comma space 12 right parenthesis.

    Question 117
    CBSEENMA12035208

    Find point on the curve y = 3x2 – 12x + 6 at which tangent is parallel to x-axis. Also find the equation of tangent line. 

    Solution

    The equation of curve is
                      y = 3x2 – 12x + 6                                     ...(1)
    therefore space space space space space space dy over dx space equals space 6 straight x minus 12
because space space space space space tangent space is space parallel space to space straight x minus axis
therefore space space space space space space dy over dx space equals space 0 space space space space space space space space space space space space space space rightwards double arrow space space space space 6 straight x minus 12 space equals space 0 space space space space rightwards double arrow space space space straight x space equals space 2
Putting space space straight x space equals space 2 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y equals 12 minus 24 plus 6 space equals space minus 6
therefore space space space space space space point space is space left parenthesis 2 comma space minus 6 right parenthesis
The space equation space of space tangent space line space is space straight y space equals space minus 6         

    Question 118
    CBSEENMA12035209

    Find out on the curve y = x2 – x – 8 at which tangent is parallel to x-axis. Also find the equation of tangent line.

    Solution

    The equation of curve is
                              y = x2 – x – 8                                    ...(1)
    therefore space space space space space space space space space dy over dx space equals space 2 straight x minus 1
because space space space space space space space tangent space is space parallel space to space straight x minus axis
therefore space space space space space space space space space dy over dx space equals space 0 space space space space space rightwards double arrow space space space space 2 straight x minus 1 space equals space 0 space space space space rightwards double arrow space space space space straight x space equals space 1 half
Putting space straight x space equals space 1 half space in space left parenthesis 1 right parenthesis comma space we space get
space space space space space space space space space space space space space space space space space space space space space space space space straight y space equals space 1 fourth minus 1 half space minus 8 space equals space fraction numerator 1 minus 2 minus 32 over denominator 4 end fraction space equals space minus 33 over 4
therefore space space space space point space is space open parentheses 1 half comma space space space space minus 33 over 4 close parentheses.
The space equation space of space tangent space line space is space
space space space space space space space space space space space straight y space equals space minus 33 over 4 space space space or space space 4 straight y space equals space minus 33 space space space space space or space space space 4 straight y plus 33 space equals space 0

    Question 119
    CBSEENMA12035210

    Find out on the curve y = 2 x2 – 6x – 4 at which tangent is parallel to x-axis. Also find the equation of tangent line.

    Solution

    The equation of curve is
                       y = 2x2 – 6x – 4                                ...(1)
    therefore space space space space space space space space dy over dx space equals space 4 straight x minus 6
    because space space space space tangent space is space parallel space to space straight x minus axis.
    therefore space space space dy over dx space equals space 0 space space space space rightwards double arrow space space space space space 4 straight x minus 6 space equals space 0 space space space rightwards double arrow space space space space straight x space equals space 3 over 2
Putting space straight x space equals space 3 over 2 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y space equals space 2 cross times 9 over 4 minus 6 cross times 3 over 2 minus 4 space space equals space 9 over 2 minus 9 minus 4 space equals space minus 17 over 2
The space equation space of space tangent space line space is
space space space space space space space space space space space straight y space equals space minus 17 over 2 space space space space space or space space space space space space 2 straight y space equals space minus 17 space space space space or space space space 2 straight y plus 17 space equals space 0

     

    Sponsor Area

    Question 120
    CBSEENMA12035212

    Find out the points on the curve straight x squared over 9 minus straight y squared over 16 space equals space 1 at which the tangents are (i) parallel to the x-axis and (ii) parallel to the y-axis.

    Solution

     The equation of curve is  straight x squared over 9 minus straight y squared over 16 space equals space 1
    Differentiating both sides w.r.t.x, we get,
                               fraction numerator 2 straight x over denominator 9 end fraction minus fraction numerator 2 straight y over denominator 16 end fraction dy over dx space equals space 0 space space space space space space or space space space space space space straight y over 8 dy over dx space equals space fraction numerator 2 straight x over denominator 9 end fraction
    therefore space space space space space space space dy over dx space equals space fraction numerator 16 space straight x over denominator 9 space straight y end fraction
    (i) For the points on the curve, where tangents are parallel to x-axis.
                            dy over dx space equals space 0 space space space space space rightwards double arrow space space space fraction numerator 16 straight x over denominator 9 straight y end fraction space equals space 0 space space space space rightwards double arrow space space space space straight x space equals space 0
    Putting x = 0 in (1), we get,
                         0 minus straight y squared over 16 space equals space 1 space space space space space rightwards double arrow space space space space straight y squared space equals space minus 16 space space space space rightwards double arrow space space space space straight y space equals space plus-or-minus 4 space straight i
    therefore  there is no real point at which the tangent is parallel to x-axis.
    (ii) For the points on the curve, where tangents are parallel to y-axis.
                            dx over dy space equals space 0 space space space space space rightwards double arrow space space space space space fraction numerator 9 straight y over denominator 16 straight x end fraction space equals space 0 space space space rightwards double arrow space space space straight y space equals space 0
    Putting y = 0 in (1), we get,
                         straight x squared over 9 minus 0 space equals space 1 space space space space space space space rightwards double arrow space space space space space space straight x squared space equals space 9 space space space space space space rightwards double arrow space space space space straight x space equals negative 3 comma space space 3
    therefore space space space space points space are space left parenthesis negative 3 comma space 0 right parenthesis comma space space left parenthesis 3 comma space 0 right parenthesis

    Question 121
    CBSEENMA12035214

    Find points on the curve straight x squared over 4 plus straight y squared over 25 space equals space 1 at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.

    Solution

    The equation of curve is straight x squared over 4 plus straight y squared over 25 space equals space 1                  ...(1)
    Differentiating both sides w.r.t. x, we get,
                          fraction numerator 2 straight x over denominator 4 end fraction plus fraction numerator 2 straight y over denominator 25 end fraction dy over dx space equals space 0 comma space space space space or space space space space space fraction numerator 2 straight y over denominator 25 end fraction dy over dx space equals space minus straight x over 2
    therefore space space space space space dy over dx space equals space minus 25 over 4 straight x over straight y
    (i) For the points on the curve, where tangent are parallel to x-axis,
                               dy over dx space equals space 0 space space space space rightwards double arrow space space space space space minus 25 over 4 straight x over straight y space equals space 0 space space space space space rightwards double arrow space space space space straight x space equals space 0
    Putting x = 0  in (1), we get,
                                  0 plus straight y squared over 25 space equals space 1 space space space space space space rightwards double arrow space space space space space straight y squared space equals space 25 space space space space space rightwards double arrow space space space space space straight y space equals space minus 5 comma space 5
    therefore space space space space space points space are space left parenthesis 0 comma space minus 5 right parenthesis comma space space left parenthesis 0 comma space 5 right parenthesis.
    (ii) For the points on the curve,  where tangents are parallel to y-axis.
                    dx over dy space equals space 0 space space space space space rightwards double arrow space space space space space minus fraction numerator 4 straight y over denominator 25 straight x end fraction space equals space 0 space space space space space space rightwards double arrow space space space space straight y space equals space 0
    Putting y = 0 in (1), we get,
                                         straight x squared over 4 plus 0 space equals space 1 space space space space rightwards double arrow space space space straight x squared space equals space 4 space space space space rightwards double arrow space space space space straight x space equals space minus 2 comma space 2
    therefore space space space space points space are space left parenthesis negative 2 comma space 0 right parenthesis comma space space left parenthesis 2 comma space 0 right parenthesis.

    Question 122
    CBSEENMA12035217

    Find points on the curve straight x squared over 9 plus straight y squared over 16 space equals space 1 at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.

    Solution

    The equation of curve is
                          straight x squared over 9 plus straight y squared over 16 space equals space 1                              ...(1)
    Differentiating both sides w.r.t.x, we get,
                                              fraction numerator 2 straight x over denominator 9 end fraction plus fraction numerator 2 straight y over denominator 16 end fraction dy over dx space equals space 0 space space space space space or space space space space straight y over 8 dy over dx space equals space minus fraction numerator 2 straight x over denominator 9 end fraction
    therefore space space space space space space space space space space space space space space dy over dx space equals space minus 16 over 9 straight x over straight y
    (i) For the points on the curve,  where tangents are parallel to x-axis
                             dy over dx space equals space 0 space space space space space rightwards double arrow space space space space space minus fraction numerator 16 straight x over denominator 9 straight y end fraction space equals space 0 space space space space space rightwards double arrow space space space straight x space equals space 0
    Putting x = 0 in (1), we get,
                                    0 plus straight y squared over 16 space equals space 1 space space space space space space space space space space space rightwards double arrow space space space space space straight y squared space equals space 16 space space space space rightwards double arrow space space space straight y space equals space minus 4 comma space space space space 4
    therefore space space space space space points space are space left parenthesis 0 comma space minus 4 right parenthesis comma space space left parenthesis 0 comma space 4 right parenthesis.
    (ii) For the points on the curve,  where tangents are parallel to y-axis.
                       dx over dy space equals space 0 space space space space rightwards double arrow space space space minus fraction numerator 9 straight y over denominator 16 straight x end fraction space equals space 0 space space space space space rightwards double arrow space space space straight y space equals space 0
    Putting y = 0 in (1), we get
                                     straight x squared over 9 plus 0 space equals space 1 space space space space rightwards double arrow space space space space space straight x squared space equals space 9 space space space space space rightwards double arrow space space space straight x space equals space minus 3 comma space space 3
    therefore space space space space points space are space left parenthesis negative 3 comma space 0 right parenthesis comma space space left parenthesis 3 comma space 0 right parenthesis.        

    Question 123
    CBSEENMA12035223

    For the curve y = 4x3 – 2x5, find all the points at which the tangent passes through the origin.

    Solution

    The equation of curve is
                                   y = 4x3 – 2x5                                               ...(1)
    Let the tangent to the curve (1) at (h, k) pass through origin (0, 0)
                      therefore space space space straight k space equals space 4 straight h cubed minus 2 straight h to the power of 5                                                 ...(2)
                                                                             open square brackets because space space space space left parenthesis straight h comma space straight k right parenthesis space lies space on space left parenthesis 1 right parenthesis close square brackets
    Differentiating (1) w.r.t.x, dy over dx space equals space 12 straight x squared minus 10 straight x to the power of 4
    At space left parenthesis straight h comma space straight k right parenthesis comma space space dy over dx space equals space 12 straight h squared minus 10 straight h to the power of 4 comma space space which space is space slope space of space tangent.
    The equation of tangent of (h, k) is 
                            straight y minus straight k space equals space left parenthesis 12 straight h squared minus 10 straight h to the power of 4 right parenthesis thin space left parenthesis straight x minus straight h right parenthesis
    or        straight y equals left parenthesis 4 straight h cubed minus 2 straight h to the power of 5 right parenthesis space equals space left parenthesis 12 straight h squared minus 10 straight h to the power of 4 right parenthesis thin space left parenthesis straight x minus straight h right parenthesis space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets
    Now this tangent passes through (0, 0).
    therefore space space space space space space 0 minus left parenthesis 4 straight h cubed minus 2 straight h to the power of 5 right parenthesis space equals space left parenthesis 12 straight h squared minus 10 straight h to the power of 4 right parenthesis thin space left parenthesis 0 minus straight h right parenthesis space space space space space space space space
    or     negative 4 straight h cubed plus 2 straight h to the power of 5 space equals space minus 12 straight h cubed plus 10 straight h to the power of 5 space space space space or space space space space 8 straight h to the power of 5 minus 8 straight h cubed space equals space 0
    or       straight h to the power of 5 minus straight h cubed space equals space 0 space space space space space or space space space straight h cubed left parenthesis straight h squared minus 1 right parenthesis space equals space 0.
    rightwards double arrow              straight h space equals space 0 comma space space space 1 comma space space space minus 1
    therefore space space space space space straight k space equals space 0 comma space space 4 minus 2 comma space space minus 4 plus 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets
space space space space space space space space space space space space space equals space 0 comma space space 2 comma space space minus 2
therefore space required space points space are space left parenthesis 0 comma space 0 right parenthesis comma space left parenthesis 1 comma space 2 right parenthesis comma space left parenthesis negative 1 comma space minus 2 right parenthesis

    Question 124
    CBSEENMA12035224

    The points on the curve 9y2 = x3, where the normal to the curve make equal intercepts with the axes are
    • open parentheses 4 comma space plus-or-minus 8 over 3 close parentheses
    • open parentheses 4 comma space space minus 8 over 3 close parentheses
    • open parentheses 4 comma space plus-or-minus 3 over 8 close parentheses
    • open parentheses plus-or-minus 4 comma space space 3 over 8 close parentheses

    Solution

    A.

    open parentheses 4 comma space plus-or-minus 8 over 3 close parentheses

    The equation of curve is 9 straight y squared space equals space straight x cubed space space space space space space space or space space space straight y squared space equals space 1 over 9 straight x cubed                     ...(1)
    Differentiating both sides w.r.t.x, we get,
                                  2 straight y dy over dx space equals space straight x squared over 3 space space space space or space space space dy over dx space equals space fraction numerator straight x squared over denominator 6 straight y end fraction. space which space is space slope space of space tangent
    therefore space space slope space of space normal space space equals space minus fraction numerator 6 straight y over denominator straight x squared end fraction
    because space space normal space makes space equal space intercepts
because space space space space space fraction numerator negative 6 straight y over denominator straight x squared end fraction space equals space plus-or-minus 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight m space equals space plus-or-minus 1 close square brackets
rightwards double arrow space space space space space space space fraction numerator 36 straight y squared over denominator straight x to the power of 4 end fraction space equals space 1 space space space space space space rightwards double arrow space space space space 36 straight x squared space equals space straight x to the power of 4 space space space space rightwards double arrow space space space space 36. space 1 over 9 straight x cubed space equals space straight x to the power of 4 space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
rightwards double arrow space space space space space space space space straight x equals 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space straight x not equal to 0 close square brackets space space space space space space space space space
    When  x =4,   from (1),   straight y squared space equals space 1 over 9 cross times 64 space space space space rightwards double arrow space space space space space straight y space equals space plus-or-minus 8 over 3
    therefore space space space space space required space points space are space open parentheses 4 comma space 8 over 3 close parentheses space and space space open parentheses 4 comma space minus 8 over 3 close parentheses

    Question 125
    CBSEENMA12035227

    The curve y = ax3 + bx2 + cx + 5 touches the x -axis at P (– 2, 0) and cuts the y-axis at a point Q where its gradient is 3. Find a. b, c.

    Solution

    The equation of curve is
                        y = ax3 + bx2 + cx + 5                                  ...(1)
    It meets y-axis at Q where x = 0
    therefore   putting x = 0 in (1),  we get,
                         straight y space equals space 0 plus 0 plus 0 plus 5 space equals space 5
    <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/0b/5c/5ceeb068fcc14aafd1e7478a5611.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/0b/5c/5ceeb068fcc14aafd1e7478a5611.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>
    therefore space space space space 12 straight a minus 4 straight b plus 3 space equals space 0                                                 ...(2)
    Also (-2, 0) lies on (1)
     therefore space space 0 space equals space minus 8 straight a plus 4 straight b minus 2 straight c plus 5 space space space space space space space space space space space space space
    or     8 straight a minus 4 straight b plus 1 space equals space 0
    Subtracting (3) from (2), 4 a +2  = 0     rightwards double arrow space space space space straight a space equals space minus 1 half
    From (2),    -6 - 4b + 3 = 0       rightwards double arrow space space space 4 straight b space equals space minus 3 space space space rightwards double arrow space space space straight b space equals space minus 3 over 4
    therefore space space space straight a space equals space minus 1 half comma space space space space straight b space equals space minus 3 over 4 comma space space space straight c space equals 3

    Question 126
    CBSEENMA12035229

    Show that the curves 2x = y2 and 2xy = k cut at right angles if k2 = 8

    Solution

    The equation of two curves are
                     2x = y2                                              ...(1)
    and             2 xy space equals space straight k                                         ...(2)
    From (1) and (2),    straight y squared. space space straight y space equals space straight k space space space rightwards double arrow space space space space space straight y cubed space equals space straight k space space space space rightwards double arrow space space space straight y space equals space straight k to the power of 1 third end exponent
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space space 2 straight x space equals space straight k to the power of 2 over 3 end exponent space space space space rightwards double arrow space space space space straight x space equals space 1 half straight k to the power of 2 over 3 end exponent
    therefore     point of intersection of curves (1) and (2) is open parentheses 1 half straight k to the power of 2 over 3 end exponent comma space space straight k to the power of 1 third end exponent close parentheses
       From (1),     2 space equals space 2 straight y dy over dx space space space space space rightwards double arrow space space space space space dy over dx space equals 1 over straight y
     At space open parentheses 1 half straight k to the power of 2 over 3 end exponent comma space space space straight k to the power of 1 third end exponent close parentheses. space dy over dx space equals space 1 over straight k to the power of begin display style 1 third end style end exponent
    therefore space space space space space space straight m subscript 1 space equals space 1 over straight k to the power of begin display style 1 third end style end exponent space where space straight m subscript 1 space is space slope space of space tangent space to space the space curve space left parenthesis 1 right parenthesis space at space the space point space of space intersection. space
           From (2),   2 straight y plus 2 straight x dy over dx space equals space 0 space space space space space space rightwards double arrow space space space space dy over dx space equals space minus straight y over straight x
         At open parentheses 1 half straight k to the power of 2 over 3 end exponent comma space space straight k to the power of 1 third end exponent close parentheses space dy over dx space equals space minus fraction numerator straight k to the power of begin display style 1 third end style end exponent over denominator begin display style 1 half end style straight k to the power of begin display style 2 over 3 end style end exponent end fraction space equals negative 2 over straight k to the power of begin display style 1 third end style end exponent
    therefore space space space space space straight m subscript 2 space equals space minus 2 over straight k to the power of begin display style 1 third end style end exponent space where space straight m subscript 2 space is space slope space of space tangent space to space the space curve space left parenthesis 2 right parenthesis space at space the space point space of space intersection.
    Curves (1) and (2) cut at right angles if straight m subscript 1 straight m subscript 2 space equals space minus 1
    i.e.,   if 1 over straight k to the power of begin display style 1 third end style end exponent. space fraction numerator negative 2 over denominator straight k to the power of begin display style 1 third end style end exponent end fraction space equals negative 1
    i.e. if straight k to the power of negative 2 over 3 end exponent space equals space 2 space space space space space space space space space straight i. straight e. space space space space if space space space space straight k squared space equals 8
    Hence the result.

    Question 127
    CBSEENMA12035232

    Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1.

    Solution

    The equation of two curves are
                               x = y2                                                                            ...(1)
                 and       xy = k                                                                              ...(2)
    From (1) and (2), straight y squared. space straight y space equals space straight k space space space space space space space rightwards double arrow space space straight y cubed space equals space straight k space space space rightwards double arrow space space space space straight y space equals space straight k to the power of 1 third end exponent
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space space straight x space equals space straight k to the power of 2 over 3 end exponent
therefore space space space space space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space at space open parentheses straight k to the power of 2 over 3 end exponent comma space space space straight k to the power of 1 third end exponent close parentheses
space space space space From space left parenthesis 1 right parenthesis comma space space space space 1 space equals space 2 straight y dy over dx space space space space space space space space space space space space space space rightwards double arrow space space space space dy over dx space equals space fraction numerator 1 over denominator 2 straight y end fraction
space space At space open parentheses straight k to the power of 2 over 3 end exponent comma space space straight k to the power of 1 third end exponent close parentheses comma space space dy over dx space equals space fraction numerator 1 over denominator 2 straight k to the power of begin display style 1 third end style end exponent end fraction
therefore space space space space space straight m subscript 1 space equals space fraction numerator 1 over denominator 2 straight k to the power of begin display style 1 third end style end exponent end fraction space where space straight m subscript 1 space is space slope space of space tangent space to space the space curve space left parenthesis 1 right parenthesis space at space the space point space of space intersection.
    From (2),  straight x dy over dx plus straight y space equals space 0 space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space dy over dx space equals space minus straight y over straight x
    At open parentheses straight k to the power of 2 over 3 end exponent comma space space space straight k to the power of 1 third end exponent close parentheses comma space space space dy over dx space equals space minus straight k to the power of begin display style 1 third end style end exponent over straight k to the power of begin display style 2 over 3 end style end exponent space equals space minus 1 over straight k to the power of begin display style 1 third end style end exponent
    therefore space space space space space straight m subscript 2 space equals space minus 1 over straight k to the power of begin display style 1 third end style end exponent space where space straight m subscript 2 space is space slope space of space tangent space to space the space curve space left parenthesis 2 right parenthesis space at space the space point space of space intersection.
    Curves (1) and (2) cut at right angles if straight m subscript 1 straight m subscript 2 space equals space minus 1
    i.e.,  if space fraction numerator 1 over denominator 2 straight k to the power of begin display style 1 third end style end exponent end fraction. space space fraction numerator negative 1 over denominator straight k to the power of begin display style 1 third end style end exponent end fraction space equals space minus 1 space space space space straight i. straight e. space space if space space space space 2 straight k to the power of 2 over 3 end exponent space equals space 1 space space space space straight i. straight e. space space if space space 8 straight k squared space equals space 1
    Hence the result. 

    Question 128
    CBSEENMA12035235

    Show that the curve xy = a2 and x2 + y2 = 2a2 touch each other.

    Solution

    The given curves are
                             xy space equals straight a squared                                          ...(1)
                  x2 + y2 = 2a2                                             ...(2)
    Now left parenthesis straight x plus straight y right parenthesis squared space equals space straight x squared plus straight y squared plus 2 xy space equals space 2 straight a squared plus 2 straight a squared               open square brackets because space of space left parenthesis 1 right parenthesis comma space space left parenthesis 2 right parenthesis close square brackets
    therefore space space space space space space left parenthesis straight x plus straight y right parenthesis squared space equals space 4 straight a squared                                                    
    rightwards double arrow space space space space space straight x plus straight y equals 2 straight a comma space space minus 2 straight a                                         ...(3)
    Also  left parenthesis straight x minus straight y right parenthesis squared space equals space straight x squared plus straight y squared minus 2 xy
                            equals 2 straight a squared minus 2 straight a squared space space space space space space space space space space space space space space space space                           open square brackets because space space space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis close square brackets
                             =0
    therefore space space space space space space straight x minus straight y space equals space 0                                                      ...(4)
    Adding (3) and (4),  we get,
                         2 straight x space equals 2 straight a comma space space space space space space minus 2 straight a space space space space space rightwards double arrow space space space space straight x space equals space straight a comma space space space minus straight a
    therefore space space space space from space left parenthesis 4 right parenthesis comma space space space space straight y space equals space straight a comma space space space space minus straight a
therefore space space space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space at space left parenthesis straight a comma space straight a right parenthesis space and space left parenthesis negative straight a comma space minus straight a right parenthesis
From space left parenthesis 1 right parenthesis comma space straight y space equals space straight a squared over straight x
therefore space space space space dy over dx space equals space minus straight a squared over straight x squared
From space left parenthesis 2 right parenthesis comma space space space 2 straight x plus 2 straight y dy over dx space equals space 0
rightwards double arrow space space space space space space dy over dx space equals space minus straight x over straight y
Let space space straight m subscript 1 comma space space straight m subscript 2 space be space slopes space of space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis
At space left parenthesis straight a comma space straight a right parenthesis
space space space space straight m subscript 1 space equals space minus straight a squared over straight a squared equals negative 1 comma space space space space space straight m subscript 2 space equals space minus straight a over straight a space equals space minus 1
therefore space space at space left parenthesis straight a comma space straight a right parenthesis space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space touch space
At space left parenthesis negative straight a comma space minus straight a right parenthesis
space space space space straight m subscript 1 space equals space minus straight a squared over straight a squared space equals space minus 1 comma space space space straight m subscript 2 space equals space minus fraction numerator negative straight a over denominator negative straight a end fraction equals negative 1
therefore space space space at space left parenthesis negative straight a comma space space space minus straight a right parenthesis comma space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space touch.

    Question 129
    CBSEENMA12035236

    If the curve αx+ βy2 = 1 and α' x+ β'y2 = 1 intersect orthogonally, prove that (α – α') β β') = (β – β') α α'. 

    Solution

    The equations of two curves are
                                αx squared plus βy squared space equals space 1                                       ...(1)
    and                 straight alpha apostrophe straight x squared plus straight beta apostrophe straight y squared space equals space 1                                          ...(2)
    Let curves (1) and (2) intersect at left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis.
    therefore space space space space space space space space space space αx subscript 1 squared plus βy subscript 1 squared space equals space 1                                                   ...(3)
    and          straight alpha apostrophe straight x subscript 1 squared plus straight beta to the power of apostrophe straight y subscript 1 squared space equals space 1                                               ...(4)
    Subtracting (4) from (3), we get,
                              left parenthesis straight alpha minus straight alpha apostrophe right parenthesis space straight x subscript 1 squared space space plus space left parenthesis straight beta minus straight beta apostrophe right parenthesis straight y subscript 1 squared space equals space 0
    therefore space space space space left parenthesis straight alpha minus straight a to the power of apostrophe right parenthesis space straight x subscript 1 squared space equals space minus left parenthesis straight beta minus straight beta apostrophe right parenthesis space straight y subscript 1 squared
therefore space space space space space space space space space space space space straight x subscript 1 squared over straight y subscript 1 squared space equals space fraction numerator straight beta apostrophe space minus straight beta over denominator straight alpha minus straight alpha apostrophe end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 5 right parenthesis
Differentiating space left parenthesis 1 right parenthesis space straight w. straight r. straight t. straight x comma space we space get comma
space space space space space space space 2 ax plus 2 βy dy over dx space equals space 0 space space space space space space or space space dy over dx space space equals negative αx over βy
    At left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis comma space space dy over dx space equals space minus αx subscript 1 over βy subscript 1
    Similarly for second curve,
                                dy over dx space equals space minus fraction numerator straight alpha apostrophe straight x subscript 1 over denominator straight beta apostrophe straight y subscript 1 end fraction
    Since the two curves (1) and (2) intersect orthogonally,
    therefore space space space space space space space minus αx subscript 1 over βy subscript 1 cross times negative fraction numerator straight alpha apostrophe straight x subscript 1 over denominator straight beta apostrophe straight y subscript 1 end fraction space equals space minus 1 space space space space space space space space space space space space space space space space space space space space space space space open square brackets Product space of space slopes space space equals space minus 1 close square brackets
therefore space space space space space space space space space space fraction numerator αα apostrophe over denominator ββ apostrophe end fraction straight x subscript 1 squared over straight y subscript 1 squared equals negative 1
therefore space space space space space space space space space space space fraction numerator αα to the power of apostrophe over denominator ββ apostrophe end fraction cross times fraction numerator straight beta apostrophe minus straight beta over denominator straight alpha minus straight alpha apostrophe end fraction space equals space minus 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 5 right parenthesis close square brackets space
therefore space space space space αα apostrophe left parenthesis straight beta to the power of apostrophe minus straight beta right parenthesis space equals space minus left parenthesis straight alpha minus straight alpha to the power of apostrophe right parenthesis space ββ apostrophe
therefore space space space space αα apostrophe left parenthesis straight beta minus straight beta apostrophe right parenthesis space equals space left parenthesis straight alpha minus straight alpha apostrophe right parenthesis thin space ββ apostrophe
or space space space space space space space left parenthesis straight alpha minus straight alpha apostrophe right parenthesis thin space ββ apostrophe space space equals space left parenthesis straight beta minus straight beta apostrophe right parenthesis space straight alpha space straight alpha apostrophe space space space which space is space required space condition. space space
             

    Question 130
    CBSEENMA12035237

    The slope of the tangent to the curve x = t2 + 3t – 8 , y = 2t2 – 2t – 5 at the point (2, – 1) is
    • 22 over 7
    • 6 over 7
    • 7 over 6
    • fraction numerator negative 6 over denominator 7 end fraction

    Solution

    B.

    6 over 7

    The equation of curve is
                                         straight y squared space equals space 4 straight x                                                  ...(1)
    The equation of line is
                                  straight y equals mx plus 1                                                     ...(2)
    Differentiation (1), w.r.t.x, we get,
                                     2 straight y dy over dx space equals space 4 space space space space space or space space space dy over dx space equals space 2 over straight y comma space space space which space is space slope space of space tangent. space
    From (2), slope of tangent  = m
    therefore space space space space space space space space space space space space space 2 over straight y space equals space straight m space space space space space rightwards double arrow space space space space space space straight y space equals space 2 over straight m
therefore space space space space space space from space left parenthesis 1 right parenthesis comma space space space 4 over straight m squared space equals space 4 straight x space space space space rightwards double arrow space space space space space straight x space equals space 1 over straight m squared
therefore space space space space space space line space left parenthesis 2 right parenthesis space touches space curve space left parenthesis 1 right parenthesis space at space open parentheses 1 over straight m squared comma space space 2 over straight m squared close parentheses
    This point open parentheses 1 over straight m squared comma space space 2 over straight m close parentheses space lies space on space line space left parenthesis 2 right parenthesis
    therefore space space space space space space space space space space space space 2 over straight m space equals space straight m space cross times space 1 over straight m squared plus 1 space space space space or space space space space 2 over straight m space equals space 1 over straight m plus 1
therefore space space space space space space space space space 1 over straight m space equals space 1 space space space space space space rightwards double arrow space space space space space space straight m space equals space 1
therefore space space space space space space left parenthesis straight A right parenthesis space is space correct space answer.

    Question 131
    CBSEENMA12035238

    The slope of the normal to the curve y = 2 x2 + 3 sin x at x = 0 is

    • 3

    • 1 third
    • -3

    • negative 1 third

    Solution

    D.

    negative 1 third

    The equation of curve is
                                y = 2x2 + 3 sin x
    therefore space space space space space space space space space dy over dx space equals space 4 space straight x plus 3 space cosx
At space space space straight x space equals space 0 comma space space space dy over dx space equals space 4 left parenthesis 0 right parenthesis space plus space 3 space cos space 0 space equals space 0 plus 3 space equals space 3 comma space which space is space slope space of space tangent space to space the space curve.
therefore space space space space space space space slope space of space normal space to space the space curve space equals space minus 1 third
therefore space space space space space space space left parenthesis straight D right parenthesis space is space correct space answer.

    Question 132
    CBSEENMA12035239

    The line y = x + 1 is a tangent to the curve y 2 = 4x at the point

    • (1, 2)

    • (2, 3)

    • (1, -2)

    • (-1, 2)

    Solution

    A.

    (1, 2)

    The equation of curve is straight y squared space equals space 4 straight x
    therefore space space space space space space 2 straight y dy over dx space equals space 4 space space space space space space or space space space space dy over dx space equals space 2 over straight y comma space space space space space which space is space slope space of space tangent space to space the space curve.
    Consider the tangent line y =x+1
    Its slope = 1
    From given condition,
               2 over straight y space equals space 1 space space space space space or space space space straight y space equals space 2
    When y = 2,   4 = 4x    rightwards double arrow    x = 1
    therefore space space space space space point space is space left parenthesis 1 comma space 2 right parenthesis
therefore space space space space space left parenthesis straight A right parenthesis space is space correct space answer.

    Question 133
    CBSEENMA12035240

    The normal at the point (1, 1) on the curve 2y + x2 = 3 is
    • x + y = 0
    • x – y = 0
    • x + y + 1 = 0
    • x – y = 2

    Solution

    B.

    x – y = 0

    The equation of curve is
                           2 straight y plus straight x squared space equals space 3
    therefore space space space space space 2 dy over dx plus 2 straight x space equals space 0 space space space space space or space space space dy over dx space equals space minus straight x
At space left parenthesis 1 comma space 1 right parenthesis comma space space space dy over dx space equals space minus 1
therefore space space space space slope space of space tangent space space equals negative 1
therefore space space space space space space space at space left parenthesis 1 comma space 1 right parenthesis comma space slope space of space normal space space equals space minus fraction numerator 1 over denominator negative 1 end fraction space equals space 1
therefore space space space space space space space equation space of space normal space at space left parenthesis 1 comma space 1 right parenthesis space is
space space space space space space space space space space space space space space space space space space space space space space straight y minus 1 space equals 1 left parenthesis straight x minus 1 right parenthesis space space space space or space space space space space straight y minus 1 space equals space straight x minus 1 space space space or space space space straight x minus straight y space equals 0
therefore space space space left parenthesis straight B right parenthesis space is space correct space answer.

    Question 134
    CBSEENMA12035243

    The normal to the curve x2 = 4 y passing (1, 2) is
    • x + y = 3 
    • x – y = 3
    • x + y = 1
    • x – y = 1

    Solution

    A.

    x + y = 3 

    The equation of the curve is straight x squared space equals space 4 straight y                         ...(1)
    therefore space space space space space straight y space equals space straight x squared over 4 space space space space space space space space space rightwards double arrow space space space space dy over dx space equals space fraction numerator 2 straight x over denominator 4 end fraction space equals space straight x over 2
    Let normal at (h, k) pass through (1, 2).
    Since (h, k) lies on (1)
    therefore                                            straight h squared space equals space 4 space straight k                   ...(2)
    Slope of tangent at (h, k) = straight h over 2
    therefore space space space space slope space of space normal space at space left parenthesis straight h comma space straight k right parenthesis space equals space minus 2 over straight h
    Equation of normal at (h, k) is straight y minus straight k space equals space minus 2 over straight h left parenthesis straight x minus straight h right parenthesis
    because space space space space it space passes space through space left parenthesis 1 comma space 2 right parenthesis space space space space space space space space space space space space space space space therefore space space space 2 minus straight k space equals space minus 2 over straight h left parenthesis 1 minus straight h right parenthesis
    or          2 straight h minus hk space equals space minus 2 plus 2 straight h space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight h space straight k space equals space 2
    From (2) and (3),  we get,  straight h open parentheses straight h squared over 4 close parentheses space equals space 2.
    therefore space space space space space straight h squared space equals space 8 space space space space space space space space space space rightwards double arrow space space space space space straight h space equals space 2 space space space space space space space space space space space space space space space space space space space space space space space space space space therefore space space space space space space straight k space equals space 2 over straight h space equals space 2 over 2 space equals space 1
therefore space space space space space space space equation space of space normal space is space straight y minus 1 space equals space minus 2 over 2 left parenthesis straight x minus 2 right parenthesis
or space space space space straight y minus 1 space equals space minus straight x plus 2 space space space space space space space space space space space space space or space space space space space space space straight x plus straight y minus 3 space equals 0 space space space space space space space or space space space space space straight x plus straight y space equals space 3
therefore space space space space space space space left parenthesis straight A right parenthesis space is space correct space answer.

    Question 135
    CBSEENMA12035244

    Show that the function f (x) = 2 x + 3 is a strictly increasing function on R.

    Solution

    Let x, x2 ∊ R and let x1 < x2
    Now x1, < x2
    ⇒ 2x1 < 2x2
    ⇒ 2x1 + 3 < 2x+ 3
    ⇒ f (x1) < f (x2)
    ⇒ f is an increasing function on R.

    Question 136
    CBSEENMA12035245

    Without using the derivative show that the function f (a) = 7x – 3 is a strictly increasing function on R.

    Solution

    Let x1, x2 ∊ R and let x1< x2
    Now x1 < x2 ⇒ 7 x1, < 7 x2 ⇒ 7 x1 – 3 < 7 x2, – 3
    ⇒ f (x1) < f (x2)
    ∴   f is strictly increasing function in R.

    Question 137
    CBSEENMA12035247

    Show that the function f (x) = x2 is an increasing function in (0, ∞).

    Solution

    Let x1 , x2 ∊ (0, ∞) and let x1, < x2.
    Now,      straight x subscript 1 space less than space straight x subscript 2
    rightwards double arrow space space space space space straight x subscript 1. space straight x subscript 1 space space space less than space straight x subscript 1. space straight x subscript 2                                                          open square brackets because space space straight x subscript 1 greater than 0 close square brackets

    rightwards double arrow space space space space straight x subscript 1 squared space space less than space straight x subscript 1. straight x subscript 2                                                                           ...(1)
    Again     straight x subscript 1 less than straight x subscript 2
    rightwards double arrow space space space space space straight x subscript 1. space space straight x subscript 2 space space space less than space space straight x subscript 2. space straight x subscript 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space                            open square brackets because space space straight x subscript 2 space greater than space 0 close square brackets
    rightwards double arrow space space space straight x subscript 1. space end subscript straight x subscript 2 space space less than space straight x subscript 2 squared                                                                            ...(2)
    From (1) and (2),   we get,    straight x subscript 1 squared space less than space straight x subscript 2 squared space space space space space space or space space space space space straight f left parenthesis straight x subscript 1 right parenthesis space less than space straight f left parenthesis straight x subscript 2 right parenthesis
    therefore space space straight x subscript 1 space less than space straight x subscript 2 space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight f left parenthesis straight x subscript 1 right parenthesis space less than space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space space straight f space is space an space increasing space function space in space left parenthesis 0 comma space infinity right parenthesis.                                      
    Question 138
    CBSEENMA12035248

    Show that the function f(x) = x2 is a decreasing function in (– ∞  0).

    Solution
    Let x1, x2 ∊ (– ∞ , 0) and let x1 < x2.
            Now,       x1 < x2
                 rightwards double arrow space space space space straight x subscript 1. space straight x subscript 1 space greater than space space straight x subscript 1. space straight x subscript 2                                         open square brackets because space space space straight x subscript 1 less than 0 close square brackets
                  rightwards double arrow space space straight x subscript 1 squared space greater than space straight x subscript 1. space straight x subscript 2                                                             ...(1)
    Again   straight x subscript 1 space less than space straight x subscript 2
              rightwards double arrow space space straight x subscript 1. space straight x subscript 2 space space greater than space space space straight x subscript 2. end subscript space straight x subscript 2                                          open square brackets because space space straight x subscript 2 less than 0 close square brackets
              rightwards double arrow space space space space space straight x subscript 1. space straight x subscript 2 space greater than space straight x subscript 2 squared                                                            ...(2)
    From (1) and (2), we get,   straight x subscript 1 squared space greater than space straight x subscript 2 squared space space space space space space or space space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space greater than space straight f left parenthesis straight x subscript 2 right parenthesis
    therefore space space space straight x subscript 1 space less than space straight x subscript 2 space space space space space space rightwards double arrow space space space space straight f left parenthesis straight x subscript 1 right parenthesis space greater than space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space space straight f space is space an space decreasing space function space in space left parenthesis negative infinity comma space 0 right parenthesis.
    Question 139
    CBSEENMA12035249

    Construct an example of a functions which is strictly increasing but whose derivative vanishes at a point in the domain of definition of the function.

    Solution

    Let (x) = x3
    It is strictly increasing in [– 2, 2] but f '(x) = 3 x2 ⇒ f '(0) = 0
    i.e. f ' (x) vanishes at a point x = 0 ∊ [– 2, 2].

    Question 140
    CBSEENMA12035251

    Prove that the exponential function ex is strictly increasing on R.

    Solution

    Let f (x) = ex ∴ Df = R
    We are to prove that function f (x) = ex is strictly increasing. Here interval is not given. So we will prove that function ex is strictly increasing in its domain.
    Now f ' (x) = ex
    Three cases arise:
    Case I.
                     straight x greater than 0
    Syntax error from line 1 column 415 to line 1 column 518. Unexpected '<mlongdiv '.
    Case II.
    x = 0
    ∴ f ' (x) = ex = I > 0
    Case III.
                   straight x less than 0
    therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space straight e to the power of straight x space equals space 1 over straight e to the power of negative straight x end exponent space equals fraction numerator 1 over denominator straight a space positive space quantitiy space end fraction greater than 0
therefore space space space space space in space all space the space three space cases comma space we space have comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space straight e to the power of straight x greater than 0
therefore space space space straight f left parenthesis straight x right parenthesis space equals space straight e to the power of straight x space is space straight a space strictly space increasing space function.

    Question 141
    CBSEENMA12035253

    Show that the function given by f(x) = e2x is strictly increasing on R.

    Solution

    Here f (x) = e2 x ⇒ f ' (x) = 2 e2x
    Three cases arise:
    Case I.
                    straight x space greater than 0
    Syntax error from line 1 column 565 to line 1 column 668. Unexpected '<mlongdiv '.
    Case II. x = 0
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 2 straight e to the power of 0 space equals space 2 space straight x space 1 space equals space 2 space greater than space 0
    Case III,
                    straight x less than 0
    therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 2 straight e to the power of 2 straight x end exponent space equals space 2 over straight e to the power of negative 2 straight x end exponent space equals space fraction numerator 2 over denominator space straight a space positive space quantity end fraction greater than 0
therefore space space space space in space all space the space three space cases comma space space space straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0
therefore space space space space straight f left parenthesis straight x right parenthesis space equals space straight e to the power of 2 straight x end exponent space is space strictly space increasing space on space straight R.

    Question 142
    CBSEENMA12035255

    Prove that f (x) = ax + b, where a and b are constants and a > 0 is an strictly increasing function for all real values of x. without using the derivative.

    Solution

    Let x1 , x2 x ∊ R and let x1 < x2
    Now x1 < x2
    ⇒ a x1 < a x2: [ ∵ a > 0]
    ⇒ a x+ b < a x2+ b ⇒  (x1) < f (x2)
    ∴   x1 < x2 ⇒ f (x1) < f (x2)
    ⇒ f is a strictly increasing function in R.

    Question 143
    CBSEENMA12035256

    Prove that the logarithmic function is increasing wherever it is defined.

    Solution

    Let straight f left parenthesis straight x right parenthesis space equals space log space straight x                                       therefore space space space space space straight D subscript straight f space equals left parenthesis 0 comma space infinity right parenthesis
    Now,        straight f apostrophe left parenthesis straight x right parenthesis space equals space 1 over straight x greater than 0 space space space space space space for all space space space straight x space space space space element of space space space space left parenthesis 0 comma space space space infinity right parenthesis
    Logarithmic function is increasing wherever it is defined.

    Question 144
    CBSEENMA12035257

    Show that the function f given by f (x) = 10x is increasing for all x.

    Solution

    f (x) = 10x
    ∴   f '(x) = 10x log 10 > 0 ∀ x.
    ∴   f is increasing ∀ x.

    Question 145
    CBSEENMA12035258

    Prove that the function f(x) = x3 – 3x2 + 3x – 100 is increasing on R.

    Solution

    Here f(x) = x3 – 3x2 + 3x – 100
    Df = R
    f ' (x) = 3x2 – 6 x + 3 = 3 (x2 – 2 x + 1) = 3 (x – 1)2 ≥ 0 ∀ x ∊ R
    ∴   f (x) is increasing on R.

    Question 146
    CBSEENMA12035260

    Prove that the function f(x) = x3 – 3x2 + 3x – 100 is increasing on R.

    Solution

    Here (x) = x3 – 6x2 + 12x – 18        ∴ Df = R
    f ' (x) = 3 x2 – 12x + 12 = 3 (x2 – 4 x + 4) = 3 (x – 2)2 ≥ 0 ∀ x ∊ R
    ∴ (x) is increasing on R.

    Question 147
    CBSEENMA12035261

    Prove that the function f (x) = 4x3 – 6x2 + 3x + 12 is increasing on R

    Solution

    Here f (x) = 4x3 – 6x2 + 3x + 12 12   ∴ Df = R
    f ' (x) = 12x2 – 12x + 3 = 3(2x – 1)2 4x + 1) = 3(2 x – 1)2 ≥ 0 ∀ x ∊ R
    ∴   f (x) is increasing on R.

    Question 148
    CBSEENMA12035262

    Show that the function f given by f(x) = x3 – 3x2 + 4x , x ∊ R is strictly increasing on R.

    Solution

    Here f (x) = x– 3x2 + 4x
    Df = R
    f '(x) = 3x2 – 6x + 4 = 3 (x2 – 2x + 1) + 1 = 3 (x – 1)2 + 1 > 0 ∀ x ∊ R
    ∴   f is strictly increasing on R.

    Question 149
    CBSEENMA12035264

    Prove that the function f (x) = sinx is
    (i) strictly increasing in open parentheses 0 comma space straight pi over 2 close parentheses
    (ii) strictly decreasing in open parentheses straight pi over 2 comma space straight pi close parentheses
    (iii) neither increasing nor decreasing in left parenthesis 0 comma space straight pi right parenthesis.

    Solution

    Here   straight f left parenthesis straight x right parenthesis space equals space sinx
    therefore space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space cos space straight x
    (i) Since for each straight x space element of space space space open parentheses 0 comma space space straight pi over 2 close parentheses comma space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space cos space straight x thin space greater than 0
    therefore space space space space space straight f space space is space strictly space increasing space in space space open parentheses 0 comma space space straight pi over 2 close parentheses
    (ii) Since for each straight x space element of space space open parentheses straight pi over 2 comma space straight pi close parentheses comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space cos space straight x thin space less than space 0
    therefore space space space space space straight f space space is space strictly space decreasing space in space open parentheses straight pi over 2 comma space space straight pi close parentheses.
    (iii) f(x) is strictly increasing in open parentheses 0 comma space straight pi over 2 close parentheses and strictly decreasing in open parentheses straight pi over 2 comma space straight pi close parentheses
    <pre>uncaught exception: <b>stream_socket_client(): php_network_getaddresses: getaddrinfo failed: Name or service not known (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/net/Socket.class.php at line #76</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'stream_socket_c...')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('stream_socket_c...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'stream_socket_c...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('stream_socket_c...')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('stream_socket_c...')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Question 150
    CBSEENMA12035266

    Prove that the function f (x) = cos x is
    (i) strictly increasing in left parenthesis negative straight pi comma space 0 right parenthesis
    (ii) strictly decreasing in left parenthesis 0 comma space straight pi right parenthesis
    (iii) neither increasing nor decreasing in left parenthesis negative straight pi comma space straight pi right parenthesis

    Solution

    Here f (a) = cos x ⇒ f ' (x) = – sin x
    (a) In left parenthesis negative straight pi comma space 0 right parenthesis,  f '(x) = – sin x > 0
    ∴ f (x) is strictly increasing in (– straight pi, 0)
    (b) In left parenthesis 0 comma space straight pi right parenthesis  f ' (x) = – sin x < 0
    ∴   f (x) is strictly decreasing in (0, straight pi)
    (c) Now f (x) is strictly increasing in (– straight pi, 0)  and strictly decreasing in left parenthesis 0 comma space straight pi right parenthesis
    ∴  f (x) is neither increasing nor decreasing in left parenthesis negative straight pi comma space straight pi right parenthesis.

    Question 151
    CBSEENMA12035268

    Which of the following function are strictly decreasing on open parentheses 0 comma space straight pi over 2 close parentheses space ?
    (a) cos x   (b) cos 2x   (c) cos 3x   (d) tan x

    Solution

    (a) Let straight f left parenthesis straight x right parenthesis space equals space cos space straight x comma space space space space space space space space therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus sin space straight x space
    In open parentheses 0 comma space straight pi over 2 close parentheses comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus sin space straight x space less than space 0
     therefore space space space space straight f left parenthesis straight x right parenthesis space equals space cosx space is space strictly space decreasing space on space open parentheses 0 comma space straight pi over 2 close parentheses
    (b) Let straight f left parenthesis straight x right parenthesis space equals space cos space 2 straight x comma space space space space space space therefore space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus 2 space sin space 2 straight x
    In open parentheses 0 comma space straight pi over 2 close parentheses comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus 2 space sin space 2 straight x space less than space 0
    therefore space space space space space straight f left parenthesis straight x right parenthesis space equals space cos space 2 straight x is strictly decreasing on open parentheses 0 comma space straight pi over 2 close parentheses.
    (c)  Let f(x) = cos 3x,       therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus 3 space sin space 3 straight x
                               0 less than straight x less than straight pi over 2
    rightwards double arrow space space space space space space 0 less than space 3 straight x space less than space fraction numerator 3 straight pi over denominator 2 end fraction
    Now  straight f apostrophe left parenthesis straight x right parenthesis space less than 0 space space space space when space 0 space less than space 3 straight x space less than space straight pi
    and straight f apostrophe left parenthesis straight x right parenthesis space greater than 0 space space space when space straight pi space less than space 3 straight x space less than fraction numerator 3 straight pi over denominator 2 end fraction
    therefore space space space space space straight f left parenthesis straight x right parenthesis space is space not space straight a space strictly space decreasing space function space on space open parentheses 0 comma space space straight pi over 2 close parentheses
    (d) Let straight f left parenthesis straight x right parenthesis space equals tanx comma space space space space space space space space therefore space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space sec squared straight x
    Now,    straight f apostrophe left parenthesis straight x right parenthesis greater than 0 space space for all space straight x space space space space element of space space space open parentheses 0 comma space space straight pi over 2 close parentheses
    therefore space space space straight f left parenthesis straight x right parenthesis space is space not space straight a space strictly space decreasing space function space on space open parentheses 0 comma space space space straight pi over 2 close parentheses

    Question 152
    CBSEENMA12035270

    Show that the function f (x) = x7 + 8 x5 + 1 is increasing function for all values of x.

    Solution

    Here f (x) = x7 + 8 x5 + 1
    ∴    f ' (x) = 7x6 + 40 x4 ≥ 0 ∀ x
    ∴    f (x) is increasing function for all values of x.

    Question 153
    CBSEENMA12035272
    Question 154
    CBSEENMA12035274
    Question 157
    CBSEENMA12035281

    On which of the following intervals is the function x100 + sin x – 1 strictly increasing?
    (i)  (1,  1)     (ii) (0, 1)        (iii) open parentheses straight pi over 2 comma space straight pi close parentheses     (iv) open parentheses 0 comma space space straight pi over 2 close parentheses

    Solution

    Let f (x) = x100 + sin x – 1 ∴ f ' (x) = 100 x99 + cos x
    (i) For – 1 < x < 1, f (x) > 0 is not necessarily true
    ∴  f (x) is not strictly increasing on (– 1, 1)
    (ii) For 0 < x < 1, f ' (x) > 0 ∴ f (x) is strictly increasing on (0, 1).
    (iii) 1 space or space space straight pi over 2 space less than space straight x thin space less than space straight pi comma space space space straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0 space space space space space space space therefore space space space space straight f left parenthesis straight x right parenthesis space is space strictly space increasing space on space open parentheses straight pi over 2 comma space straight pi close parentheses
    (iv) For space 0 space less than space straight x less than space straight pi over 2 comma space space space straight f apostrophe left parenthesis straight x right parenthesis thin space greater than 0 space space space space space space space therefore space space space space straight f left parenthesis straight x right parenthesis space is space strictly space increasing space on space open parentheses 0 comma space space straight pi over 2 close parentheses.

    Question 158
    CBSEENMA12035282

    Find the value of a for which the function f (x) = x3 – 2ax + 6 is increasing for x > 0.

    Solution

    Here f (x) = x2 – 2ax – 6
    ∴ f ' (x) = 2x – 2a
    f (x) is increasing when f ' (x) > 0
    ⇒ 2 (x – a) > 0 ⇒ x – > 0
    ⇒  x > a
    But x > 0
    ∴ a ∊ (– ∞ , 0)

    Question 159
    CBSEENMA12035284

    Show that straight y equals log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction is an increasing function of x throughout its domain.

    Solution
    straight y space equals space log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction
therefore space space space space space dy over dx space equals space fraction numerator 1 over denominator 1 plus straight x end fraction minus fraction numerator left parenthesis 2 plus straight x right parenthesis. space 2 space minus space 2 space straight x. space 1 over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator 1 over denominator 1 plus straight x end fraction space equals space fraction numerator 4 plus 2 straight x minus 2 straight x over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction space equals fraction numerator 1 over denominator 1 plus straight x end fraction minus fraction numerator 4 over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space equals fraction numerator left parenthesis 2 plus straight x right parenthesis squared minus 4 left parenthesis 1 plus straight x right parenthesis over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator 4 plus straight x squared plus 4 straight x minus 4 minus 4 straight x over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator straight x squared over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction greater than 0
                                                                                                              open square brackets because space space space space straight x space equals space minus 1 close square brackets
    therefore space space space space straight y space equals space log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction space is space an space increasing space function space of space straight x space for all space straight x space space equals space minus 1.
    Question 160
    CBSEENMA12035286

    Find the values of x for which y = [x ( x – 2)]is an increasing function.

    Solution

                                      straight y space equals space open square brackets straight x minus left parenthesis straight x minus 2 right parenthesis close square brackets squared space equals space left parenthesis straight x squared minus 2 straight x right parenthesis squared
              therefore space space space space dy over dx space equals space 2 left parenthesis straight x squared minus 2 straight x right parenthesis. space straight d over dx left parenthesis straight x squared minus 2 straight x right parenthesis space equals space 2 straight x left parenthesis straight x minus 2 right parenthesis thin space left parenthesis 2 straight x minus 2 right parenthesis space equals space 4 straight x left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis
space space space space space space space space space space dy over dx space equals space 0 space space space give space us space straight x space equals space 0 comma space 1 comma space 2
    The points x = 0,    x = 1,   x = 2 divide the real line into four disjoining intervals left parenthesis negative infinity comma space 0 right parenthesis comma space left parenthesis 0 comma space 1 right parenthesis comma space space left parenthesis 1 comma space 2 right parenthesis comma space left parenthesis 2 comma space infinity right parenthesis.
    Now dy over dx space equals space 4 straight x left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space greater than space 0 space in space left parenthesis 0 comma space 1 right parenthesis space and space left parenthesis 2 comma space infinity right parenthesis.
    therefore space space space space function space straight y space equals space left square bracket straight x left parenthesis straight x minus 2 right parenthesis right square bracket squared is increasing in (0, 1) and left parenthesis 2 comma space infinity right parenthesis.
     

    Question 161
    CBSEENMA12035289

    Prove that straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta is an increasing function of straight theta in open square brackets 0 comma space straight pi over 2 close square brackets.

    Solution

    Here,   straight y equals space fraction numerator 4 space sin space straight theta over denominator 2 plus cos space straight theta end fraction minus straight theta
    therefore space space space space space dy over dθ space equals space fraction numerator left parenthesis 2 plus cos space straight theta right parenthesis thin space left parenthesis 4 space cos space straight theta right parenthesis space minus space 4 space sin space straight theta space left parenthesis negative sin space straight theta right parenthesis over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction minus 1
                      equals space fraction numerator 8 space cos space straight theta space plus space 4 space cos squared space straight theta space plus space 4 space sin space squared straight theta over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction minus 1 equals space space fraction numerator 8 space cos space straight theta space plus space 4 left parenthesis cos squared straight theta plus sin squared straight theta right parenthesis over denominator left parenthesis 2 plus cosθ right parenthesis squared end fraction minus 1
equals space fraction numerator 8 cosθ plus 4 over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cos space straight theta space plus space 4 space minus left parenthesis 2 plus space cos space straight theta right parenthesis squared over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction
space equals space fraction numerator 8 space cos space straight theta plus 4 minus 4 minus 4 space cos space straight theta minus space cos squared straight theta over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction
space equals fraction numerator 4 space cos space straight theta space minus space cos squared straight theta over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction space equals space fraction numerator cos space straight theta left parenthesis 4 minus cos space straight theta right parenthesis over denominator left parenthesis 2 plus cos space straight theta right parenthesis squared end fraction
    For y to be increasing,  dy over dθ greater than 0
    rightwards double arrow space space space space space fraction numerator cos space straight theta space left parenthesis 4 minus cos space straight theta right parenthesis over denominator left parenthesis 2 plus space cos space straight theta right parenthesis squared end fraction greater than 0 space space space space rightwards double arrow space space space cos space straight theta thin space greater than 0 space space space space space left square bracket because space space left parenthesis 2 plus cos space straight theta right parenthesis squared greater than 0 comma space space 4 minus cos space straight theta space greater than 0 right square bracket
which space is space so space space if space space straight theta space element of open parentheses 0 comma space straight pi over 2 close parentheses
Hence space the space result. space

    Question 162
    CBSEENMA12035290

    Find the intervals in which the function f is given by
                             straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction
    is (i) increasing    (ii)  decreasing

    Solution

    Here straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 space sin space straight x space minus space 2 straight x minus space straight x space cosx over denominator 2 plus cos space straight x end fraction space equals space fraction numerator 4 sinx space minus space straight x left parenthesis 2 plus cosx right parenthesis over denominator 2 plus cosx end fraction space equals fraction numerator 4 space sinx over denominator 2 plus cosx end fraction minus straight x
    therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator left parenthesis 2 plus cos space straight x right parenthesis thin space left parenthesis 4 space cos space straight x right parenthesis space minus space left parenthesis 4 space sin space straight x right parenthesis space left parenthesis negative sin space straight x right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction minus 1
                    equals space fraction numerator 8 space cosx space plus space 4 space cos squared straight x space plus space 4 space sin squared straight x over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cosx space plus space 4 left parenthesis cos squared straight x plus sin to the power of 2 straight x end exponent right parenthesis over denominator left parenthesis 2 plus cos space straight x right parenthesis squared end fraction minus 1
equals space fraction numerator 8 space cosx space plus space 4 over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction minus 1 space equals space fraction numerator 8 space cos space straight x plus space 4 space minus space left parenthesis 2 plus space cosx right parenthesis squared over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator 8 cosx plus 4 minus 4 minus cos squared straight x minus 4 cosx over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction space equals space fraction numerator 4 space cosx minus cos squared straight x over denominator left parenthesis 2 space plus cosx right parenthesis squared end fraction
therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator cosx space left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction
    (i) For f(x) to be increasing. 
                          straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0 space space space space space space rightwards double arrow space space space space space space fraction numerator cosx left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction greater than 0
    rightwards double arrow space space space cosx space greater than space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space left parenthesis 2 plus cosx right parenthesis squared greater than 0 comma space space space 4 minus cosx greater than 0 space as space minus straight i less or equal than cosx less or equal than 1 close square brackets
rightwards double arrow space space space 0 space less than space straight x thin space less than straight pi over 2 space space space or space space space space fraction numerator 3 straight pi over denominator 2 end fraction less than straight x less than 2 straight pi
    (ii) For f(x) to be decreasing,
                     straight f apostrophe left parenthesis straight x right parenthesis thin space less than 0 space space space space space space space space space space rightwards double arrow space space space space space space fraction numerator cosx space left parenthesis 4 minus cosx right parenthesis over denominator left parenthesis 2 plus cosx right parenthesis squared end fraction space less than space 0 space space space space space rightwards double arrow space space space space space cosx less than 0
therefore space space space space space straight pi over 2 less than straight x less than fraction numerator 3 straight pi over denominator 2 end fraction
                   
                

    Question 163
    CBSEENMA12035292
    Question 164
    CBSEENMA12035293
    Question 166
    CBSEENMA12035297

    Find the intervals in which the following function is decreasing:
    f (x) = x– 12x

    Solution

    Here f(x) = x3 – 12x
    ∴ f ' (x) = 3x2 – 12 = 3 (x2 – 4) = 3 (x – 2) (x + 2)
    For f (x) to be decreasing, f ' (x) < 0
    ∴ 3 (x – 2) (x + 2) < 0 or (x – 2) (x – 2) < 0
    ∴  – 2 < x < 2
    f (x) is decreasing when – 2 < x < 2.

    Question 167
    CBSEENMA12035298

    Find the intervals in which the function f given by f(x) = 2x2 – 3x is
    (a) strictly increasing    (b) strictly decreasing

    Solution

    f(x) = 2x2 – 3x                   rightwards double arrow space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3
    Now straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space space space space space space space space space space rightwards double arrow space space space space 4 straight x minus 3 space equals space 0 space space space space space rightwards double arrow straight x space equals space 3 over 4
    The point straight x equals 3 over 4 divides the real line into two disjoint intervals open parentheses negative infinity comma space 3 over 4 close parentheses space and space open parentheses 3 over 4 comma space infinity close parentheses.
    In space space open parentheses negative infinity comma space space space 3 over 4 close parentheses comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3 space space less than space space 0
therefore space space space space space space space space space straight f space is space strictly space decreasing space in space open parentheses negative infinity comma space space 3 over 4 close parentheses.
In space open parentheses 3 over 4 comma space infinity space close parentheses comma space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3 space greater than space 0
therefore space space space space straight f space is space strictly space increasing space in space open parentheses 3 over 4 comma space infinity close parentheses.

    Question 168
    CBSEENMA12035300

    Find the intervals in which the function f given by f(x) = x2 – 4x+6  is
    (a) strictly increasing    (b) strictly decreasing

    Solution

    Here f (x) = x2 - 4x + 6
    ∴  (x) = 2x – 4
    f '(x) = 0 gives us 2x – 4 = 0 or x = 2
    The point x = 2 divides the real line into two disjoint intervals (– ∞, 2). (2, ∞).

    (a) In the interval (2, ∞), f ' (x) > 0
    ∴   f is strictly increasing in (2, ∞).

    (b) In the interval (– ∞, 2), (x) < 0
    ∴   f is strictly decreasing in (– ∞, 2).
    Note: Given function f is continuous at x = 2. which is the point joining the two intervals (– ∞, 2) and (2, ∞). Therefore f is decreasing in (– ∞, 2) and increasing in (2, ∞).

     
    Question 170
    CBSEENMA12035302

    Find the intervals in which the following functions are strictly increasing or decreasing:
    10 – 6x – 2x2

    Solution

    Let  straight f left parenthesis straight x right parenthesis space equals space 10 minus 6 straight x minus 2 straight x squared space                             therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus 6 minus 4 straight x
    Now,  straight f apostrophe left parenthesis straight x right parenthesis greater than 0 space space space space space when space space space minus 6 minus 4 straight x space greater than 0 space space space space space straight i. straight e. space when space straight x space less than negative 3 over 2.
    therefore space space space space space straight f left parenthesis straight x right parenthesis space is space increasing space in space open parentheses negative infinity comma space minus 3 over 2 close parentheses.
      Also space straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space space space when space minus 6 minus 4 straight x space less than 0 space space space straight i. straight e. space when space straight x space greater than space minus 3 over 2.
therefore space space space space straight f left parenthesis straight x right parenthesis space is space decreasing space in space open parentheses negative 3 over 2 comma space infinity close parentheses.

    Question 171
    CBSEENMA12035303

    Find the intervals in which the following functions are strictly increasing or decreasing:
    6 – 9x – x 2

    Solution

    Let f(x) = 6 – 9x – x 2                               therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus 9 minus 2 straight x
    Now,     straight f apostrophe left parenthesis straight x right parenthesis greater than 0 space space space when space minus 2 straight x minus 9 greater than 0 space space straight i. straight e. space space space when space straight x space less than negative 9 over 2
    therefore space space space straight f left parenthesis straight x right parenthesis space is space increasing space for space straight x less than negative 9 over 2
therefore space space space space straight f left parenthesis straight x right parenthesis space is space increasing space in space open parentheses negative infinity comma space space fraction numerator negative 9 over denominator 2 end fraction close parentheses.
Also comma space straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space space when space minus 2 straight x minus 9 less than 0 space space space straight i. straight e. space when space straight x greater than negative 9 over 2
therefore space space space space straight f left parenthesis straight x right parenthesis space is space increasing space for space straight x space greater than negative 9 over 2
therefore space space space space space space straight f left parenthesis straight x right parenthesis space is space decreasing space in space open parentheses negative 9 over 2 comma space space infinity close parentheses.

    Question 172
    CBSEENMA12035304

    Find the intervals in which the following function is increasing or decreasing:
    x3 – 6x2 + 9x + 15. 

    Solution

    Let f (x) = x3- 6x+ 9x + 15
    ∴     f '(x) – 3x2 – 12x + 9 = 3 (x2 – 4 x + 3) = 3 (x – 1) (x – 3)
    f ' (x) = 0 gives us 3(x – 1) (x – 3) = 0
     ∴  x = 1, 3
    The points x = 1, 3 divide the real line into three intervals (– ∞, 1), (1, 3), (3, ∞).
    (1) In the interval (– ∞ , 1), f ' (x) > 0
    ∴    f (x) is increasing in (– ∞, 1)
    (2) In the interval (1, 3), f ' (x) < 0
    ∴   f ' (x) is decreasing in (1, 3).
    (3) In the interval (3, ∞), f ' (x) > 0
    ∴   f (x) is increasing in (3, ∞).

    Question 173
    CBSEENMA12035305

    Find the intervals in which the following function f(x) is
    (a) increasing      (b) decreasing:
    f (x) = 2x3 – 9x2 + 12x + 15

    Solution

    Let f (x) = 2x3 – 9x2 + 12x + 15
    ∴ (x) = 6x2 – 18x + 12 = 6(x– 3x + 2) = 6 (x – 1) (x – 2)
    f ' (x) = 0 gives us 6 (x – 1) (x – 2) = 0 ⇒ x = 1 , 2
    The points x = 1, 2 divide the real line into three intervals (– ∞ , 1), (1, 2), (2, ∞)
    1.  In the interval (– ∞ , 1), f ' (x) > 0
    ∴    f (x) is increasing in (– ∞ , 1)
    2.   In the interval (1, 2), f ' (x) < 0
    ∴   f (x) is decreasing in (1, 2)
    3.  In the interval (2, ∞), f ' (x) > 0
    ∴   f (x) is increasing in (2, ∞)

    Question 174
    CBSEENMA12035307

    Determine the values of x for which the function f(x)  =  2x3 – 24x + 5 is increasing or decreasing.

    Solution

    f (x) = 2 x3 – 24 x + 5
    ⇒   f ' (x) = 6 x2 – 24 = 6 (x2 – 4) = 6 (x – 2) (x + 2)
    (i) For f (x) to be increasing, f ' (x) > 0
    ∴  6 (x – 2) (x + 2) > 0 i.e. (x + 2) (x + 2) > 0
    ∴   either x < – 2
    or  x > 2
    f (x) is increasing for x > 2 or x < – 2
    (ii) For f (x) to be decreasing. f ' (x) < 0
    ∴  6 (x – 2) (x + 2) < 0 or (x – 2) (x + 2) < 0
    ⇒ – 2 < x < 2
    ∴ f (x) is decreasing when – 2 < x < 2.

     
    Question 175
    CBSEENMA12035308

    Find the intervals in which the functions f (x) = 2x3 – 15x2 + 36x + 1 is strictly increasing or decreasing. Also find the points on which the tangents are parallel to the x-axis.

    Solution

    f (x) = 2x3 –15x2 + 36x + 1
    ∴   f ' (x) = 6x2 – 30x + 36 = 6 (x2 – 5x + 6) = 6 (y – 2) (x – 3)
    f ' (x) = 0 gives us 6 (r – 2) (x – 3) ⇒ x = 2, 3
    The points x = 2, 3 divide the real line into three intervals (– ∞, 2), (2, 3), (3, ∞)
    (i) In the interval (– ∞, 2), f ' (x) > 0
    ∴   f (x) is increasing in (2)
    (ii)  In the interval (2, 3), f ' (x) < 0
    ∴    f (x) is decreasing in (2, 3)
    (iii) In the interval (3, ∞) f ' (x) > 0
    ∴   f (x) is increasing in (3, ∞)
    ∴ we see that f (x) increases in (– ∞, 2) ∪ (3, ∞) and decreasing in (2, 3).
    Tangent is parallel to x-axis when f ' (x) = 0 i.e. 6 (x – 2) (x – 3) = 0 i.e. x = 2, 3
    When x = 2, y = f (2) = 2 (2)– 15 (2)2 + 36 (2) + 1 – 16 –60 + 72 + 1 = 29
    When x = 3, y = f (3) = 2(3)– 15 (3)2 + 36(3) + 1 = 54 – 135 + 108 + 1 = 28
    ∴    points are (2, 29), (3, 28).

    Question 176
    CBSEENMA12035309

    Find the intervals in which the function
    f(x) = x3 – 12x2 + 36x + 17 is
    (a) strictly increasing    (b) strictly decreasing 

    Solution

    (i) Here f (x) = x– 12x2 + 36x + 17
    ∴  f '(x) = 3x2 – 24x + 36 = 3 (x2 – 8x + 12) = 3 (x – 2) (x – 6)
    f ' (x) = 0 gives us 3 (a – 2) (a – 6)
     ∴   x = 2, 6
    The points x = 2, 6 divide the real line into three intervals (– ∞ , 2), (2, 6), (6, ∞)
    (1) In the interval (– ∞, 2), f ' (x) > 0
    ∴   f (x) is increasing in (– ∞, 2)
    (2) In the interval (2, 6), f ' (x) < 0
    ∴   f ' (x) is decreasing in (2, 6).
    (3) In the interval (6, ∞), f ' > 0
    ∴  f (x) is increasing in (6, ∞).

    Question 177
    CBSEENMA12035310

    Find the intervals in which the function f (x) = 2x– 15x2 + 36x + 1 is
    (a) strictly increasing     (b) strictly decreasing 

    Solution

    Let f (x) = 2x3 – 15x2 + 36x + 1
    f ' (x) = 6x2 – 30x + 36 = 6 (x2 – 5 x + 6) = 6 (x – 2) (x – 3)
    (a) For f (x) to be increasing, f' (x) > 0
    i.e., 6 (x – 2) (x – 3) > 0 or (x – 2) (x – 3) > 0
    ⇒  either x < 2 or x > 3
    ∴  f (x) is increasing in x < 2 or x > 3.
    (b) For f (x) to be decreasing, f ' (x) < 0
    i.e. 6 (x – 2) (x – 3) < 0. or (x – 2) (x – 3) < 0
    ⇒  2 < x < 3
    ∴  f (x) is decreasing in 2 < x < 3

    Question 178
    CBSEENMA12035312

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    x3 – 6x2 – 36x +4

    Solution

    Let f (a) = x3 – 6 x2 – 36x + 4
    f '(x) = 3x2 – 12x – 36 = 3 (x2 – 4x – 12) = 3 (x + 2) (x – 6)
    (a) For f (x) to be increasing, f ' (x) > 0
    i.e. 3 (x + 2) (x – 6) > 0 or (x + 2) (x – 6) > 0
    ∴  either x < – 2 or x > 6
    ∴   f (x) is increasing in x > 6 and x < – 2.
    (b) For f (x) to be decreasing, f ' (x) < 0
    i.e. 3 (x + 2) (x – 6) < 0 or (x + 2)(x – 6) < 0
    ⇒ – 2 < x < 6
    ∴ f (x) is decreasing in – 2 < x < 6.

    Question 179
    CBSEENMA12035313

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    2x3 – 15x2 + 36x + 6

    Solution

    Let f (x) = 2 x3 – 15x2 + 36x + 6
    f ' (x) = 6x2 – 30x + 36 = 6 (x2 – 5 x + 6) = 6 (x – 2) (x – 3)
    (a) For f (x) to be increasing, f'(x) > 0
    i.e., 6 (x – 2) (x – 3) > 0 or (x – 2) (x – 3) > 0
    ⇒ either x < 2 or x > 3
    ∴  f (x) is increasing in x < 2 or x > 3.
    (b) For f (x) to be decreasing, f ' (x) < 0
    i.e. 6 (x – 2) (x – 3) < 0 or (x – 2) (x – 3) < 0 ⇒ 2 < x < 3
    ∴    f (x) is decreasing in 2 < x < 3

     
    Question 180
    CBSEENMA12035314

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    6 + 12x + 3x– 2x3 

    Solution

    Let f (x) = 6 + 12x + 3x2 – 2x3 = – 2x3 + 3x2 + 12x + 6
    ∴  f ' (x) = – 6x2 + 6x + 12 = – 6 (x2 – x – 2) = – 6 (x + 1 ) (x – 2)
    (a) For f (x) to be increasing, f ' (x) > 0
    or  – 6 (x + 1) (x – 2) > 0 or (x + 1) (x – 2) < 0
    ⇒ – 1 < x < 2
    ∴ f (x) is increasing for –1 < x < 2

    (b) For f (x) to be decreasing , f ' (x) < 0
    or – 6 (x + 1) (x – 2) < 0 or (x + 1) (– 2) > 0
    ⇒ either x < – 1 or x > 2
    ∴  f (x) is decreasing for x < – 1 or x > 2.

     
    Question 181
    CBSEENMA12035316

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    2x3 – 8x2 + 10x + 5

    Solution

    Let f (x) – 2x– 8x2 + 10x + 5
    ∴    f ' (x) = 6x2– 16x + 10 = 2 (3x2 – 8x + 5) = 2 (x – 1) (3x – 5)
    For  f (x) to be increasing,
    f ' (x) > 0 ⇒ 2 (x – 1) (3x – 5) > 0 ⇒ (x – 1) (3 x – 5) > 0
    therefore space space space space either space straight x space less than 1 space space space space space space space or space space space straight x space space greater than space 5 over 3
space space space space therefore space space space straight f left parenthesis straight x right parenthesis space is space increasing space in space left parenthesis negative infinity comma space 1 right parenthesis space union space space space open parentheses 5 over 3 comma space infinity close parentheses space space space space space space space space
                 For f(x) to be decreasing, 
             straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space 2 space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 3 straight x minus 5 right parenthesis space less than space 0
    rightwards double arrow space space space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 3 straight x minus 5 right parenthesis thin space less than 0 space space space space space space space space space rightwards double arrow space space 1 less than straight x less than 5 over 3
therefore space space space space straight f left parenthesis straight x right parenthesis space is space decreasing space in space 1 less than straight x less than 5 over 3
therefore space space space straight f left parenthesis straight x right parenthesis space is space decreasing space in space open parentheses 1 comma space 5 over 3 close parentheses

    Question 182
    CBSEENMA12035317

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    2x3 – 6x2 – 48x + 17

    Solution

    Let f (x) = 2x– 6x2– 48x + 17
    ∴  f ' (x) = 6x– 12x – 48 = 6 (x2 – 2x – 8) = 6 (x + 2) (x – 4)
    For f (x) to be increasing,
    f ' (x) > 0  ⇒ 6 (x + 2) (x – 4) > 0
    ⇒ (x + 2) (x – 4) > 0
    ∴  either x < – 2 or x > 4
    ∴  f (x) is increasing in (– ∞, 2) ∪ (4, ∞)
    For  f (x) to be decreasing,
    f ' (x) < 0 ⇒ 6 (x + 2) (x – 4) = 0
    ⇒  (x + 2) (x – 4) < 0 ⇒ – 2 < x < 4
    ∴   f (x) is decreasing in (– 2, 4)

    Question 183
    CBSEENMA12035318

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    f (x) = 2x– 9x2 + 12x + 30

    Solution

    Let f (x) = 2x3 – 9x+ 12x + 30
    ∴   f '(x) = 6 x– 18x + 12 = 6 (x– 3x + 2) = 6 (x –1) (x – 2)
    f ' (x) = 0 gives us 6 (x – 1) (x – 2) = 0 ⇒ x = 1, 2
    The points x = 1, 2 divide the real line into three intervals (– ∞, 1), (1, 2), (2, ∞)
    1. In the interval (– ∞, 1), f ' (x) > 0
    ∴   f (x) is increasing in ( – ∞, 1)
    2.  In the interval (1, 2), f ' (x) < 0
    ∴    f(x) is decreasing in (1, 2)
    3.   In the interval (2, ∞). f ' (x) > 0
    ∴     f (x) is increasing in (2, ∞)

     
    Question 184
    CBSEENMA12035320

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    f (x) = 2x3 – 3x2 – 36x + 7

    Solution

    Here f (x) = 2x3 – 3x2 – 36x + 7
    ∴  f ' (x) = 6x2 – 6x – 36 = 6 (x2 – x – 6) = 6 (x + 2) (x – 3)
    f ' (x) = 0 gives us 6 (x + 2) (x – 3)
    ∴   x = – 2, 3
    The points x = – 2, 3 divide the real line into three intervals (– ∞, – 2), (– 2, 3), (3, ∞).
    In the interval (– ∞, – 2), f ' (x) > 0
    strictly  ∴ f (x) is strictly increasing in (– ∞, – 2)
    In the interval (– 2, 3), f ' (x) < 0 ∞ f (x) is strictly decreasing in ( – 2, 3)
    In the interval (3, ∞), f ' (x) > 0
    ∴  f (x) is strictly increasing in (3, ∞)
    ∴  we see that f (x) is strictly increasing in (– 8, – 2) ∪ (3, ∞) and strictly decreasing in ( – 2, 3)

     

    Question 185
    CBSEENMA12035321

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    f(x) = 2x3 – 21x2 + 36x – 40 

    Solution

    Here f (x) = 2x – 21x2 + 36x – 40
    ∴   f '(x) = 6x2 – 42x + 36 = 6(x2 – 7 x + 6) = 6 (x – 1) (x – 6)
    ∴    f '(x) = 0 gives us 6 (x – 1) (x – 6) = 0
    ∴     x = 1, 6
    The points x = 1, 6 divide the real line into three intervals – (∞, 1), (1, 6), (6, ∞).
    In the interval (– ∞,  1), f ' (x) > 0
    ∴ f (x) is strictly increasing in (– ∞, 1)
    In the interval (1, 6), f '(x) < 0
    ∴ f (x) is strictly decreasing (1, 6)
    In the interval (6, ∞), f ' (x) > 0
    ∴ f (x) is strictly increasing in (6, ∞)
    ∴ we see that f (x) is strictly increasing in (– ∞, 1) ∪ (6, ∞) and strictly decreasing in (1, 6).

    Question 186
    CBSEENMA12035322

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    4x3 – 6x2 – 72x + 30

    Solution

    Here f (x) = 4x– 6x2 – 72x + 30
    ∴   f ' (x) = 12x– 12x – 72 = 12 (x– x – 6) = 12 (x – 3) (x + 2)
    f '(x) = 0 gives us 12 (x – 3) (x + 2) = 0
    ∴   x = – 2, 3
    The points x = – 2, 3 divide the real line into three disjoint intervals (– ∞ – 2), (–2, 3), (3, ∞).
    Interval Sign of f' (x) Nature of function f 
    (–∞, –2) (–) (–) > 0 f is strictly increasing
    (– 2, 3) (–) (+) < 0 f is strictly decreasing
    (3, ∞) (+) (+) > 0 f is strictly increasing
    (a) f is strictly increasing in the intervals (– ∞, – 2) and (3,

    Question 187
    CBSEENMA12035323

    Find the intervals in which the following functions are strictly increasing or strictly decreasing:
    – 2x3 – 9x2 – 12x + 1

    Solution

    Let f (x) = – 2x3 – 9x2 – 12x + 1
    ∴    f ' (x) = – 6x– 18x – 12 = – 6 (x2 + 3x + 2) = – 6 (x + 1) (x + 2)
    f '(x) = 0 gives us – 6 (x + 1) (x + 2) = 0 ⇒ x = – 1, – 2
    The points x = – 2, – 1 divide the real line into three intervals (– ∞, – 2), (– 2, – 1),
    (1) In the interval (– ∞, – 2), f '(x) < 0
    ∴   f (x) is strictly decreasing in (– ∞, – 2).
    (2) In the interval (– 2, – 1), f ' (x) > 0
    ∴  f (x) is strictly increasing in (– 2, – 1).
    (3) In the interval (– 1, ∞), f '(x) < 0
    ∴  f (x) is strictly decreasing in (– 1, ∞).

    Question 188
    CBSEENMA12035325

    Find the intervals in which the function
    straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 straight x squared plus 1 over denominator straight x end fraction comma space space straight x not equal to 0, is
    (a) increasing (b) decreasing.

    Solution

     straight f left parenthesis straight x right parenthesis space equals space fraction numerator 4 straight x squared plus 1 over denominator straight x end fraction space equals space 4 straight x plus 1 over straight x
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 minus 1 over straight x squared
    (a)   For f(x) to be increasing, 
                  straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space 4 minus 1 over straight x squared greater than 0

    rightwards double arrow space space space space space space space space 4 greater than 1 over straight x squared space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight x squared greater than 1 fourth space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space open vertical bar straight x close vertical bar squared greater than space open parentheses 1 half close parentheses squared
rightwards double arrow space space space space open vertical bar straight x close vertical bar space greater than space 1 half space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space either space straight x less than negative 1 half space space space space space space or space space straight x space greater than space 1 half space
therefore space space space space straight f left parenthesis straight x right parenthesis space is space increasing space in space space open parentheses negative infinity comma space space space minus 1 half close parentheses space union space open parentheses 1 half comma space space infinity close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    (b)  For f(x) to be decreasing, 
       space space space space space space space space space space space straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space space space space space space space rightwards double arrow space space 4 minus 1 over straight x squared less than 0 space space space space space space space space space space space space space space space space space rightwards double arrow space space 4 straight x squared minus 1 space less than space 0
rightwards double arrow space space space space space space 4 straight x squared less than 1 space space space space space space space space space space rightwards double arrow space space straight x squared less than 1 fourth space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space open vertical bar straight x close vertical bar squared space less than space open parentheses 1 half close parentheses squared
rightwards double arrow space space space space space space space space space open vertical bar straight x close vertical bar space less than space 1 half space space space space space space space space space space space space rightwards double arrow space space space space space minus 1 half less than straight x less than 1 half space
But space straight x not equal to 0
therefore space space space straight f left parenthesis straight x right parenthesis space is space decreasing space in space open parentheses negative 1 half comma space space 0 close parentheses space space union space open parentheses 0 comma space space 1 half close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Question 189
    CBSEENMA12035327

    Find the intervals in which the function f is given by 
    straight f left parenthesis straight x right parenthesis space equals space straight x cubed plus 1 over straight x cubed comma space space space straight x not equal to 0 space space is space
    (i) increasing    (ii) decreasing

    Solution

    Here straight f left parenthesis straight x right parenthesis space equals space straight x cubed plus 1 over straight x cubed
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 3 straight x squared minus 3 over straight x to the power of 4 space equals space fraction numerator 3 left parenthesis straight x to the power of 6 minus 1 right parenthesis over denominator straight x to the power of 4 end fraction space equals space 3 over straight x to the power of 4 left square bracket left parenthesis straight x squared right parenthesis cubed space minus space left parenthesis 1 right parenthesis cubed right square bracket
space space space space space space space space space space space space space space space space space equals 3 over straight x to the power of 4 left square bracket left parenthesis straight x squared minus 1 right parenthesis space left parenthesis straight x to the power of 4 plus straight x squared plus 1 right parenthesis right square bracket space equals space fraction numerator 3 left parenthesis straight x to the power of 4 plus straight x squared plus 1 right parenthesis over denominator straight x to the power of 4 end fraction left parenthesis straight x squared minus 1 right parenthesis
    (i) For straight f left parenthesis straight x right parenthesis to be increasing
                         straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0 space space space space space space space rightwards double arrow space space space space fraction numerator 3 left parenthesis straight x to the power of 4 plus straight x squared plus 1 right parenthesis over denominator straight x to the power of 4 end fraction left parenthesis straight x squared minus 1 right parenthesis space greater than space 0
         rightwards double arrow space space space straight x squared minus 1 space greater than 0                                                                     open square brackets because space space space fraction numerator 3 left parenthesis straight x to the power of 4 plus straight x squared plus 1 right parenthesis over denominator straight x to the power of 4 end fraction greater than 0 close square brackets
    rightwards double arrow space space space space space straight x squared minus 1 space space space rightwards double arrow space space space open vertical bar straight x close vertical bar squared space greater than space left parenthesis 1 right parenthesis squared space space space space rightwards double arrow space space space space open vertical bar straight x close vertical bar space greater than space 1
rightwards double arrow space space space either space straight x space less than space minus 1 space space space or space space space straight x greater than 1
    (ii) For f(x) to be decreasing,
       straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space space space space space rightwards double arrow space space space space fraction numerator 3 left parenthesis straight x to the power of 4 plus straight x squared plus 1 right parenthesis over denominator straight x to the power of 4 end fraction left parenthesis straight x squared minus 1 right parenthesis thin space less than space 0
rightwards double arrow space space space space straight x squared minus 1 space less than space 0 space space space space rightwards double arrow space space space straight x squared less than 1 space space space space space rightwards double arrow space space space space open vertical bar straight x close vertical bar squared space less than space left parenthesis 1 right parenthesis squared space space space rightwards double arrow space space space open vertical bar straight x close vertical bar space less than space 1
rightwards double arrow space space space space space space minus 1 less than straight x less than 1.

    Question 190
    CBSEENMA12035328

    Determine for which values of x, the function f (x) = x4 – 2x2 is increasing or decreasing.

    Solution

    f (x) = x4 – 2x2
    ∴    f '(x) = 4 x– 4x = 4x (x– 1 )
    (i) For f (x) to be increasing , f ' (x) > 0
    Case I. Let x > 0 .
    ∴  f ' (x) > 0 when x2 – 1 > 0 i.e.. (x – 1) (x + 1) > 0
    ∴  x does not lie in (– 1, 1)
    Also x > 0
    ∴  we have x > 1
    Including end point, f (x) is increasing in x ≥ 1.
    Case II. Let x < 0
    ∴  (x) > 0 when x2 – 1 < 0
    i.e., when (x – 1) (x + 1) < 0
    i.e., when x lies in (– 1, 1)
    But x < 0
    ∴ we have – 1 < x < 0
    ∴  f (x) is increasing in – 1 < x < 0 or (– 1, 0)
    (ii) For f (x) to be decreasing, f '(x) < 0
    Case I. Let x > 0
    ∴  f ' (x) < 0 when x2 – 1 < 0
    ie., (x – 1) (x + 1) < 0 i.e., x lies in (– 1, 1)
    But x > 0
    ∴  we have 0 < x < 1
    ∴  f (x) is decreasing in ( 0, 1)
    Case II. Let x < 0
    ∴  f ' (x) < 0 when x2 – 1 > 0
    i.e. (x – 1) (x + 1) > 0
    i.e., x does not lie in (– 1, 1)
    Also x < 0
    ∴  we have x < – 1
    ∴ f (x) is decreasing in x < – 1.

     
    Question 191
    CBSEENMA12035336

    Find intervals in which the function given by 
    straight f left parenthesis straight x right parenthesis space equals space 3 over 10 straight x to the power of 4 minus 4 over 5 straight x cubed minus 3 straight x squared plus 36 over 5 straight x plus 11
    is (a) strictly increasing (b) strictly decreasing.

    Solution
    straight f left parenthesis straight x right parenthesis space equals space 3 over 10 straight x to the power of 4 minus 4 over 5 straight x cubed minus 3 straight x squared plus 36 over 5 straight x plus 11
    therefore space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 3 over 10 cross times space 4 straight x cubed space minus 4 over 5 cross times space 3 straight x squared minus 3 space cross times space 2 straight x space plus space 36 over 5
space space space space space space space space space space space space space space space space space equals 6 over 5 straight x cubed minus 12 over 5 straight x squared minus 6 straight x plus 36 over 5 space equals space 6 over 5 left parenthesis straight x cubed minus 2 straight x squared minus 5 straight x plus 6 right parenthesis
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 6 over 5 left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis
    Now,    straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space rightwards double arrow space space space space space space 6 over 5 left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis space equals space 0

    therefore space space space space space space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis thin space left parenthesis straight x minus 3 right parenthesis space equals space 0 space space space space space space space rightwards double arrow space space space straight x space equals space 1 comma space space minus 2 comma space space 3
    The points x = 1,  -2,  3 divide the real line into four disjoint intervals
                           left parenthesis negative infinity comma space space minus 2 right parenthesis comma space space left parenthesis negative 2 comma space space 1 right parenthesis comma space space space left parenthesis 1 comma space space 3 right parenthesis comma space space left parenthesis 3 comma space infinity right parenthesis.
    In space left parenthesis negative infinity comma space space minus 2 right parenthesis comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 6 over 5 left parenthesis negative right parenthesis thin space left parenthesis negative right parenthesis thin space left parenthesis negative right parenthesis space equals space minus ve space less than space 0
    therefore space space space space space straight f space is space strictly space decreasing space in space left parenthesis negative infinity comma space minus 2 right parenthesis.
    In left parenthesis negative 2 comma space 1 right parenthesis comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 6 over 5 left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space plus ve space greater than space 0
    therefore       f is strictly decreasing in (1, 3)
    In left parenthesis 1 comma space 3 right parenthesis comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 6 over 5 left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space minus ve less than space 0
    therefore space space space straight f space is space strictly space decreasing space in space left parenthesis 1 comma space 3 right parenthesis.
    In left parenthesis 3 comma space infinity right parenthesis comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 6 over 5 left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space left parenthesis plus right parenthesis space equals space plus ve space greater than space 0
    therefore space space space space space straight f space is space strictly space increasing space in space left parenthesis 3 comma space infinity right parenthesis.
    Question 192
    CBSEENMA12035339

    Find the intervals in which the function straight f left parenthesis straight x right parenthesis space equals space straight x over 2 plus 2 over straight x is increasing or decreasing.

    Solution

    Here,  straight f left parenthesis straight x right parenthesis space equals space straight x over 2 plus 2 over straight x comma space space space space space straight x not equal to space 0
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 1 half minus 2 over straight x squared space equals space fraction numerator straight x squared minus 4 over denominator 2 straight x squared end fraction space equals space fraction numerator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis over denominator 2 straight x squared end fraction
    (i) For f(x) to be increasing,  straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0
    therefore space space space space space fraction numerator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis over denominator 2 straight x squared end fraction greater than 0 space space space space space space space space space space rightwards double arrow space space space space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis thin space greater than space 0
rightwards double arrow space space space space space space either space straight x space less than negative 2 space space space space space space space space space space space space space or space space space space straight x space greater than space 2
therefore space space space space space space space straight f left parenthesis straight x right parenthesis space is space increasing space for space straight x space greater than 2 space space space or space space straight x space less than space minus space 2.
    (ii) For f(x) to be decreasing, straight f apostrophe left parenthesis straight x right parenthesis space less than space 0
    therefore space space space space space space fraction numerator left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis over denominator 2 straight x squared end fraction less than 0 space space space space space space space space space space space rightwards double arrow space space space space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x plus 2 right parenthesis thin space less than 0
rightwards double arrow space space space space minus 2 less than straight x less than 2
therefore space space space straight f left parenthesis straight x right parenthesis space decreases space for space minus 2 less than straight x less than 2.
       

    Question 193
    CBSEENMA12035342

    Separate open square brackets 0 comma space space space straight pi over 2 close square brackets into sub-intervals in which the function f (x) = sin 3x is increasing or decreasing.

    Solution

    Here straight f left parenthesis straight x right parenthesis space equals space sin space 3 straight x space space space space space space space rightwards double arrow space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 3 space cos space 3 straight x
    (i) For f(x) to be increasing,  f '(x) > 0 
    therefore space space space space 3 space cos space 3 straight x space greater than 0 space space space space space space space space space space rightwards double arrow space space space space cos space 3 straight x space greater than 0 space space space space space space space space rightwards double arrow space space space space straight x space element of space open parentheses 0 comma space space straight pi over 6 close parentheses
therefore space space space space straight f left parenthesis straight x right parenthesis space increases space in space open parentheses 0 comma space straight pi over 6 close parentheses
    (ii) For f(x) to be decreasing,   f '(x) < 0
    therefore space space space space 3 space cos space 3 straight x space less than 0 space space space space space rightwards double arrow space space space space cos space 3 straight x space less than space 0 space space space space space space space space rightwards double arrow space straight x space element of space space space open parentheses straight pi over 6 comma space space straight pi over 2 close parentheses
therefore space space space space straight f left parenthesis straight x right parenthesis space decreases space in space open parentheses straight pi over 6 comma space space straight pi over 2 close parentheses.

    Question 194
    CBSEENMA12035344

    Find the intervals in which the following function is increasing or decreasing:
    f (x) = sinx – cosx, 0 < x < 2straight pi

    Solution

    f(x) = sinx – cosx
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space cosx plus sinx space equals space square root of 2 space open square brackets fraction numerator 1 over denominator square root of 2 end fraction cosx plus fraction numerator 1 over denominator square root of 2 end fraction sinx close square brackets
space space space space space space space space space space space space space space space equals space square root of 2 open square brackets sin straight pi over 4 cosx plus cos space straight pi over 2 space sin space straight x close square brackets
therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space square root of 2 space sin space open parentheses straight x plus straight pi over 4 close parentheses
    For straight f left parenthesis straight x right parenthesis to be increasing,   straight f apostrophe left parenthesis straight x right parenthesis greater than 0
    therefore space space space square root of 2 space sin space open parentheses straight x plus straight pi over 4 close parentheses greater than 0 space space space space space space space space space rightwards double arrow space space space space sin space open parentheses straight x plus straight pi over 4 close parentheses greater than 0
    rightwards double arrow space space space 0 space less than space straight x space plus space straight pi over 4 less than space straight pi space space space space space space space rightwards double arrow space space space minus straight pi over 4 less than straight x less than fraction numerator 3 straight pi over denominator 4 end fraction space space space space space space space space space space space space space space space space space left parenthesis because space 0 less than straight x less than 2 straight pi right parenthesis
therefore space space space space space straight x space element of space space open parentheses 0 comma space fraction numerator 3 straight pi over denominator 4 end fraction close parentheses
    For straight f left parenthesis straight x right parenthesis to be decreasing,   straight f apostrophe left parenthesis straight x right parenthesis space less than space 0
    therefore space space space square root of 2 space sin space open parentheses straight x plus straight pi over 4 close parentheses space less than 0 space space space space space space space rightwards double arrow space space space sin space open parentheses straight x plus straight pi over 4 close parentheses space less than 0
rightwards double arrow space space straight pi less than space straight x space plus space straight pi over 4 less than space 2 straight pi space space space space space space space space space space space space rightwards double arrow space space space fraction numerator 3 straight pi over denominator 4 end fraction less than straight x less than fraction numerator 7 straight pi over denominator 4 end fraction
therefore space space straight x space space element of space space open parentheses fraction numerator 3 straight pi over denominator 4 end fraction comma space space fraction numerator 7 straight pi over denominator 4 end fraction close parentheses

    Question 195
    CBSEENMA12035346
    Question 196
    CBSEENMA12035347

    Find the intervals in which the following function is increasing or decreasing
    f (x) = (x + 2) e–x 

    Solution

    f (x) = (x + 2) e–x
    ∴  f ' (x) = (x + 2) · e–x (– 1) + e–x · 1 = e–x (– x – 2 + 1)
    ∴  f ' (x) = – (x + 1) e–x
    For f (x) to be increasing
    f ' (x) > 0 ⇒ –(x + 1) e–x > 0
    ⇒ (x + 1) e–x < 0 ⇒ x + 1< 0 [∵ e–x > 0]
    ⇒ x < – 1
    ∴  f (x) is increasing in ( – ∞ , – 1)
    For f (x) to be decreasing,
    f ' (x)  < 0  ⇒   – (x + 1) e–x < 0
    ⇒ (x + 1) e–x > 0 ⇒ x + 1 > 0 [ ∵ c–x > 0]
    ⇒ x > – 1
    ∴  f (x) is decreasing in (– 1, ∞)

    Question 197
    CBSEENMA12035351

    Find the intervals in which the function f given by 
    f (x) = sin x + cos x. 0 ≤ a ≤ 2 straight pi is increasing or decreasing.

    Solution

              f (x) = sin x + cos x
    therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space cos space straight x minus sin space straight x
    Now,    straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space rightwards double arrow space space space space cosx minus sinx space equals space 0 space space space space rightwards double arrow space space space space sin space straight x space equals space cos space straight x space space space rightwards double arrow space space space tan space straight x space equals space 1
    rightwards double arrow space space space space space straight x space equals space straight pi over 4 comma space space space space fraction numerator 5 straight pi over denominator 4 end fraction space space as space space space 0 less or equal than straight x less or equal than 2 straight pi
          The points space straight x space equals straight pi over 4 comma space space space space fraction numerator 5 straight pi over denominator 4 end fraction space divide the interval left parenthesis 0 comma space space 2 straight pi right parenthesis into three disjoint intervals open parentheses 0 comma space straight pi over 4 close parentheses comma space space open parentheses straight pi over 4 comma space fraction numerator 5 straight pi over denominator 4 end fraction close parentheses comma space space open parentheses fraction numerator 5 straight pi over denominator 4 end fraction comma space 2 straight pi close parentheses.
                 In open parentheses 0 comma space straight pi over 4 close parentheses comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space square root of 2 open parentheses fraction numerator 1 over denominator square root of 2 end fraction cos space straight x space minus space fraction numerator 1 over denominator square root of 2 end fraction sin space straight x close parentheses space equals space square root of 2 open parentheses cosx space cos space straight pi over 4 minus sinx space sin space straight pi over 4 close parentheses
                                       equals space square root of 2 space cos space open parentheses straight x plus straight pi over 4 close parentheses greater than 0
                    In open parentheses straight pi over 4 comma space space fraction numerator 5 straight pi over denominator 4 end fraction close parentheses comma space space straight f apostrophe left parenthesis straight x right parenthesis space less than space 0 space
                   In  open parentheses fraction numerator 5 straight pi over denominator 4 end fraction comma space space 2 straight pi close parentheses,   straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0
    therefore space space space space space space space space straight f space is space increasing space in space the space intervals space open parentheses 0 comma space straight pi over 4 close parentheses space space and space space open parentheses fraction numerator 5 straight pi over denominator 4 end fraction comma space space space 2 straight pi close parentheses space and space straight f space is space decreasing space in space the space interval space open parentheses straight pi over 4 comma space fraction numerator 5 straight pi over denominator 4 end fraction close parentheses.          


    Question 199
    CBSEENMA12035353

    Let f be a function defined on [a, b] such that f ' (x) > 0, for all x ∊ (a, b). Then prove that f is strictly increasing function of (a, b).

    Solution

    Since f '(x) > 0 in (a, b).
    therefore space space space space space for space any space straight c space element of space space left parenthesis straight a comma space straight b right parenthesis comma space straight f apostrophe left parenthesis straight c right parenthesis space greater than space 0
    By Lagrange's mean value theorem,
                      straight f apostrophe left parenthesis straight c right parenthesis space equals space fraction numerator straight f left parenthesis straight x subscript 2 right parenthesis minus straight f left parenthesis straight x subscript 1 right parenthesis over denominator straight x subscript 2 minus straight x subscript 1 end fraction space where space straight a less than straight x subscript 1 less than straight c less than straight x subscript 2 less than straight b
    But straight f space apostrophe space left parenthesis straight c right parenthesis space greater than space 0                                                                           open square brackets because space space space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space space space fraction numerator straight f left parenthesis straight x subscript 2 right parenthesis space minus straight f left parenthesis straight x subscript 1 right parenthesis over denominator straight x subscript 2 minus straight x subscript 1 end fraction greater than 0
    rightwards double arrow space space space space straight f left parenthesis straight x subscript 2 right parenthesis space minus straight f left parenthesis straight x subscript 1 right parenthesis thin space greater than 0
rightwards double arrow space space space space straight f left parenthesis straight x subscript 2 right parenthesis thin space greater than space straight f left parenthesis straight x subscript 1 right parenthesis space space space space rightwards double arrow space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space less than space space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space space space space straight x subscript 1 space less than space straight x subscript 2 space space space space space space rightwards double arrow space space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space less than space straight f left parenthesis straight x subscript 2 right parenthesis space for all space straight x subscript 1 comma space space straight x subscript 2 space element of space left parenthesis straight a comma space straight b right parenthesis
therefore space space space straight f left parenthesis straight x right parenthesis space is space strictly space increasing space in space left parenthesis straight a comma space straight b right parenthesis

    Question 201
    CBSEENMA12035355

    The interval in which y = x2e–x is increasing is

    • (– ∞, ∞)
    • (– 2,  0)
    • (2, ∞)
    • (0,  2)

    Solution

    D.

    (0,  2)

    Here,    straight y space equals space straight x squared straight e to the power of negative straight x end exponent
    therefore space space space space space dy over dx space equals space straight x squared straight d over dx left parenthesis straight e to the power of negative straight x end exponent right parenthesis space plus space straight e to the power of negative straight x end exponent straight d over dx left parenthesis straight x squared right parenthesis space equals space straight x squared. space straight e to the power of negative straight x end exponent straight d over dx left parenthesis negative straight x right parenthesis space plus straight e to the power of negative straight x end exponent. space 2 straight x
                      <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    For y to be increasing, 
                            dy over dx greater than 0 space space space space space space space space space space space rightwards double arrow space space space minus straight x left parenthesis straight x minus 2 right parenthesis thin space straight e to the power of negative straight x end exponent greater than 0 space space space space rightwards double arrow space space space straight x left parenthesis straight x minus 2 right parenthesis space less than space 0 space space space rightwards double arrow space space space straight x space element of space space left parenthesis 0 comma space 2 right parenthesis
    therefore space space space left parenthesis straight D right parenthesis space is space correct space answer.

    Question 202
    CBSEENMA12035356

    Find the maximum and the minimum values, if there be any, of f given by f(x) = 9x– 6x + 1, x ∊ R.

    Solution

    The given function is
    f (x) = 9x– 6x + 1, x ∊ R
    = (3x – 1) 2 ≥ 0, ∀ x ∊ R.
    Also, f(x) = 0,  if  straight x space equals space 1 third. Therefore, the minimum value of f is 0 and the point of minimum value of f is Futher,f has no maximum value and hence no point of maximum value of in R.

                    

    Question 203
    CBSEENMA12035357

    Find the maximum and the minimum values of f, if there be any, given by
    f(x) = – x2, x ∊ R

    Solution

    The given function is non-positive for all x ∊ R
    Also, f (x) = 0 if x = 0. Therefore, the maximum value of f is 0 and the point of maximum value of f is x.
    Further, note that f has no minimum value in R and hence no point of minimum value of f in R

    Question 204
    CBSEENMA12035358

    Find the maximum and the minimum values, if there be any, of f given by f(x) = x,  x ∊ (0, 1).

    Solution
    The given function is an increasing function in the given interval (0, 1). So the function f should have the minimum value at a point closest to 0 on its right and the maximum value at a point closest to 1 on its left. It is not possible to locate such points. Therefore, the given function has neither the maximum value nor the minimum value in the interval (0, 1).

    Question 205
    CBSEENMA12035361

    Without using derivatives, find the maximum or minimum value of the function 9x+ 12x + 2.

    Solution

     Let space straight f left parenthesis straight x right parenthesis space equals space 9 straight x squared plus 12 straight x plus 2 space equals space left parenthesis 9 straight x squared plus 12 straight x right parenthesis space plus 2
                                            equals space 9 open parentheses straight x squared plus 4 over 3 straight x close parentheses space plus 2 space equals space 9 space open parentheses straight x squared plus 4 over 3 straight x plus 4 over 9 close parentheses plus left parenthesis 2 minus 4 right parenthesis space equals space 9 open parentheses straight x plus 2 over 3 close parentheses squared minus 2

    Now,   open parentheses straight x plus 2 over 3 close parentheses squared space greater or equal than space space 0 space space space for all space straight x space space element of space space straight R space space space space space rightwards double arrow space space space space 9 open parentheses straight x plus 2 over 3 close parentheses squared space greater or equal than space 0 space for all space straight x space space element of space space straight R
    therefore space space space space space 9 open parentheses straight x plus 2 over 3 close parentheses squared minus 2 space greater or equal than space minus 2 space for all space space straight x space space element of space space straight R
therefore space space space space space straight f left parenthesis straight x right parenthesis space greater or equal than negative 2 space space space space for all space space straight x space space element of space space straight R
therefore space space minimum space value space of space straight f left parenthesis straight x right parenthesis space is space minus 2 space and space is space obtained space at space straight x space equals space minus 2 over 3.
There space is space no space maximum space value space of space the space function. space
    Question 206
    CBSEENMA12035362

    Find the maximum and minimum values, if any, of the following function without using the derivatives:
    9x2 – 12x + 4

    Solution

     Let f (x) = 9x2 – 12x + 4 = (3 x – 2)2 ≥ 0
    ∴   f (x) ≥ 0 ∀ a ∊ R
    Minimum value of f (x) is 0 and is obtained at straight x space equals space 2 over 3.
    There is no maximum value of the function.

    Question 207
    CBSEENMA12035363

    Find the maximum and minimum values, if any, of the following function without using the derivatives:
     4x + 28x + 49

    Solution

    Let f (x) = 4x2 + 28x + 49
    = (2x + 7)2 ≥ 0 f (x) ≥ 0 ∀ x ∊ R

     minimum value of f (x) is 0 and is obtained at straight x equals negative 7 over 2.
    There is no maximum value for the function. 
    Question 208
    CBSEENMA12035364

    Find the maximum and minimum values, if any, of the following function without using the derivatives:
    x + 1, x ∊ (– 1, 1)

    Solution

    Let f (x) = x + 1
    Here f (x) can assume any positive value depending upon x. Also f (x) can assume any negative value depending upon x.
    ∴   there is neither maximum nor minimum value.

    Question 209
    CBSEENMA12035365

    Find the maximum and minimum values, if any, of the following functions without using the derivatives:
    x2 

    Solution

    Let f (x) = x2
    Now x2 ≥ 0 ∀ a∊ R
    ∴   minimum value of F (x) = 0. It has no maximum value.

    Question 210
    CBSEENMA12035366

    Find the maximum and minimum values, if any, of the following functions without using the derivatives:
     – (x – 2 )2 + 4

    Solution

    Let f (x) = – (x – 2)3 + 4
    Now ( x – 2)2 ≥ 0 ∀ x ∊ R
    ⇒ – (x - 2)2 ≥ 0 ∀ x ∊ R ⇒ – (x – 2)2 + 4 ≤ 4 ∀ x ∊ R
    ∴  maximum value of f (x) is 4. It has no minimum value.

    Question 211
    CBSEENMA12035367

    Find the maximum and minimum values, if any, of the following functions without using the derivatives:
    – (x – 1)+ 10

    Solution

    Let f (x) = – (x – 1)2 + 10
    Now (x – 1 )2 ≥ 0 ∀ x ∊ R
    ⇒ – (x – 1)2 ≤ 0 ∀ x ∊ R ⇒ – (x – 1)2 + 10 ≤ ∀ x ∊ R
    ∴   maximum value of f (x) is 10. It has no minimum value.

    Question 212
    CBSEENMA12035368

    Find the maximum and minimum values, if any, of the following functions without using the derivatives:
    (2 x – 1)+ 3

    Solution

    Let f (x) = (2 x – 1)2 + 3
    Now (2 x – 1)2 ≥ 0 ∀ x ∊ R
    ⇒ (2 x – 1)2 + 3 ≥ 3 ∀ x R
    ∴   minimum value of f (x) is 3. It has no maximum value.

    Question 214
    CBSEENMA12035372

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    x3 + 1

    Solution

    Let f (x) = x3 + 1
    Now f (x) → when x → ∞ and f (x) → – ∞ when x → – ∞
    ∴  f (x) has neither maximum nor minimum.

    Question 215
    CBSEENMA12035373

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    | x + 2 |

    Solution

    Let f(x) = | x + 2 |
    Now | x + 2 | ≥ 0 ∀ x ∊ R
    ∴  f (x) ≥ 0 ∀ x∊ R
    ⇒ minimum value of f (x) is 0 and it has no maximum value.

    Question 216
    CBSEENMA12035374

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    – | x + 1 | + 3

    Solution

    Let f (x) = – | x + 1 | + 3
    Now | x + 1 | ≥ 0 ∀ x ∊ R
    ⇒ – | x + 1 | ≥ 0 ∀ x ∊ R ⇒ – | x + 1 | + 3 ≤ 3 ∀ a ∊ R
    ∴  maximum value of f (x) is 3 and it has no minimum value.

    Question 217
    CBSEENMA12035375

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    sin (2x + 3)

    Solution

    Let f (x) = sin (2 x + 3)
    We know that – 1 ≤ sin ≤ for all straight theta
    ∴ maximum value of sin (2 x + 3) is 1 and minimum value of sin (2 x + 3) is – 1.

    Question 218
    CBSEENMA12035378

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    sin 2x + 5

    Solution

    Let f (x) = sin 2x + 5
    We know that – 1 ≤ sin 2x ≤ 1
    ⇒  – 1 + 5 ≤ sin 2x + 5 ≤ 1 + 5  ⇒ 4 ≤ f (x) ≤ 6
    ∴  maximum value of f (x) is 6 and minimum value of f (x) is 4.

    Question 219
    CBSEENMA12035379

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    |sin 4x + 3|

    Solution

    Let f(x) = |sin 4x + 3|
    ∵   – 1 ≤ sin 4x ≤ 1 
    ∴ – 1 + 3 ≤ sin 4x + 3 ≤ 1 + 3
    ⇒  2 < sin 4x + 3 ≤ 4 ⇒ 2 ≤ | sin 4x + 3 | ≤ 4
    ⇒ 2 ≤ f (x) ≤ 4
    ∴  maximum value of f (x) is 4 and minimum value of f (x) is 2.

    Question 220
    CBSEENMA12035381

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    sin (sin x)

    Solution

    Let f (x) = sin (sin x)
    For any x, – 1 ≤ sin x ≤ 1
    ⇒ sin (– 1) ≤ sin x ≤ sin 1 {∵ in [– 1, 1] , sin function is increasing}
    ⇒ – sin 1 ≤ f (x) ≤ sin 1
    ∴  maximum value of f (x) is sin 1 and minimum value of f (x) is – sin 1.

    Question 221
    CBSEENMA12035382

    Find the maximum or minimum values, if any, of the following functions without using the derivatives:
    16x– 16x + 28

     

    Solution

    Let f(x) = 16x– 16x + 28 = 16(x- x) + 28
                  equals 16 open parentheses straight x squared minus straight x plus 1 fourth close parentheses space plus space left parenthesis 28 minus 4 right parenthesis space equals space 16 open parentheses straight x minus 1 half close parentheses squared plus 24
    Now,     open parentheses straight x minus 1 half close parentheses squared space greater or equal than space 0 space space space for all space space space straight x space space space element of space space straight R space space space space space space rightwards double arrow space space space space space space 16 open parentheses straight x minus 1 half close parentheses squared space greater or equal than space 0 space space space for all space space space straight x space space element of space space straight R
    rightwards double arrow space 16 space open parentheses straight x minus 1 half close parentheses squared plus 24 space greater or equal than space 24 space space for all space space straight x space space space element of space space straight R space space space rightwards double arrow space space space space straight f left parenthesis straight x right parenthesis space greater or equal than space 24 space for all space space straight x space space space element of space space straight R
    therefore minimum value of f(x) is 24. It has no maximum value.

    Question 222
    CBSEENMA12035383

    Prove that the following functions do not have maxima or minima:
    f(x) = ex

    Solution

    Let f (x) = ex
    ∴    f ' (x) = ex
    Now f ' (x) ≠ for any x ∊ R
    ∴  f (x) has neither maximum nor minimum value.

    Question 223
    CBSEENMA12035384

    Prove that the following functions do not have maxima or minima:
    g(x) = log x

    Solution

    g(x) = log x,     x>0,                straight g apostrophe left parenthesis straight x right parenthesis space equals space 1 over straight x
    Now,   1 over straight x greater than 0 space space as space straight x space greater than 0 space space space space space space space space space space space space space space space space space space space space space space therefore space space space straight g apostrophe left parenthesis straight x right parenthesis space not equal to space 0 space space for space any space straight x space greater than space 0
    therefore space space space space straight g left parenthesis straight x right parenthesis space has space neither space maxima space nor space minima.

    Question 224
    CBSEENMA12035385

    Prove that the following functions do not have maxima or minima:
    h(x) = x3 + x2 + x + 1

    Solution

    Let straight f left parenthesis straight x right parenthesis space equals space straight x cubed plus straight x squared plus straight x plus 1                            therefore space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 3 straight x squared plus 2 straight x plus 1
    Now,  straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space space space space rightwards double arrow space space space 3 straight x squared plus 2 straight x plus 1 space equals space 0
    rightwards double arrow space space space space straight x space equals space fraction numerator negative 2 plus-or-minus square root of 4 minus 12 end root over denominator 6 end fraction space equals space fraction numerator negative 2 plus-or-minus 2 square root of negative 2 end root over denominator 6 end fraction space equals space fraction numerator negative 1 plus-or-minus square root of negative 2 end root over denominator 3 end fraction
    These values of x are not real.
    ∴    there is no real value of x for which f ' (x) = 0
    ∴    f (x) has neither maxima nor minima.

    Question 225
    CBSEENMA12035387

    Find the absolute maximum value and the absolute minimum value of 
    straight f left parenthesis straight x right parenthesis space equals space 1 third straight x cubed minus 3 straight x squared plus 5 straight x plus 8 space in space left square bracket 0 comma space 4 right square bracket.

    Solution

    The function straight f left parenthesis straight x right parenthesis space equals space 1 third straight x cubed minus 3 straight x squared plus 5 straight x plus 8 is differentiable for all x in open square brackets 0 comma space 4 close square brackets
    and straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x squared minus 6 straight x plus 5
    Now,  straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space when space straight x squared minus 6 straight x plus 5 space equals space 0
    i.e.,    when (x - 5)  (x - 1) = 0
    i.e.,   when x = 1     or    x = 5
    But only 1 space element of space space space open square brackets 0 comma space 4 close square brackets
    Now,    straight f left parenthesis 1 right parenthesis space equals space 1 third left parenthesis 1 right parenthesis cubed space minus space 3. space space left parenthesis 1 right parenthesis squared space plus space 5 space left parenthesis 1 right parenthesis space plus space 8 space equals space 31 over 3
               straight f left parenthesis 0 right parenthesis space equals space 8 comma space space space space space straight f left parenthesis 4 right parenthesis space equals space 1 third left parenthesis 4 right parenthesis cubed space minus space 3 space left parenthesis 4 right parenthesis squared space plus space 5 space left parenthesis 4 right parenthesis space plus space 8 space equals space 4 over 3.
    Hence absolute maximum value is 31 over 3 and absolute minimum value is 4 over 3. These are attained at 1 and 4 respectively.

    Question 226
    CBSEENMA12035389

    Find the absolute maximum and minimum values of a function f is given by
    f (x) = 2x3 – 15x2 + 36x + 1 on the interval of [1, 5].

    Solution

    f (x) = 2x3 – 15x2 + 36x + 1
    ∴   f ' (x) = 6x– 30x + 36 = 6 (x– 5x + 6) = 6 (x – 2) (x – 3)
    f ' (x) = 0 ⇒ 6 (x – 2) (x – 3) = 0 ⇒ x = 2, 3 ∊ [1,5]
    Now f (1) = 2 – 15 + 36 + 1 = 24
    f (2) = 2 × 8 – 15 x 4 + 36 x 2 + 1 = 16 – 60 + 72 + 1 = 29
    f (3) = 2 × 27 – 15 x 9 + 36x3 + 1 = 54 – 135 + 108 + 1 = 28
    f (5) = 2 × 125–15 × 25 + 36 x 5 + 1 = 250–375+ 180+ 1 = 56
    ∴  absolute maximum value = 56 at x = 5
    and absolute minimum value = 24 at x = 1.

    Question 227
    CBSEENMA12035392
    Question 228
    CBSEENMA12035393

    Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
    straight f left parenthesis straight x right parenthesis space equals space straight x cubed comma space space space straight x space element of space left square bracket negative 2 comma space space 2 right square bracket

    Solution

    Here f (x) = x3
    The given function is differentiate for all x in [– 2, 2],
    f ' (x) = 3x2
    Now f ' (x) = 0 ⇒ 3x2 = 0 ⇒ x = 0 ∊ [– 2, 2]
    f (0) = 0, f (– 2) = – 8, f (2) = 8
    ∴  absolute maximum value = 8 and absolute minimum value = – 8.

    Question 229
    CBSEENMA12035395
    Question 230
    CBSEENMA12035396
    Question 231
    CBSEENMA12035398

    Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
    straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis squared plus 3 comma space space space space straight x space element of space space open square brackets negative 3 comma space space 1 close square brackets



    Solution

    Here f (x) = (x – 1 )2 + 3
    The given function is differentiable for all x in [– 3, 1],
    f '(x) = 2 (x – 1)
    Now f ' (x) = 0 ⇒ 2 (x – 1) = 0 ⇒ x = [∊ [– 3,1]
    f (– 3) = (– 3 – 1)2 + 3 = 19, f (1) = (1 – 1 )2 + 3 = 3
    ∴  absolute maximum value = 19 and absolute minimum value = 3.

    Question 232
    CBSEENMA12035400

    Find the absolute maximum value and the absolute minimum value of
    straight f left parenthesis straight x right parenthesis space equals space open parentheses 1 half minus straight x close parentheses squared space space plus space straight x space cubed space space space in space space space left square bracket negative 2 comma space space 2.5 right square bracket.

    Solution

    Let straight f left parenthesis straight x right parenthesis space equals space open parentheses 1 half minus straight x close parentheses squared space plus straight x space cubed
    The given function is differentiable for all x in [-2, 2.5] 
     straight f apostrophe left parenthesis straight x right parenthesis space equals space 2 space open parentheses 1 half minus straight x close parentheses space left parenthesis negative 1 right parenthesis space plus space 3 straight x space equals space minus 1 plus 2 straight x plus 3 straight x squared
straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space space space space 3 straight x squared plus 2 straight x minus 1 space equals space 0
rightwards double arrow space space space space space space straight x space equals space fraction numerator negative 2 space plus-or-minus square root of 4 plus 12 end root over denominator 6 end fraction space equals space fraction numerator negative 2 plus-or-minus 4 over denominator 6 end fraction equals negative 1 comma space 1 third
Both space space minus 1 comma space space space 1 third space space space element of space space space left square bracket negative 2 comma space 2.5 right square bracket
    straight f left parenthesis negative 2 right parenthesis space equals space open parentheses 1 half plus 2 close parentheses squared plus left parenthesis negative 2 right parenthesis cubed space equals space 25 over 4 minus 8 space equals space minus 7 over 4 space equals space minus 1.75
straight f left parenthesis 2.5 right parenthesis space equals space open parentheses 1 half minus 2.5 close parentheses squared plus space left parenthesis 2.5 right parenthesis cubed space equals space 4 plus 125 over 8 space equals space 157 over 8 space equals space 19.625
straight f left parenthesis negative 1 right parenthesis space equals space open parentheses 1 half plus 1 close parentheses squared space minus 1 space equals space 9 over 4 minus 1 space equals space 5 over 4
straight f open parentheses 1 third close parentheses space equals space open parentheses 1 half minus 1 third close parentheses squared plus 1 over 27 space equals space 1 over 36 plus 1 over 27 space equals space fraction numerator 3 plus 4 over denominator 108 end fraction space equals space 7 over 108
    therefore absolute maximum value = 19.625 and absolute minimum value  = -1.75

    Question 233
    CBSEENMA12035405
    Question 234
    CBSEENMA12035407

    Find the points at which the function f given by f (x) = (x – 2)4 (x + 1 )3 has
    (i) local maxima (ii) local minima (iii) point of inflexion .

    Solution

    Here,     straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 2 right parenthesis squared space space space left parenthesis straight x plus 1 right parenthesis cubed
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 2 right parenthesis to the power of 4. space straight d over dx left parenthesis straight x plus 1 right parenthesis cubed space plus space left parenthesis straight x plus 1 right parenthesis cubed. space space straight d over dx left parenthesis straight x minus 2 right parenthesis to the power of 4
                     equals space left parenthesis straight x minus 2 right parenthesis to the power of 4. space 3 left parenthesis straight x plus 1 right parenthesis squared plus left parenthesis straight x plus 1 right parenthesis cubed. space 4 left parenthesis straight x minus 2 right parenthesis cubed
equals space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left square bracket 3 left parenthesis straight x minus 2 right parenthesis space plus space 4 left parenthesis straight x plus 1 right parenthesis right square bracket space equals space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left parenthesis 7 straight x minus 2 right parenthesis
            straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space gives space us space left parenthesis straight x minus 2 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared space left parenthesis 7 straight x minus 2 right parenthesis space equals space 0
    therefore space space space space space space space straight x space equals space 2 comma space minus 1 comma space space 2 over 7
    When x < 2 slightly, straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals negative ve
    When x > 2 slightly, straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space plus ve
    therefore space space space space space at space straight x space equals space 2 comma space space straight f apostrophe left parenthesis straight x right parenthesis space changes space from space minus ve space to space plus ve
    therefore space space straight f left parenthesis straight x right parenthesis space has space local space minima space at space straight x space equals space 2
    When x < -1 slightly  f ' (x) = (-) (+) (-) = +ve
    When x > -1 slightly, f ' (x) = (-) (+) (-) = +ve
    therefore    at  x = -1,   f ' (x) does not change sign
    therefore          x = -1 is a point of inflexion.
    When space straight x thin space less than space 2 over 7 space space slightly comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space plus ve
    When space straight x thin space greater than space 2 over 7 space slightly space comma space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space minus ve
therefore space space space space at space straight x space equals space 2 over 7 comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space changes space form space plus ve space to space minus ve
therefore space space space straight f left parenthesis straight x right parenthesis space has space local space maxima space at space straight x space equals space 2 over 7

    Question 235
    CBSEENMA12035409

    Examine the following function for extreme values:
    f(x) = (x – 3)(x + 1)6

    Solution

    Here f (x) = (x – 3)5 (x + 1)6
    Differentiating (I) w.r.t. x, we get
    f ' (x) = 5 (x – 3)4 (x + 1)6 + (x – 3)5 (x + 1 )5
    ∴   f ' (x) = (x – 3)4 (x + 1)5 [5 (x + 1) + 6 (x – 3)]
    = (x – 3)4 (x + 1)(11 x – 13)
    Now,   space straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space when space straight x space equals space 3 comma space space minus 1 space space of space 13 over 11
    (a) When x = 3
    If x < 3 (slightly), f ' (x) = (+) (+) (+) = + ve
    If x > 3 (slightly), f ' (x) = (+) (+) (+) = + ve
    Hence f ' (x) does not change sign as x passes through 3.
    ∴  x = 3 is neither a point of maxima, nor a point of minima. 3 is a point of inflexion.
    (b) When x = – 1
    If x < – 1 (slightly), f ' (x) = (+) (–) (–) = + ve
    If x > – 1 (slightly), f ' (x) = (+) (+) (–) = – ve
    ∴  f ' (x) changes from positive to negative as a passes through – 1
    Hence x = – 1 is a point of local maxima and maximum value of the function at x = – 1 is f (– 1) = 0.
    (c) When straight x space equals space 13 over 11
      If space straight x less than 13 over 11 space left parenthesis slightly right parenthesis comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space minus ve comma
If space straight x greater than 13 over 11 left parenthesis slightly right parenthesis comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space plus ve
therefore space space space space straight f apostrophe space left parenthesis straight x right parenthesis space changes space from space negative space to space positive space as space straight x space passes space through space 13 over 11
Hence space 13 over 11 space is space straight a space point space of space local space minimum space and space locla space minimum space value space is space given space by
space space space space space straight f open parentheses 13 over 11 close parentheses space equals space open parentheses 13 over 11 minus 3 close parentheses to the power of 5 space space open parentheses 13 over 11 plus 1 close parentheses to the power of 6 space equals negative fraction numerator left parenthesis 20 right parenthesis to the power of 5 over denominator left parenthesis 11 right parenthesis to the power of 5 end fraction fraction numerator left parenthesis 24 right parenthesis to the power of 6 over denominator left parenthesis 11 right parenthesis to the power of 6 end fraction space equals space fraction numerator 2 to the power of 28. end exponent 3 to the power of 6. space 5 to the power of 5 over denominator left parenthesis 11 right parenthesis to the power of 11 end fraction

    Question 236
    CBSEENMA12035410

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    The constant function straight alpha

    Solution

    Let f (x) = α
    ∴  f ' (x) = 0
    ∴  there is no point at which f (x) has extreme value
    ⇒ f (x) has neither local maxima nor local minima.

    Question 237
    CBSEENMA12035411

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    f(x) = x2

    Solution

    Let f (x) = x2
    ∴  f ' (x) = 2x
    f ' (x) = 0 gives us x = 0
    When x < 0 slightly, f ' (x) = 2 (– ve) = – ve
    When x > 0 slightly, f ' (x) = 2 ( + ve) = +ve
    ∴  at x = 0, f ' (x) changes from – ve to + ve
    ∴  f (x) has local minimum value at x = 0
    and this local minimum value = 0.

    Question 238
    CBSEENMA12035412

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    straight x cubed minus 3 space straight x

    Solution

    Let f (x) = x3 + 3 x.
    ∴ f ' (x) = 3x2 – 3 = 3 (x – 1) (x + 1)
    f ' (x) = 0 ⇒ 3 x– 3 = 0
    ∴  x– 1 = 0 ⇒  x2 = 1 ⇒ x = – 1, 1
    When x < – 1 slightly, f ' (x) = 3 (– ve) (– ve ) = + ve
    When x > – 1 slightly, f ' (x) = 3 (– ve) (+ ve) = – ve
    ∴  at x = – 1 , f ' (x) changes from + ve to – ve
    ∴  f (x) has local maximum value at x = – 1
    and this local maximum value = (– 1 )3 – 3 (– 1) = – 1 + 3 = 2
    When x < 1 slightly, f ' (x) = 3 (– ve) ( + ve) = – ve
    When x > 1 slightly, f ' (x) = 3 ( + ve) (+ ve) = + ve
    ∴  at x = 1, f ' (x) changes from – ve to + ve
    ∴  f (x) has local minimum value at x = 1
    and this local minimum value = (1)3 – 3 (1) = 1 – 3 = – 2

    Question 239
    CBSEENMA12035413

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    cosx comma space space 0 space less than space straight x space less than straight pi

    Solution

    Let f (x) = cos x 
    ∴   '(x) = – sin x
    Now f ' (x) ≠ 0 for any x ∊ (0, straight pi)
    ∴ given function has no extreme points

    Question 243
    CBSEENMA12035422

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    f(x) = x3 – 6x2 + 9x + 15



    Solution

    Let f (x) = x3 – 6x2 + 9x + 15
    ∴  f ' (x) = 3x2 - 12x + 9 = 3 (x2 – 4 x + 3) = 3 (x – 1) (x – 3)
    f ' (x) = 0 ⇒ 3 (x – 1) (x – 3) = 0 ⇒ x = 1, 3
    When x < 1 slightly, f ' (r) = 3 (– 1)(–) = + ve
    When x > 1 slightly, f ' (x) = 3 (+)(–) = – ve
    ∴  at x = 1, f ' (x) changes from + ve to – ve
    ∴  f (x) has local maxima at x = 1
    and local maximum value = 1 – 6 + 9 + 15 = 19
    When x < 3 slightly, f ' (x) = 3 (+) (–) = – ve
    When x > 3 slightly, f ' (x) = 3 (+) (+) = + ve
    ∴ at x = 3, f ' (x) changcs from – ve to + ve
    ∴  f ' (x) has local minimum value at = 3
    and local minimum value = (3)3 – 6 (3)2 + 9 (3) + 15 = 27 – 54 + 27 + 15 = 15

     
    Question 244
    CBSEENMA12035424

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    f(x) = (x – 1)(x + 2)2

    Solution
    f (x) = (x – 1)(x + 2)2
    straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis space straight d over dx open square brackets left parenthesis straight x plus 2 right parenthesis squared close square brackets space plus space left parenthesis straight x plus 2 right parenthesis squared. space straight d over dx left parenthesis straight x minus 1 right parenthesis
    = (x – 1), 2 (x + 2) + (x + 2)2, 1 = 2 (x2 + x – 2) + x+ 4x + 4
    = 2 x2 + 2 x – 4 – x2 + 4 x + 4.

    f ' (x) = 3 x2 + 6 x
    = (x – 1), 2 (x + 2) + (x + 2)2, 1 = 2 (x2 + x – 2) + x+ 4 x + 4
    = 2 x2 + 2 x – 4 – x2 + 4 x + 4.
    f ' (x) = 3 x2 + 6 x
    f ' (x) = 0 gives us 3 x2 – 6 x = 0. or x2 + 2 x = 0
    ∴  x (x + 2) = 0 ∴ x = 0, – 2
    f ' ' (x) = 6 x + 6
    At x = 0, f ' ' (x) = 0 + 6 = 6 > 0
    ∴  f (x) has a local minimum at x = 0
    ∴  local minimum value = (c – 1) (0 + 2)2 = – 4
    At x = – 2, f ' ' (x) = – 12 + 6 = – 6 < 0
    ∴  f (x) has a local maximum at x = – 2
     ∴  local minimum value = (– 2 – 1) (– 2 + 2)2 = 0

    Question 248
    CBSEENMA12035434

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    sin to the power of 4 straight x plus cos to the power of 4 straight x comma space space space 0 less than straight x less than straight pi over 2




    Solution

    Let straight f left parenthesis straight x right parenthesis space equals space sin to the power of 4 straight x plus cos to the power of 4 straight x comma space space 0 less than straight x less than straight pi over 2
     therefore space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 space sin cubed straight x space cosx minus space 4 space cos cubed straight x space sinx space equals space 4 space sinx space cosx space left parenthesis sin squared straight x minus cos squared straight x right parenthesis
                         equals negative 2 left parenthesis 2 space sinx space cosx right parenthesis space left parenthesis cos squared straight x minus sin squared straight x right parenthesis space equals negative 2 space sin space 2 straight x space cos space 2 straight x space equals space minus sin space 4 straight x
                          straight f space apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space minus sin space 4 straight x space equals space 0 space space space space space space space rightwards double arrow space space sin space 4 straight x space equals space 0
    rightwards double arrow space space space space space 4 straight x space equals space straight pi comma space space 2 straight pi space space space space space rightwards double arrow space space space straight x space equals space straight pi over 4 comma space space straight pi over 2
    When space space straight x less than straight pi over 4 space slightly comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus ve
    When space straight x greater than straight pi over 4 space slightly comma space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space plus ve
    therefore space space space at space straight x space equals straight pi over 4 comma space space straight f apostrophe left parenthesis straight x right parenthesis space changes space from space minus ve space to space plus ve
    therefore space space space space straight f space has space total space minimum space at space straight x space equals space straight pi over 4
    and local minimum value = sin to the power of 4 straight pi over 4 plus cos to the power of 4 straight pi over 4 space equals space open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses to the power of 4 plus space open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses to the power of 4
                                            equals space 1 fourth plus 1 fourth space equals space 1 half
       Now comma space space straight x space equals straight pi over 2 space is space the space end space point
When space straight x space less than space straight pi over 2 space slightly space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus left parenthesis negative ve right parenthesis space equals space plus ve
therefore space space space straight f left parenthesis straight x right parenthesis space has space straight a space local space maxima space at space straight x space equals space straight pi over 2
and space this space local space maximum space value space space equals space sin to the power of 4 straight pi over 2 plus cos to the power of 4 straight pi over 2 space equals space 1 plus 0 space equals space 1

    Question 250
    CBSEENMA12035438

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    left parenthesis straight x minus 3 right parenthesis to the power of 4






    Solution

    Let f (x) = (x – 3)4.
    ∴  f ' (x) = 4 (x – 3)3
    Now f ' (x) = 0 ⇒ 4(x – 3)3 = 0 ⇒ (x– 3)3 = 0 ⇒ x = 3
    When x < 3 slightly, f ' (x) = – ve
    When x > 3 slightly, f '(x) = + ve
    ∴ at x = 3, f '(x) changes from – ve to + ve
    ∴ f (x) has local minima at x = 3
    and this local minimum value = (3 – 3)4 = 0

    Question 251
    CBSEENMA12035441

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    straight x cubed left parenthesis straight x minus 1 right parenthesis squared

    Solution

    Let straight f left parenthesis straight x right parenthesis space equals space straight x cubed space left parenthesis straight x minus 1 right parenthesis squared
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x cubed straight d over dx left square bracket left parenthesis straight x minus 1 right parenthesis squared right square bracket space plus space left parenthesis straight x minus 1 right parenthesis squared. space straight d over dx left parenthesis straight x cubed right parenthesis
                     equals straight x cubed thin space 2 left parenthesis straight x minus 1 right parenthesis space plus space left parenthesis straight x minus 1 right parenthesis squared. space 3 straight x squared space equals space straight x squared left parenthesis straight x minus 1 right parenthesis space left square bracket 2 straight x plus 3 left parenthesis straight x minus 1 right parenthesis right square bracket
space equals space straight x squared left parenthesis straight x minus 1 right parenthesis space left parenthesis 5 straight x minus 3 right parenthesis
        <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    When x<0 slightly,  f '(x) = (+) (-) (-) = + ve
    When x>0 slightly,  f '(x) = (+) (-) (-) = + ve
    therefore     at x = 0,    f '(x) does not change sign 
     therefore space space space space space straight x space equals space 0 space is space straight a space point space of space inflexion. space
    When space straight x space less than space 1 space slightly comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis space equals space minus ve
When space straight x greater than 1 space slightly comma space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space plus ve
therefore space space space space space at space straight x space equals space 1 comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space changes space from space minus ve space plus ve
therefore space space space space straight f left parenthesis straight x right parenthesis space has space local space minimum space value space at space straight x space equals space 1 space and space this space value space space equals space 0.
When space straight x less than 3 over 5 space slightly comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis thin space left parenthesis negative right parenthesis space equals space plus ve
When space straight x space greater than 3 over 5 space slightly comma space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis thin space left parenthesis plus right parenthesis space equals space minus ve
    therefore space space space straight f left parenthesis straight x right parenthesis space has space local space maximum space value space at space straight x space equals space 3 over 5
and space this space value space space equals space open parentheses 3 over 5 close parentheses cubed space space open parentheses 3 over 5 minus 1 close parentheses squared space equals space 27 over 125 cross times 4 over 25 space equals space 108 over 3125.

    Question 253
    CBSEENMA12035445

    Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
    negative left parenthesis straight x minus 1 right parenthesis cubed space left parenthesis straight x plus 1 right parenthesis squared



    Solution

    Let f (x) = – (x – 1)3 ( x + 1 )2
    ∴   f ' (x) = – [(x – 1)3. 2(x + 1) + (x + 1)2. 3(x – 1)2]
    = – (x – 1)(x + 1) [2 (x – 1) + 3 (x + 1)] = – (x – 1)2 (x + 1) (5 x + 1)
    f ' (x) = 0 ⇒ – (x – 1)(x + 1) (5 x + 1) = 0
    rightwards double arrow space space straight x space equals 1 comma space space space 1 comma space space space minus 1 fifth.
    When x < 1 slightly, f ' (x) = – [( + )( + )( + )] = – ve
    When x > 1 slightly, f ' (x) = – [( + )( + )( + )] = – ve
    ∴  at x = 1 , f '(x) does not change sign ,
    ∴  x = 1 is a point of inflexion.
    When x < – 1 slightly. f ' (x) = – [( + )( – )( – )] = – ve
    When x > – 1 slightly. f ' (x) = – [( + )( + ) ( – )] = + ve
    ∴ at x = – 1, f ' (x) changes from – ve to + ve
    ∴ f (x) has local minimum value at x = – 1 and this local minimum value = 0.
    when space straight x less than negative 1 fifth space slightly comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space minus open square brackets left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis close square brackets space space equals space plus ve
When space straight x space greater than 1 fifth space slightly comma space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space left square bracket left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis right square bracket space equals space minus ve
therefore space space space at space straight x space equals space minus 1 fifth comma space space space space space straight f space apostrophe left parenthesis straight x right parenthesis space changes space from space plus ve space to space minus ve
therefore space space space space straight f left parenthesis straight x right parenthesis space has space local space maximum space value space at space straight x space equals space minus 1 fifth
and space this space value space space equals space minus open parentheses 6 over 5 close parentheses cubed space space open parentheses 4 over 5 close parentheses cubed space equals space fraction numerator 6 cubed cross times 4 squared over denominator 5 to the power of 5 end fraction space equals space 3456 over 3125.
space

    Question 254
    CBSEENMA12035447

    Find all the local maxima or minima of the function
    f (x) = x– 12x.

    Solution

    Let f (x) = x– 12 x
    ∴  f ' (x) =3 x2 – 12
    f ' ' (x) = 0 ⇒ 3 x– 12 = 0 ⇒ x– 4 = 0 ⇒ x = 2, – 2
    f ' ' (x) = 6 x
    At x = 2.
    f ' ' (x) = 12 > 0
    ∴ f (x) has local minimum value at x = 2
    and this minimum value = (2)3 – 12 (2) = – 16
    At x = – 2, f ' ' (x) = – 12 < 0
    ∴ f (x) has local maximum value x = – 2
    and this value = (– 2)– 12 (– 2) = – 8 + 24 = 16.

    Question 255
    CBSEENMA12035451

    Find all the points of local maxima and local minima of the function f given by f (x) = x3 – 27 x + 3. Also, find local maximum and local minimum value of f.

    Solution

    Here f (x) = x3 – 27 x + 3
    ∴    f ' (x) = 3 x2 – 27
    and f ' ' (x) = 6 x
    Now f ' (x) = 0 ⇒ 3 x– 27 = 0 ⇒ x2 – 9 = 0
    ⇒ x2 = 9 x = – 3, 3
    At x = 3, f ' ' (x) = 18 > 0
    ∴  f has a local minima at x = 3
    and local minimum value = (3)– 27 (3) + 3 = 27 – 81 + 3 = – 51
    At x = – 3, f ' ' (x) = – 18 < 0
    ∴  f has a local maxima at x = – 3
    and local maximum value = (– 3)3 –21 ( 3) + 3 = 27 + 81 + 3 = 57

    Question 256
    CBSEENMA12035452

    Find all points of local maxima and local minima of the function f given by f (x) = x3  3x + 3.

    Solution

    f (x) = x– 3 x + 3
    ∴   f ' (x) – 3 x2 3 = 3 (x – 1) ( v + 1)
    f ' (x) = 0 ⇒ 3 x2 – 3 = 0 ⇒ x– 1 – 0 ⇒ x2 = 1 ⇒ v = – 1, 1
    When x < – 1 slightly, f ' (x) = 3 ( ve) ( ve ) = + ve
    When x > – 1 slightly, f ' (x) = 3 ( ve) ( + ve) = ve
    ∴   at x = – 1, f ' (x) changes from + ve to ve
    ∴  f (x) has local maximum value at x = 1
    When x < 1 slightly, f ' (x) = 3 (– ve) ( + ve) = – ve
    When x > 1 slightly, f ' (x) = 3 ( + ve) (+ ve) = + ve
    ∴ at x = 1, f ' (x) changes from ve to + ve
    ∴ f (x) has local minimum value at x = 1

    Question 257
    CBSEENMA12035454

    Find all the points of local maxima and local minima of the function f given by f (x) = 2x3 – 6x2 + 6x + 5 .

    Solution

    f (x) = 2 x3 – 6 x2 + 6 x + 5
    ∴  f ' (x) = 6 x– 12 x + 6 = 6 (x– 2 x + 1)
    ∴   f ' (x) = 6 ( x – 1)2
    Now f ' (x) = 0 ⇒ 6 (x – 1)2 = 0 ⇒ r = 1
    When x < 1 slightly, f ' (x) = 6 (1) = + ve
    When x > 1 slightly, f ' (x) = 6 (+) = ve
    ∴ f ' (x) does not change sign as x passes through I
    ∴  x = 1 is a point of inflexion.

    Question 258
    CBSEENMA12035456

    Find local minimum value of the function f given by f(x) = 3+ | x |, x ∊ R.

    Solution

    f (x) = 3 + | x |, x ∊ R
    f is not differentiable at x = 0
    ∴  0 is a critical point of f.
    Now,                 straight f left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell 3 minus straight x comma space space space space space space space space space straight x less than 0 end cell row cell 3 plus straight x comma space space space space space space space space space straight x greater than 0 end cell end table close
    therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell negative 1 comma space space space space space space space space space straight x less than 0 end cell row cell 1 space space space space space space space space space space space space space space straight x greater than 0 end cell end table close
therefore space space space space at space space space straight x space equals space 0 comma space space space space space space space straight f space apostrophe left parenthesis straight x right parenthesis space changes space from space minus ve space to space plus ve
therefore space space space space space space straight x space equals space 0 space is space straight a space point space of space local space minima space of space straight f space and space local space minimum space value space of space straight f space equals space straight f left parenthesis 0 right parenthesis space equals space 3

    Question 259
    CBSEENMA12035457

    Find local maximum and local minimum values of the function f given by
    f (a) = 3x4 + 4x3 – 12x2 + 12

    Solution

    f (x) = 3 x+ 4 x– 12 x+ 12
    f ' (x) = 12 x+ 12 x– 24 x = 12 x (x2 + x – 2)
    f ' (x) = 12 x (x – 1) (x + 2)
    f ' (x) = 0 ⇒ 12 a (x – 1) (x + 2) = 0
    ∴ x = 0, 1, – 2
    f ' (x) = 36 x2 + 24 x – 24
    At x = 0, f '' (x) = 0 + 0 24 = – 24 < 0
    ∴  x = 0 is a point of local maximum
    and local maximum value = 0 + 0 – 0 + 12 = 12
    At x = 1, f ' (x) = 36 + 24 – 24 = 36 > 0
    ∴  x = 1 is a point of local minima
    and local minimum value = 3+ 4 – 12 + 12 = 7
    At x = – 2, f '' (x) = 36 (4) + 24 (– 2) – 24 = 72 > 0
    ∴  x = – 2 is a point of local minima
    and local minimum value = 3 (–2)4 + 4 (–2)3 – 12(–2)2 + 12
    = 3 (16) + 4 (– 8) – 12 (4) + 12 = 48– 32 – 48 + 12 = – 20

     

    Question 260
    CBSEENMA12035458

    What is the maximum value of the function sin x + cos x?

    Solution

    Consider the interval  open square brackets 0 comma space 2 straight pi close square brackets
    Let space space straight f left parenthesis straight x right parenthesis space equals space sinx space plus cosx comma space space space space space space therefore space space space space straight f space apostrophe left parenthesis straight x right parenthesis space equals space cosx minus sinx
space space
             straight f apostrophe space left parenthesis straight x right parenthesis space equals space 0 space space space space gives space cosx minus sinx space equals space 0 space space space space space rightwards double arrow space space space sinx space equals space space cosx
    rightwards double arrow space space space tanx space equals 1 space space space space space space rightwards double arrow space space space space straight x space equals space straight pi over 4 comma space space space fraction numerator 5 straight pi over denominator 4 end fraction
         Now comma space space space straight f left parenthesis 0 right parenthesis space equals space sin space 0 space plus space cos space space 0 space equals space 0 space plus space 1 space equals space 1
                   straight f open parentheses straight pi over 4 close parentheses space equals space sin space straight pi over 4 plus space cos space straight pi over 4 space equals space fraction numerator 1 over denominator square root of 2 end fraction plus fraction numerator 1 over denominator square root of 2 end fraction space equals space fraction numerator 2 over denominator square root of 2 end fraction space equals space square root of 2
straight f open parentheses fraction numerator 5 straight pi over denominator 4 end fraction close parentheses space equals space sin space space fraction numerator 5 straight pi over denominator 4 end fraction plus cos space fraction numerator 5 straight pi over denominator 4 end fraction space equals space sin space open parentheses straight pi plus straight pi over 4 close parentheses plus space cos space open parentheses straight pi plus straight pi over 4 close parentheses equals space space minus sin space straight pi over 4 minus cos space straight pi over 4
space space space space space space space space space space space space space space space equals negative fraction numerator 1 over denominator square root of 2 end fraction minus fraction numerator 1 over denominator square root of 2 end fraction space equals space minus fraction numerator 2 over denominator square root of 2 end fraction space equals space minus square root of 2
space space space straight f left parenthesis 2 straight pi right parenthesis space equals space sin space 2 straight pi space plus space cos space 2 straight pi space equals space 0 plus 1 space equals space 1
therefore space space space space maximum space value space space equals space square root of 2

    Question 261
    CBSEENMA12035460

    Find the maximum and minimum value of x + sin 2 x on left square bracket 0 comma space 2 straight pi right square bracket.

    Solution
    Let space straight f left parenthesis straight x right parenthesis space equals space straight x plus sin space 2 straight x
    therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space space equals space 1 plus 2 space cos space 2 straight x
space space space space space space space space space space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space space 1 plus 2 space cos 2 straight x space equals space 0
rightwards double arrow space space space space cos space 2 straight x space equals space minus 1 half space equals space minus cos space 60 degree space equals space minus cos space straight pi over 3
rightwards double arrow space space space cos space 2 straight x space space equals cos space open parentheses straight pi minus straight pi over 3 close parentheses comma space space space cos space open parentheses straight pi plus straight pi over 3 close parentheses comma space space space cos space open parentheses 3 straight pi minus straight pi over 3 close parentheses space cos space open parentheses 3 straight pi plus straight pi over 3 close parentheses
rightwards double arrow space space space space space 2 straight x space equals space fraction numerator 2 straight pi over denominator 3 end fraction comma space space fraction numerator 4 straight pi over denominator 3 end fraction comma space fraction numerator 8 straight pi over denominator 3 end fraction comma space space fraction numerator 10 straight pi over denominator 3 end fraction
rightwards double arrow space space space space space space space space space space space straight x space equals space straight pi over 3 comma space space fraction numerator 2 straight pi over denominator 3 end fraction comma space fraction numerator 4 straight pi over denominator 3 end fraction comma space space fraction numerator 5 straight pi over denominator 3 end fraction
       straight f left parenthesis 0 right parenthesis space equals space 0 plus sin space 0 space equals space 0 plus 0 space equals space 0
straight f open parentheses straight pi over 3 close parentheses space equals space straight pi over 3 plus sin space fraction numerator 2 straight pi over denominator 3 end fraction space equals space straight pi over 3 plus fraction numerator square root of 3 over denominator 2 end fraction
straight f open parentheses fraction numerator 2 straight pi over denominator 3 end fraction close parentheses space equals space fraction numerator 2 straight pi over denominator 3 end fraction plus sin space fraction numerator 4 straight pi over denominator 3 end fraction space equals space fraction numerator 2 straight pi over denominator 3 end fraction minus fraction numerator square root of 3 over denominator 2 end fraction
straight f open parentheses fraction numerator 4 straight pi over denominator 3 end fraction close parentheses space equals space fraction numerator 4 straight pi over denominator 3 end fraction plus sin space fraction numerator 8 straight pi over denominator 3 end fraction space equals space fraction numerator 4 straight pi over denominator 3 end fraction plus fraction numerator square root of 3 over denominator 2 end fraction
straight f open parentheses fraction numerator 5 straight pi over denominator 3 end fraction close parentheses space equals space fraction numerator 5 straight pi over denominator 3 end fraction plus sin space fraction numerator 10 straight pi over denominator 3 end fraction space equals space fraction numerator 5 straight pi over denominator 3 end fraction minus fraction numerator square root of 3 over denominator 2 end fraction
                 straight f left parenthesis 2 straight pi right parenthesis space equals space 2 space straight pi space plus space sin space 4 straight pi space equals space 2 straight pi plus 0 space equals space 2 straight pi
    therefore space space space max space. value space space equals space 2 straight pi comma space space min. space value space equals space 0
    Question 262
    CBSEENMA12035462

    Find both the maximum value and the minimum value of
    3x4 – 8x3 + 12x2 – 48x + 25

    Solution

    Let f (x) = 3x4 – 8x3 + 12x2 – 48x + 25
    f ' (x) = 12x3 – 24x2 + 24x – 48
    f ' (x) = 0 ⇒ 12x3 – 24x2 + 24x – 48 = 0 ⇒ x– 2x+ 2x – 4 = 0
    ⇒ (x – 2) (x2 + 2) = 0 ⇒ x = 2 , ± i square root of 2.
    Now x = 2 is the only real value in [0, 3]
    f (0) = 0 – 0 + 0 – 0 + 25 = 25
    f (2) = 48 – 64 + 48 – 96 + 25 = – 39
    f (3) = 243 – 216 + 108 – 144 + 25 = 16
    ∴  max. value = 25 and min. value = – 39.

    Question 263
    CBSEENMA12035463

    It is given that at x = 1, function x4 – 62x2 + ax + 9 attains its maximum value, on the interval [0, 2], Find the value of a.

    Solution

    Let f (x) = x4 – 62x2 + ax + 9
    f ' (x) = 4x– 124x + a
    ∴  f ' (1) = 4 – 124 + a = – 120 + a
    ∴  f (x) attains max. value at x = 1
    ∴  f ' (1) = 0 ⇒ – 120 + a = 0 ⇒ a – 120.

    Question 264
    CBSEENMA12035465

    straight y space equals space fraction numerator ax minus straight b over denominator left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 4 right parenthesis end fraction has a turning point at P(2, -1). Find the values of a and b and show that y is maximum at P.

    Solution
    Here space straight y space equals space fraction numerator ax minus straight b over denominator left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 4 right parenthesis end fraction space equals space fraction numerator ax minus straight b over denominator straight x squared minus 5 straight x plus 4 end fraction                        ...(1)
                  dy over dx space equals space fraction numerator left parenthesis straight x squared minus 5 straight x plus 4 right parenthesis. space straight a space minus space left parenthesis ax minus straight b right parenthesis thin space left parenthesis 2 straight x minus 5 right parenthesis over denominator left parenthesis straight x squared minus 5 straight x plus 4 right parenthesis squared end fraction      ...(2)
    Now,     straight P left parenthesis 2 comma space minus 1 right parenthesis lies on (1)
    therefore space space space space space minus 1 space equals space fraction numerator 2 straight a minus straight b over denominator 4 minus 10 plus 4 end fraction space space space rightwards double arrow space space space minus 1 space equals space fraction numerator 2 straight a minus straight b over denominator negative 2 end fraction space space space space rightwards double arrow space space space 2 straight a minus straight b space equals space 2     ...(3)
    Since P(2, -1) is a turning point at P(2, -1)
    therefore space space space space dy over dx space equals space 0
therefore space space space space space space fraction numerator left parenthesis 4 minus 10 plus 4 right parenthesis. space straight a minus left parenthesis 2 straight a minus straight b right parenthesis thin space left parenthesis 4 minus 5 right parenthesis over denominator left parenthesis 4 minus 10 plus 4 right parenthesis squared end fraction space equals space 0
rightwards double arrow space space space space minus 2 straight a plus left parenthesis 2 straight a minus straight b right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space minus 2 straight a plus left parenthesis 2 right parenthesis space equals space 0 space space space space space space space space space space space space open square brackets because space space of space left parenthesis 3 right parenthesis close square brackets
rightwards double arrow space space space space space space space space space space 2 straight a space equals space 2 space space space space space rightwards double arrow space space space straight a space equals space 1
therefore space space space space from space left parenthesis 3 right parenthesis comma space space space 2 minus straight b space equals space 2 space space space space space space space space space rightwards double arrow space space straight b space equals space 0
therefore space space space space space space dy over dx equals space fraction numerator left parenthesis straight x squared minus 5 straight x plus 4 right parenthesis minus straight x left parenthesis 2 straight x minus 5 right parenthesis over denominator left parenthesis straight x squared minus 5 straight x plus 4 right parenthesis end fraction space equals fraction numerator negative straight x squared plus 4 over denominator left parenthesis straight x squared minus 5 straight x plus 4 right parenthesis squared end fraction
    When space straight x space is space slightly space less than space 2 comma space space space dy over dx space equals space plus ve
When space straight x space is space slightly space greater than 2 comma space space space dy over dx space equals space minus ve
therefore space space space at space straight x space equals space 2 comma space space dy over dx space changes space sign space from space plus ve space to space minus ve
therefore space space space straight y space has space maximum space value space at space straight P left parenthesis 2 comma space minus 1 right parenthesis.
    Question 265
    CBSEENMA12035466

    If y = a log | x | + bx2 + x has its extremum values at x = – 1 and x = 2, find the values of a and b. Prove that these extrema are maximum.

    Solution
    straight y space equals space straight a space log space open vertical bar straight x close vertical bar space plus space bx squared plus straight x
    therefore space space space space dy over dx space equals space straight a fraction numerator 1 over denominator open vertical bar straight x close vertical bar end fraction. space straight d over dx open parentheses open vertical bar straight x close vertical bar close parentheses space plus space 2 bx plus 1
                       equals space straight a. space fraction numerator 1 over denominator open vertical bar straight x close vertical bar end fraction space open parentheses fraction numerator straight x over denominator open vertical bar straight x close vertical bar end fraction. space 1 close parentheses space plus space 2 bx plus 1 space equals space fraction numerator straight a space straight x over denominator straight x squared end fraction plus 2 bx plus 1          open square brackets because space space space open vertical bar straight x close vertical bar squared space equals space straight x squared close square brackets
                        equals straight a over straight x plus 2 bx plus 1
    Since y has its extremum values at x = -1 and x = 2
    therefore space space space space open square brackets dy over dx close square brackets subscript straight x equals negative 1 end subscript space space equals space 0 comma space space space space space space open square brackets dy over dx close square brackets subscript straight x equals 2 end subscript space space equals 0
therefore space space space minus straight a minus 2 straight b plus 1 space equals 0 comma space space space straight a over 2 plus 4 straight b plus 1 space equals space 0
therefore space space space space space space space straight a plus 2 straight b space equals space 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
and space space space space space space straight a plus 8 straight b space equals space minus 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Subtracting (1) from (2),    6 straight b space equals negative 3 space space space space space space rightwards double arrow space space space straight b space equals space minus 1 half
    therefore space space space space space space from space left parenthesis 1 right parenthesis comma space space space straight a minus 1 space equals 1 space space space rightwards double arrow space space space straight a space equals space 2
therefore space space space space space space dy over dx space equals space 2 over straight x minus straight x plus 1
space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space minus 2 over straight x squared minus 1
    At space space straight x space space equals negative 1 comma space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space minus 2 over 1 minus 1 space equals space minus 3 space less than space 0
At space space space straight x minus 2 comma space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space minus 1 half minus 1 space equals space minus 3 over 2 less than 0
therefore space space space space both space the space points space straight x space equals negative 1 comma space space space straight x space equals space 2 space of space extrema space are space maxima
    Question 266
    CBSEENMA12035467
    Question 267
    CBSEENMA12035468

    Find the shortest distance of the point (0, c) from the parabola y = x2 , where 0 ≤ c ≤ 5.

    Solution

    Let x be the distance between (0, c) and any point (x, y) on the parabola y =x2.
       
    therefore space space space space space straight s space equals space square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus straight c right parenthesis squared end root space equals space square root of straight x squared plus left parenthesis straight y minus straight c right parenthesis squared end root
rightwards double arrow space space space straight s space equals space square root of straight y plus left parenthesis straight y minus straight c right parenthesis squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space straight y space equals straight x squared close square brackets
rightwards double arrow space space space space ds over dy space equals space fraction numerator 1 over denominator 2 square root of straight y plus left parenthesis straight y minus straight c right parenthesis squared end root end fraction left square bracket 1 plus 2 space left parenthesis straight y minus straight c right parenthesis right square bracket space equals space fraction numerator 2 straight y plus left parenthesis 1 minus 2 straight c right parenthesis over denominator 2 square root of straight y plus left parenthesis straight y minus straight c right parenthesis squared end root end fraction
space space space space space space space ds over dy space equals space 0 space space space space space space space rightwards double arrow space space space space space 2 straight y left parenthesis 1 minus 2 straight c right parenthesis space equals space 0 space space space space space space space space space rightwards double arrow space straight y space equals space straight c minus 1 half
space space space space space
    When space straight y thin space less than space straight c minus 1 half space slightly comma space ds over dy space equals space minus ve
and space when space straight y greater than straight c space minus 1 half space space slightly comma space space space space ds over dy space equals space plus ve
therefore space space space space space space at space space straight y space equals space straight c minus 1 half comma space space ds over dy space changes space from space minus ve space to space ve
therefore space space space space space straight s space is space minimum space at space straight y space equals space straight c minus 1 half.

    and space minimum space value space of space straight s space equals space square root of open parentheses straight c minus 1 half close parentheses space plus space open parentheses straight c minus 1 half minus straight c close parentheses squared end root space equals space square root of straight c minus 1 half plus 1 fourth end root
                                               equals square root of straight c minus 1 fourth end root space equals space square root of fraction numerator 4 straight c minus 1 over denominator 4 end fraction end root space equals fraction numerator space square root of 4 straight c minus 1 end root over denominator 2 end fraction.
        

    Question 268
    CBSEENMA12035469

    An Apache helicopter of enemy is flying along the curve given by y = x2 + 7. A soldier, placed at (3. 7), wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.

    Solution

    Let (x, y) be any point on y = x2 + 7 at which helicopter in at a particular moment.
    ∴  helicopter is at (x, x2 + 7 ).
    Let d be the distance between the jet at (x, x2 + 7 ) and soldier at (3, 7).
    ∴  d2 = (x – 3)2 + (x2 + 7 – 7)2 = (x – 3)2 + (x2)2
    ∴  d2 = x4 + x2 – 6 x + 9
    Let f (x) = d2 = x4 + x2 – 6 x + 9
    f ' (x) = 4 x3 + 2 x – 6 = 2 (2 x3 + x – 3) = 2 ( x – 1) (2 x2 + 2 x + 3)
    f ' (x) = 0 ⇒ 2 (x – 1) (2 x2 + 2 x + 3) = 0
    rightwards double arrow space straight x space equals space 1 comma space space fraction numerator negative 2 plus-or-minus square root of 4 minus 24 end root over denominator 4 end fraction space equals 1 comma space space space space fraction numerator negative 2 plus-or-minus 2 space straight i square root of 5 over denominator 4 end fraction

    ⇒ x = 1 as we reject imaginary values of x.
    f ' ' (x) = 12x2 + 2
    At x = 1, f ' ' (x) = 12 + 2 – 14 > 0 ⇒ f (x) lies a local minimum at x = 1
    But x – 1 is only extreme point
    ∴ f (x) is minimum at x = 1
    therefore space space space space space nearest space distance space space equals space straight d space at space straight x space equals space 1 space equals space square root of 1 plus 1 minus 6 plus 9 end root space equals space square root of 5

    Question 269
    CBSEENMA12035471

    For all real values of x,  the minimum value of fraction numerator 1 minus straight x plus straight x squared over denominator 1 plus straight x plus straight x squared end fraction is

    • 0

    • 1

    • 3

    • 1 third

    Solution

    D.

    1 third Let space space straight y space equals space fraction numerator 1 minus straight x plus straight x squared over denominator 1 plus straight x plus straight x squared end fraction
       space dy over dx space equals space fraction numerator left parenthesis 1 plus straight x plus straight x squared right parenthesis. space begin display style straight d over dx end style left parenthesis 1 minus straight x plus straight x squared right parenthesis space minus space left parenthesis 1 plus straight x plus straight x squared right parenthesis. space begin display style straight d over dx end style left parenthesis 1 plus straight x plus straight x squared right parenthesis over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis squared end fraction

                   equals space fraction numerator left parenthesis 1 plus straight x plus straight x squared right parenthesis thin space left parenthesis negative 1 plus 2 straight x right parenthesis minus left parenthesis 1 minus straight x plus straight x squared right parenthesis thin space left parenthesis 1 plus 2 straight x right parenthesis over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis squared end fraction
equals fraction numerator negative 1 plus 2 straight x minus straight x plus 2 straight x squared minus straight x squared plus 2 straight x cubed minus 1 minus 2 straight x plus straight x plus 2 straight x squared minus straight x squared minus 2 straight x cubed over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis squared end fraction
equals space fraction numerator negative 2 plus 2 straight x squared over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis end fraction space equals space fraction numerator 2 left parenthesis straight x squared minus 1 right parenthesis over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis squared end fraction space equals space fraction numerator 2 left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis squared end fraction
    dy over dx space equals 0 space space space space rightwards double arrow space space space space fraction numerator 2 left parenthesis straight x squared minus 1 right parenthesis over denominator left parenthesis 1 plus straight x plus straight x squared right parenthesis end fraction space equals space 0 space space space space rightwards double arrow space space space straight x squared minus 1 space equals space 0 space space space space rightwards double arrow space space space straight x space equals space minus 1 comma space space 1
When space straight x less than negative 1 space slightly comma space space space dy over dx space equals space plus ve
When space straight x space greater than negative 1 space slightly comma space dy over dx space equals space minus ve
therefore space space space space space at space straight x space equals space minus 1 comma space space space dy over dx space changes space from space plus ve space to space minus ve
therefore space space space space space space straight y space is space max comma space when space straight x space equals space minus 1
we space are space not space increased space in space this space case.
When space straight x less than 1 space slightly comma space dy over dx space equals negative ve
When space straight x greater than 1 space sightl comma space dy over straight d equals plus ve
therefore space space at space straight x space equals space 1 comma space space dy over dx space changes space from space minus ve space to space plus ve
therefore space space space space space space space straight y space is space minimum space when space straight x space equals space 1
and space minimum space value space space equals space fraction numerator 1 minus 1 plus 1 over denominator 1 plus 1 plus 1 end fraction space equals 1 third
therefore space space space left parenthesis straight D right parenthesis space is space correct space answer.
    Question 270
    CBSEENMA12035475

    The maximum value of open square brackets straight x left parenthesis straight x minus 1 right parenthesis space plus space 1 close square brackets to the power of 1 third end exponent comma space space space 0 space less or equal than space straight x space less or equal than space 1 is

    • <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    • 1 half
    • 1

    • 0

    Solution

    C.

    1

     Let space straight y space equals space open square brackets straight x left parenthesis straight x minus 1 right parenthesis plus 1 close square brackets to the power of 1 third end exponent space space equals space left parenthesis straight x squared minus straight x plus 1 right parenthesis to the power of 1 third end exponent
    therefore space space space dy over dx space equals space 1 third left parenthesis straight x squared minus straight x plus 1 right parenthesis to the power of negative 2 over 3 end exponent. space left parenthesis 2 straight x minus 1 right parenthesis space equals space fraction numerator 2 straight x minus 1 over denominator 3 left parenthesis straight x squared minus straight x plus 1 right parenthesis to the power of begin display style 2 over 3 end style end exponent end fraction
             space dy over dx space equals space 0 space space space space rightwards double arrow space space space space fraction numerator 2 straight x minus 1 over denominator 3 left parenthesis straight x squared minus straight x plus 1 right parenthesis to the power of begin display style 2 over 3 end style end exponent end fraction space equals space 0 space space space space space rightwards double arrow space space 2 straight x minus 1 space equals space 0 space space space space rightwards double arrow space space space straight x space equals space 1 half

    Also,  dy over dx exists at all real values of x
    therefore space space space straight x space equals space 1 half space is space the space critical space point. space
    Now,  straight y left parenthesis 0 right parenthesis space equals space left parenthesis 0 minus 0 plus 1 right parenthesis to the power of 1 third end exponent space equals space left parenthesis 1 right parenthesis to the power of 1 third end exponent minus 1
         straight y open parentheses 1 half close parentheses space equals space open parentheses 1 fourth minus 1 half plus 1 close parentheses to the power of 1 third end exponent space equals space open parentheses 3 over 4 close parentheses to the power of 1 third end exponent
         straight y left parenthesis 1 right parenthesis space equals space left parenthesis 1 minus 1 plus 1 right parenthesis to the power of 1 third end exponent space minus space left parenthesis 1 right parenthesis to the power of 1 third end exponent space equals 1
    therefore space space space space maximum space value space equals space 1
therefore space space space left parenthesis straight C right parenthesis space is space correct space answer.
       
    Question 271
    CBSEENMA12035478

    The point on the curve x2 = 2y which is nearest to the point (0, 5) is

    • left parenthesis 2 square root of 2 comma space space 4 right parenthesis
    • left parenthesis 2 square root of 2 comma space space 0 right parenthesis
    • (0, 0)

    • (2, 2)

    Solution

    A.

    left parenthesis 2 square root of 2 comma space space 4 right parenthesis

    Let (x, y) be the point on straight x squared space equals space 2 straight y which is nearest to the point (0, 5).
    because space space space space left parenthesis straight x comma space straight y right parenthesis space lies space on space the space curve space straight y space equals space straight x squared over 2
therefore space space space space space space point space is space open parentheses straight x comma space space straight x squared over 2 close parentheses
Let space straight d space be space the space distance space between space left parenthesis 0 comma space 5 right parenthesis space and space open parentheses straight x comma space straight x squared over 2 close parentheses.
therefore space space space space space straight d space equals space square root of left parenthesis straight x minus 0 right parenthesis squared plus open parentheses straight x squared over 2 minus 5 close parentheses end root space space space space rightwards double arrow space space space space space straight d squared space equals straight x squared plus open parentheses straight x squared over 2 minus 5 close parentheses squared
Put space straight d squared space equals space straight D. space space space space space space therefore space space space space space straight D space equals space straight x squared plus space open parentheses straight x squared over 2 minus 5 close parentheses squared
                                  dD over dx space equals space 2 straight x plus 2 open parentheses straight x squared over 2 minus 5 close parentheses. space fraction numerator 2 straight x over denominator 2 end fraction space equals 2 straight x plus straight x left parenthesis straight x squared minus 10 right parenthesis
                                            equals 2 straight x plus straight x cubed minus 10 straight x equals space space straight x cubed minus 8 straight x
                        dD over dx space equals 0 space space space give space us space straight x cubed minus 8 straight x space equals space 0
    therefore space space space space straight x left parenthesis straight x squared minus 8 right parenthesis space equals space 0 space space space space space rightwards double arrow space space space space straight x space equals space 0 comma space space space plus-or-minus square root of 8 space equals space 0 comma space plus-or-minus 2 square root of 2
space space space space space space space space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 3 straight x squared minus 8
At space space straight x space equals space 0 comma space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 0 minus 8 space equals space space minus 8 space less than 0 space
therefore space space space space space straight D space is space maximum space when space straight x space equals space 0
    We are not interested in this case.
    At space space straight x space equals space 2 square root of 2 comma space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 3 space cross times space 8 space minus space 8 space space equals space 16 space greater than space 0
therefore space space space straight D space is space minimum space when space straight x space equals space 2 square root of 2 comma space space space straight y space equals space 8 over 2 space equals space 4
therefore space space space point space is space left parenthesis 2 square root of 2 comma space space 4 right parenthesis
    At space space straight x space equals space minus 2 square root of 2 comma space space space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 3 space cross times 8 space minus space 8 space equals space 16 space greater than space 0
space therefore space space space space straight D space is space minimum space when space straight x space equals space minus 2 square root of 2 comma space space space straight y space equals space 8 over 2 space equals space 4
therefore space space space space point space is space left parenthesis negative 2 square root of 2 comma space space 4 right parenthesis
therefore space space space left parenthesis straight A right parenthesis space is space correct space answer.

    Question 273
    CBSEENMA12035486
    Question 274
    CBSEENMA12035488

    Determine two positive numbers whose sum is 30 and whose product is the maximum. 

    Solution

    Let one number = x.
    therefore space space space space space other space number space equals space 30 minus straight x
    Let space straight P space equals space straight x left parenthesis 30 minus straight x right parenthesis space equals space 30 straight x minus straight x squared space space space space space space space space space space space space space space space rightwards double arrow space space dP over dx equals 30 minus 2 straight x
                 dP over dx space equals space 0 space space gives space us space 30 minus 2 straight x space equals space 0 comma space space space space space space space space space space space space space rightwards double arrow space space straight x space equals space 15
fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space minus 2
    At space straight x space equals space 15 comma space space space space fraction numerator straight d squared straight P over denominator dx squared end fraction space equals negative 2 space less than space 0
therefore space space space straight P space is space maximum space when space straight x space equals space 15 space space space space rightwards double arrow space space space numbers space are space 15 comma space 30 comma space minus 15 space space straight i. straight e comma space 15 comma space 15

    Question 275
    CBSEENMA12035492

    Find two numbers whose sum is 24 and whose product is as large as possible.

    Solution

    Let two numbers be x and 24 - x.
    Let P = x(24 - x)  = 24x - x2                rightwards double arrow space space space space dP over dx space equals space 24 minus 2 straight x.
    dP over dx equals space 0 space space space gives space us space space 24 minus 2 straight x space equals space 0 comma space space space space space space rightwards double arrow space space straight x space equals space 12
fraction numerator straight d squared straight P over denominator dx squared end fraction equals negative 2
At space space space straight x space equals space 12 comma space space space space fraction numerator straight d squared straight P over denominator dx squared end fraction space equals negative 2 space less than space 0
therefore space space space straight P space is space maximum space space when space space straight x space equals space 12 space space space space space space space rightwards double arrow space space space numbers space are space 12 comma space 24 minus 12 space straight i. straight e. comma space 12 comma space 12

    Question 276
    CBSEENMA12035493

    Find two positive numbers whose sum is 16 and sum of whose cubes is minimum.

    Solution

    Let two numbers be x and 16 – x
    Let f (x) = x3 + (16 – x)3
    ∴   f (x) = 3 x+ 3 (16 – x)2 (– 1) = 3 x– 3 (16 – x)2
    = 3 x2 – 3 (256 + x2 – 32 x) = 96 x – 768 = 96 (x – 8)
    f ' (x) = 0 ⇒ 96 (x – 8) = 0 ⇒ x = 8
    f ' ' (x) = 96
    At x = 8, f ' ' (x) = 96 > 0
    ∴   f (x) is minimum when x = 8 ⇒ numbers are 8, 8.

    Question 277
    CBSEENMA12035494

    Find two positive numbers a and y such that x + y = 40 and x y3 is maximum.

    Solution

    Here x + y = 40 ⇒ y = 40 – x ...(1)
    Let f (x) = x y3 = x (40 – x)3
    f'(x) = straight x straight d over dx left square bracket left parenthesis 40 minus straight x right parenthesis cubed right square bracket space plus space left parenthesis 40 minus straight x right parenthesis cubed. space straight d over dx left parenthesis straight x right parenthesis
    = x [3(40 – x)(–1)] + (40 – x)3  
    = – 3 x (40 – x)2 +(40 – x) 3
    = (40 – x)2 (– 3 a + 40 – x) = (40 – x)2 (– 4 x + 40)
    = 4 (40 – x)2 (10 – x)
    f ' (x) = 0 ⇒  4 (40 – x)2 (10 – y) = 0 ⇒ x = 10, 40
    Rejecting a = 40 as 0 < x < 40, we get, x = 10
    When x < 10 slightly, f ' (x) = 4 (+) (+) = +ve
    When x > 10 slightly, f ' (x) = 4 (+)(–) = –ve
    ∴ at x = 10, f ' (x) changes from +ve to –ve
    ∴ f (x) has local maximum at x = 10
    But f (x) has only one extreme point x = 10
    ∴ f (x) is maximum when x = 10, y = 40 – 10 = 30
    ∴ x = 10, y = 30.

     

    Question 278
    CBSEENMA12035495

    Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.

     

    Solution
    Here x + y = 60 ⇒ y = 60 – x    ...(1)
    Let f (x) = x y3 = x (60 – x)3    [∵ of (1)]
    straight f apostrophe left parenthesis straight x right parenthesis space equals space straight x straight d over dx left square bracket left parenthesis 60 minus straight x right parenthesis cubed right square bracket space plus space left parenthesis 60 minus straight x right parenthesis cubed space straight d over dx left parenthesis straight x right parenthesis space equals space straight x.3 space left parenthesis 60 minus straight x right parenthesis squared space left parenthesis negative 1 right parenthesis space plus space left parenthesis 60 minus straight x right parenthesis cubed. space 1

    = (60 – x)2 [ – 3 x + 60 – x] = (60 – x)2 (– 4 x + 60)
    = 4 (60 – x)2 (15 – x)
    f '(x) = 0 ⇒ 4 (60 – x)2 (15 – x) = 0 ⇒ x = 15, 60
    Rejecting a = 60 as 0 < x < 60, we get, x = 15
    When x < 15 slightly, f ' (x) = 4 (+) (+) = + ve
    When x > 15 slightly, f ' (a) = 4 (+) (–) = – ve
    ∴  at x = 15, f ' (x) changes from + ve to – ve
    ∴  f (x) has local maximum at x = 15.
    But f (x) has only one extreme point x = 15
    ∴  f (x) is maximum when x = 15, y = 60 – 15 = 45
    ∴   x = 15, y = 45


    Question 279
    CBSEENMA12035497

    Find two positive numbers a and y such that their sum is 35 and the product x2y5 is a maximum.

    Solution

    Here x + y = 35  ⇒ y = 35 – x ...(1)
    Let f (x) = xy= x2(35 – x)5
    ∴  f ' (x) = a2· 5 (35 – x)4 (– 1) + (35 – x)5 · 2x
    = x (35 – x)4 [ – 5x + 2 (35 – x)] = x (35 – x)4 (– 7x + 70)
    = – 7x (35 – x)4 (x – 10)
    f ' (x) = 0 ⇒ – 7x (35 – x)4 (x – 10)
    ⇒  x (x – 10) (35 – x)4 = 0 ⇒ x = 0, 10, 35
    Rejecting x = 0. 35 as 0 < x < 35, we get, x = 10
    When x < 10 slightly, f ' (x) = – (+)(+) (–) = + ve
    When x > 10 slightly , f ' (x) = – (+) (+) (+) = – ve
    ∴  at x = 10, f ' (x) changes from +ve to negative
    ∴  f (x) has maximum value at a = 10, y = 35 – 10 = 25
    ∴  x = 10, y = 25

    Question 280
    CBSEENMA12035500

    Find two positive numbers a and y such that their sum is 35 and the product x2y5 is a maximum.

    Solution

    Here x + y = 35 ⇒ y = 35 – x ...(1)
    Let f (x) = xy= x2(35 – x)5
    ∴   f ' (x) = a2·5 (35 – x)4 (– 1) + (35 – x)5 · 2x
    =   x (35 – x)4 [ – 5x + 2 (35 – x)] = x (35 – x)4 (– 7x + 70)
    =  – 7x (35 – x)4 (x – 10)
    f ' (x) = 0 ⇒ – 7x (35 – x)4 (x – 10)
    ⇒ x (x – 10) (35 – x)4 = 0 ⇒ x = 0, 10, 35
    Rejecting x = 0, 35 as 0 < x < 35, we get, x = 10
    When x < 10 slightly, f ' (x) = – (+)(+) (–) = + ve
    When x > 10 slightly , f ' (x) = – (+) (+) (+) = – ve
    ∴ at x = 10, f ' (x) changes from +ve to negative
    ∴ f (x) has maximum value at a = 10, y = 35 – 10 = 25
    ∴ x = 10, y = 25

    Question 281
    CBSEENMA12035501

    Divide  a number 15 into two parts such that the square of one multiplied with the cube of the other is a maximum.

    Solution

    Let the two parts be x,   15-x.
    Let       straight y space equals space straight x squared left parenthesis 15 minus straight x right parenthesis cubed
       dy over dx space equals space straight x squared. space straight d over dx left square bracket left parenthesis 15 minus straight x right parenthesis cubed right square bracket space plus space left parenthesis 15 minus straight x right parenthesis cubed. space straight d over dx left parenthesis straight x squared right parenthesis
space space space space space space space space space equals space straight x squared.3 space left parenthesis 15 minus straight x right parenthesis squared. space left parenthesis negative 1 right parenthesis space plus space left parenthesis 15 minus straight x right parenthesis cubed. space 2 straight x
space space space space space space space space space space equals space straight x left parenthesis 15 minus straight x right parenthesis squared. space left square bracket negative 3 straight x plus 2 left parenthesis 15 minus straight x right parenthesis right square bracket space equals space straight x left parenthesis 15 minus straight x right parenthesis squared left parenthesis negative 5 straight x plus 30 right parenthesis
space space space space dy over dx space equals space 0 space give space us space straight x left parenthesis 15 minus straight x right parenthesis squared space left parenthesis negative 5 straight x plus 30 right parenthesis space equals space 0 space space space rightwards double arrow space space space space straight x space equals space 0 comma space space 15 comma space space 6.
    Rejecting x = 0,  15 as far these values of x, we have y = 0, which is not possible. 
    therefore space space space space we space have space straight x space equals space 6
fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space straight x left parenthesis 15 minus straight x right parenthesis squared. space left parenthesis negative 5 right parenthesis space plus space straight x space left parenthesis negative 5 straight x plus 30 right parenthesis. space space 2 left parenthesis 15 minus straight x right parenthesis space left parenthesis negative 1 right parenthesis space plus space left parenthesis 15 minus straight x right parenthesis squared thin space left parenthesis negative 5 straight x plus 30 right parenthesis. space 1
    At space space straight x space equals space 6. space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals 6 space left parenthesis 15 space minus 6 right parenthesis squared. space left parenthesis negative 5 right parenthesis space plus space 0 space plus space 0 space equals space minus 2430 space less than 0
therefore space space space space straight y space is space maximum space value space when space straight x space equals space 6 space space space space space rightwards double arrow space space space space two space parts space are space 6 comma space 15 space minus 6 space straight i. straight e. comma space 6 comma space 9.

    Question 282
    CBSEENMA12035502
    Question 283
    CBSEENMA12035504

    How should we choose two numbers, each greater than or equal to -2 whose  sum is 1 half so that the sum of the square of the first and cube of the second is the minimum?

    Solution

    Let x and y be two numbers.
    therefore space space space straight x plus straight y space equals space 1 half space space space or space space space space straight y space equals space 1 half minus straight x                         ...(1)
    Let  straight S space equals space straight x squared plus straight y cubed space equals straight x squared plus open parentheses 1 half minus straight x close parentheses cubed space equals space straight x squared plus 1 over 8 left parenthesis 1 minus 2 straight x right parenthesis cubed             open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
                 equals straight x squared plus 1 over 8 left parenthesis 1 minus 6 straight x plus 12 straight x squared minus 8 straight x cubed right parenthesis space equals space minus straight x cubed plus 5 over 2 straight x squared minus 3 over 4 straight x plus 1 over 8
      dS over dx space equals space minus 3 straight x squared plus 5 straight x minus 3 over 4
       dS over dx space equals space 0 space space space space space rightwards double arrow space minus 3 straight x squared plus 5 straight x minus 3 over 4 space equals space 0 space space space space rightwards double arrow space space space space 12 straight x squared minus 20 straight x plus 3 space equals space 0

    therefore space space space space straight x space equals space fraction numerator 20 space plus-or-minus square root of 400 minus 144 end root over denominator 24 end fraction space equals space fraction numerator 20 plus-or-minus square root of 256 over denominator 24 end fraction space equals space fraction numerator 20 plus-or-minus 16 over denominator 24 end fraction equals space space fraction numerator 20 plus-or-minus 16 over denominator 24 end fraction equals space 3 over 2 comma space 1 over 6
         fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space minus 6 straight x plus 5
    When  straight x equals space 3 over 2 comma space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space minus 9 plus 5 space equals space minus 4 less than 0
    therefore space space space space straight S space is space maximum space when space straight x space equals space 3 over 2
    When space straight x space equals space 1 over 6. space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space minus 1 plus 5 space equals space 4 greater than 0
therefore space space space space straight S space is space minimum space when space straight x space equals space 1 over 6
When space straight x space equals space 1 over 6 comma space space space straight y space equals space 1 half minus 1 over 6 space equals space fraction numerator 3 minus 1 over denominator 6 end fraction space equals space 2 over 6 equals space 1 third space space space space space space space space space space space space space space space space space space space space left square bracket because space space space of space space left parenthesis 1 right parenthesis right square bracket
therefore space numbers space are space 1 over 6 comma space space 1 third.

    Question 285
    CBSEENMA12035509

    Two sides of a triangle are given. Find the angle between them such that the area shall be maximum.

    Solution

    Let straight theta be the angle between two given sides of lengths a and b
    therefore space space space space space space increment space equals space 1 half straight a space straight b space sin space straight theta
    where increment is area of triangle
                 fraction numerator straight d increment over denominator dθ end fraction space equals space 1 half space straight a space straight b space cos space straight theta
    Now,    fraction numerator straight d increment over denominator dθ end fraction equals space 0 space space space space space space space space space space space rightwards double arrow space space space 1 half space straight a space straight b space cos space straight theta space equals space 0 space space space space space rightwards double arrow space space space cos space straight theta space equals space 0
    rightwards double arrow space space space space space straight theta space equals space straight pi over 2
space space space space space space space fraction numerator straight d squared increment over denominator dθ squared end fraction space equals space 1 half space straight a space straight b space sin space straight theta
when space straight theta space equals space straight pi over 2. space fraction numerator straight d squared increment over denominator dθ squared end fraction space equals space minus 1 half space ab space sin space straight pi over 2 space equals space minus 1 half space ab space less than 0
therefore space space space space increment space space space is space maximum space when space straight theta space equals space straight pi over 2 space equals space 90 degree
therefore space space space space required space angle space equals space 90 degree.

    Question 286
    CBSEENMA12035510

    Show that of all the rectangles with a given perimeter, the square has the largest area.

    Solution

    Let x , y be the lengths of sides of rectangle and 2 k be the perimeter.
    therefore space space space 2 straight x plus 2 straight y space equals space 2 straight k space space space space space space space rightwards double arrow space space space space straight x plus straight y space equals space straight k
    therefore space space space straight y space equals space straight k minus straight x                                                        ...(1)
    Let  straight A space equals space straight x space straight y space equals space straight x left parenthesis straight k minus straight x right parenthesis space equals space space kx minus straight x squared                           open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    dA over dx space equals space straight k minus 2 straight x
                     dA over dx space equals space 0 space space space give space us space straight K minus 2 straight x space minus 0 space space space space space space rightwards double arrow space space space space space straight x space equals space straight k over 2
            fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 space
    At space space space space space space straight x space equals space straight k over 2 space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 less than 0
therefore space space space straight A space is space maximum space when space straight x space equals space straight k over 2 comma space space straight y space equals space minus straight k minus straight k over 2 space equals space straight k over 2
    ∴  area of a rectangle of given perimeter is maximum when its sides are equal i.e., when it is a square.

    Question 287
    CBSEENMA12035511

    Find the area of the largest rectangle having the perimeter of 200 metres.

    Solution

    Let x, y be the lengths of sides of rectangle having perimeter of 200 metres.
     therefore space space 2 straight x plus 2 straight y space equals 100 space space rightwards double arrow space space space space straight x plus straight y equals space 50
    therefore             straight y space equals space 50 minus straight x                                         ...(1)
     Let   straight A space equals space xy space equals straight x left parenthesis 50 minus straight x right parenthesis space equals space 50 straight x minus straight x squared                         open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
                           dA over dx space equals space 50 minus 2 straight x
                              dA over dx space equals space 0 space space space space give space us space 50 minus 2 straight x space equals space 0 space space space space space space rightwards double arrow space space space straight x space equals space 25
                   fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space minus 2
    At space space straight x space equals 25 comma space space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space minus 2 space less than space 0
    therefore space space space space straight A space is space maximum space when space straight x space equals space 25 comma space space space straight y space equals space 25
therefore space space space area space of space largest space rectangle space equals 25 space cross times space 25 space equals space 625 space sq. metres.

    Question 288
    CBSEENMA12035512

    Show that among rectangles of given area, the square has the least perimeter.

    Solution
    Let x, y be the sides of rectangle and k2 be the area where k > 0.
    therefore space space straight x space straight y space equals space straight k squared space space space space rightwards double arrow space space space space straight y space equals space straight k squared over straight x
    Let  straight P space equals space 2 straight x plus 2 straight y space equals space 2 straight x plus 2 straight k squared over straight x                                            open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
           dP over dx equals 0 space space space give space us space 2 minus fraction numerator 2 straight k squared over denominator straight x squared end fraction space equals space 0 comma space space space space space space rightwards double arrow space space space straight x squared space equals space straight k squared space space space space rightwards double arrow space space straight x space space equals straight k comma space space minus straight k
    Rejecting x = -k,     we get  x = k
        fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space fraction numerator 4 straight k squared over denominator straight x cubed end fraction
    When <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    therefore space space space space straight P space is space minimum space when space straight x space equals space straight k comma space space space space straight y space equals space straight k squared over straight k space equals space straight k space space space space straight i. straight e. space space when space rectangle space is space straight a space square.
    Question 289
    CBSEENMA12035513

    Show that, of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

    Solution

    Let O be the centre of circle of radius a. Let A BCD be the rectangle inscribed in the circle such that AB = x, AD = y.
    Now AB2 + BC2 = AC2
    ∴  x2 + y2 = 4 a2 ...(1)

    Let P be the area of rectangle. 
    therefore space space space straight P space equals space straight x space straight y
therefore space space space space straight P space equals space straight x square root of 4 straight a squared minus straight x squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets                                                                                 
               dP over dx space equals straight x. space fraction numerator negative 2 straight x over denominator square root of 4 straight a squared minus straight x squared end root end fraction plus square root of 4 straight a squared minus straight x squared end root space.1 space equals space minus fraction numerator straight x squared over denominator square root of 4 straight a squared minus straight x squared end root end fraction plus fraction numerator square root of 4 straight a squared minus straight x squared end root over denominator 1 end fraction
                      equals fraction numerator negative straight x squared plus 4 straight a squared minus straight x squared over denominator square root of 4 straight a squared minus straight x squared end root end fraction space equals space fraction numerator 4 straight a squared minus 2 straight x squared over denominator square root of 4 straight a squared minus straight x squared end root end fraction
    dP over dx space equals space 0 space space space gives space us space fraction numerator 4 straight a squared minus 2 straight x squared over denominator square root of 4 straight a squared minus straight x squared end root end fraction space equals space 0 space space space space rightwards double arrow space space space 4 straight a squared minus 2 straight x squared space equals space 0
    therefore space space space straight x squared space equals space 2 straight a squared space space space space space rightwards double arrow space space space space straight x space equals space square root of 2 space straight a comma space space as space straight x space is space plus ve.
    fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space fraction numerator square root of 4 straight a squared minus straight x squared end root. left parenthesis negative 4 straight x right parenthesis space minus space left parenthesis 4 straight a squared minus 2 straight x squared right parenthesis. space begin display style fraction numerator negative 2 straight x over denominator 2 square root of 4 straight a squared minus straight x squared end root end fraction end style over denominator square root of 4 straight a squared minus straight x squared end root end fraction
              equals space fraction numerator begin display style fraction numerator negative 4 straight x square root of 4 straight a squared minus straight x squared end root over denominator 1 end fraction end style plus begin display style fraction numerator straight x left parenthesis 4 straight a squared minus 2 straight x squared right parenthesis over denominator square root of 4 straight a squared minus straight x squared end root end fraction end style over denominator 4 straight a squared minus straight x squared end fraction space equals space fraction numerator negative 4 straight x left parenthesis 4 straight a squared minus straight x squared right parenthesis space plus space straight x left parenthesis 4 straight a squared minus 2 straight x squared right parenthesis over denominator left parenthesis 4 straight a squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    When space straight x space equals space square root of 2 space straight a comma space space fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space fraction numerator negative 4. space square root of 2 straight a space left parenthesis 4 straight a squared minus 2 straight a squared right parenthesis space plus space square root of 2 straight a left parenthesis 4 straight a squared minus 4 straight a squared right parenthesis over denominator left parenthesis 4 straight a squared minus 2 straight a squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    space equals space minus fraction numerator 8 square root of 2 space straight a cubed over denominator space 2 square root of 2 space straight a cubed end fraction space equals space minus 4 space less than space 0
    therefore space space space straight P space is space maximum space when space straight x space equals space square root of 2 space straight a
When space straight x space equals space square root of 2 straight a comma space space straight y space equals space square root of 4 straight a squared minus straight x squared end root space equals space square root of 4 straight a squared minus 2 straight a squared end root space equals space square root of 2. space straight a space space rightwards double arrow space space straight x space space equals straight y
space
    therefore space space space rectangle space becomes space straight a space square.

    Question 290
    CBSEENMA12035514

    Find the dimensions of the rectangle of greatest area that can be inscribed in a semi-circle of radius r.

     

    Solution

    Let ABCD be the rectangle inscribed in the semi-circle of radius r such that OC = r.
    Let angle BOC space equals space straight theta comma space space space 0 less than straight theta less than straight pi over 2 space so space that space OB space equals space straight r space cos space straight theta comma space space space BC space equals space straight r space sinθ
                  therefore space space space AB space equals space 2 comma space space space OB space equals space 2 straight r space cos space straight theta comma space space space space BC space equals space straight r space sin space straight theta
       Let space straight P space be space area space of space rectangle space ABCD
space space therefore space space space space space straight P space equals space AB. space BC space equals space 2 space straight r space cos space straight theta. space space straight r space sin space straight theta
space space space space space space space space space space space space space space space equals space 2 straight r squared space sin space space straight theta space space cos space straight theta space equals space straight r squared space sin space 2 straight theta
      therefore space space space space dP over dθ space equals space 2 straight r squared space cos space space 2 straight theta
space space space space space space space space space dP over dθ space equals space 0 space space space space space space space space space space space space space space space space space rightwards double arrow space space 2 straight r squared space cos space 2 straight theta space equals space 0
rightwards double arrow space space space space space cos space 2 straight theta space equals space 0 space space space space space space space space space rightwards double arrow space space space space 2 space straight theta space equals space straight pi over 2 space space space space rightwards double arrow space space space space straight theta space equals space straight pi over 4 space straight epsilon space open parentheses 0 comma space straight pi over 2 close parentheses
space space space space space fraction numerator straight d squared straight P over denominator dθ end fraction space equals space minus 4 straight r squared space sin space 2 straight theta

    At space straight theta space equals straight pi over 4. space fraction numerator straight d squared straight P over denominator dθ squared end fraction space equals space minus 4 straight r squared space sin space straight pi over 2 space equals space minus 4 straight r squared space.1 space equals space minus 4 straight r squared less than 0
therefore space space space space straight P space is space maximum space when space straight theta space equals space straight pi over 4
therefore space space space length space of space rectangle space space equals space AB space equals space 2 space straight r space cos space straight pi over 4 space equals space 2 straight r space fraction numerator 1 over denominator square root of 2 end fraction space equals space square root of 2 space straight r
    and width of rectangle  = BC = straight r space sin straight pi over 4 space equals space straight r space sin space straight pi over 4 space equals space straight r space cross times space fraction numerator 1 over denominator square root of 2 end fraction space equals space fraction numerator straight r over denominator square root of 2 end fraction

    Question 291
    CBSEENMA12035515

    Find the area of greatest rectangle which can be inscribed in a circle of radius 10 cm.

    Solution
    Let O be the centre of circle of radius 10 cm. Let ABCD be the rectangle inscribed in the circle such that AB = x, AD = y
              Now comma space space space space AB squared plus BC squared space equals AC squared space space space space space space rightwards double arrow space space space straight x squared plus straight y squared space equals space 400                         ...(1)
    Let space straight P space be space the space area space of space rectangle
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    dP over dx space equals straight x. space fraction numerator negative 2 straight x over denominator 2 square root of 400 minus straight x squared end root end fraction plus square root of 400 minus straight x squared end root space. space 1
space space space space space space space space space space space space equals negative fraction numerator straight x squared over denominator square root of 400 minus straight x squared end root end fraction plus fraction numerator square root of 400 minus straight x squared end root over denominator 1 end fraction
space space space space space space space space space space space space equals fraction numerator negative straight x squared plus 400 minus straight x squared over denominator square root of 400 minus straight x squared end root end fraction space equals space fraction numerator 400 minus 2 straight x squared over denominator square root of 400 minus straight x squared end root end fraction
space space dP over dx space equals space 0 space space space space rightwards double arrow space space space space fraction numerator 400 minus 2 straight x squared over denominator square root of 400 minus straight x squared end root end fraction space equals space 0 space space space space space space rightwards double arrow space space space space 400 minus 2 straight x squared space equals space 0 space space space space rightwards double arrow space space space space straight x squared space equals space 200
rightwards double arrow space space space space straight x space equals space 10 square root of 2 comma space space space as space straight x space is space positive
fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space fraction numerator square root of 400 minus straight x squared end root. space space left parenthesis negative 4 straight x right parenthesis space minus space left parenthesis 400 minus 2 straight x squared right parenthesis. space begin display style fraction numerator negative 2 space straight x over denominator 2 space square root of 400 minus straight x squared end root end fraction end style over denominator 400 minus straight x squared end fraction
    When space straight x space equals space 10 square root of 2 comma space space fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space fraction numerator square root of 400 minus 200 end root. space left parenthesis negative 40 square root of 2 right parenthesis space minus space left parenthesis 400 minus 400 right parenthesis. space begin display style fraction numerator 2 cross times 10 square root of 2 over denominator 2 square root of 400 minus 200 end root end fraction end style over denominator 400 minus 200 end fraction
space space space space space space space space space space space space space space equals negative fraction numerator 800 minus 0 over denominator 200 end fraction space equals space minus 4 space less than space 0
therefore space space space space space space straight P space is space maximum space when space straight x space equals space 10 square root of 2 comma space space space space straight y space equals space square root of 400 minus 200 end root space equals space square root of 200 space equals space 10 square root of 2
therefore space space space space space space area space of space rectangle space space equals space left parenthesis 10 square root of 2 right parenthesis space left parenthesis 10 square root of 2 right parenthesis space equals space 200 space sq. space cm.
        
    Question 292
    CBSEENMA12035516

    Find a point on the curve y2 = 4 x, which is nearest to the point (2, 1).

    Solution

    Any point on the parabola straight y squared space equals 4 straight x space space is space straight P left parenthesis straight t squared comma space space 2 straight t right parenthesis.
    Let space straight Q space be space left parenthesis 2 comma space 1 right parenthesis.
    Let d be the distance between Q (2, 1) and straight P left parenthesis straight t squared comma space 2 straight t right parenthesis
    therefore space space space space space space straight d space equals space square root of left parenthesis straight t squared minus 2 right parenthesis squared plus space left parenthesis 2 straight t minus 1 right parenthesis squared end root space space space rightwards double arrow space space space straight d squared space equals space left parenthesis straight t squared minus 2 right parenthesis squared space space plus space left parenthesis 2 straight t minus 1 right parenthesis squared
therefore space space space space space straight D space equals space straight t to the power of 4 minus space 4 space straight t squared space plus space 4 space plus space 4 straight t squared space minus space 4 straight t space plus space 1 space space equals space straight t to the power of 4 minus 4 straight t plus 5 comma space space where space straight D space equals space straight d squared
    Now d is maximum or minimum when D is maximum or minimum.
                         dD over dt space equals space 4 straight t cubed minus 4
            dD over dt space equals space 0 space space rightwards double arrow space space space 4 straight t cubed minus 4 space equals space 0 space space space space rightwards double arrow space space straight t cubed minus 1 space equals space 0 space space space space rightwards double arrow space space straight t cubed space equals space 1 space space rightwards double arrow space space space straight t space equals space 1
fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 12 straight t squared
    At space space space straight t space equals space 1 comma space space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 12 left parenthesis 1 right parenthesis squared space equals space 12 space greater than 0
therefore space space space straight D space is space minimum space when space straight t space equals space 1
therefore space space space straight P space is space left parenthesis 1 comma space 2 right parenthesis comma space which space is space nearest space to space left parenthesis 2 comma space 1 right parenthesis

    Question 293
    CBSEENMA12035517

    Find the point on the curve y2 = 2x which is nearest to the point (1, – 4).

    Solution

    Any point on the parabola straight y squared space equals 2 straight x is straight P open parentheses 1 half straight t squared comma space space straight t close parentheses,  Let  straight Q space be thin space left parenthesis 1 comma space minus 4 right parenthesis 
    Let d be the distance between Q(1, -4) and straight P open parentheses 1 half straight t squared comma space space straight t close parentheses
    therefore space space space straight d space equals space square root of open parentheses straight t squared over 2 minus 1 close parentheses squared. space plus left parenthesis straight t plus 4 right parenthesis squared end root space space space space space space space space space space space space rightwards double arrow space space space space space space straight d squared space equals space open parentheses straight t squared over 2 minus 1 close parentheses squared space plus space left parenthesis straight t plus 4 right parenthesis squared
therefore space space space space straight D space equals space straight t to the power of 4 over 4 minus straight t squared plus 1 plus straight t squared plus 8 straight t plus 16 space equals space straight t to the power of 4 over 4 plus 8 straight t plus 17 comma space space where space straight D space equals space straight d squared
Now space straight d space is space maximum space or space minimum space when space straight D space is space maximum space or space minimum.
     dD over dt space equals straight t cubed plus 8
space space dD over dt space equals space 0 space space space space space space rightwards double arrow space space space space straight t cubed space equals space minus 8 space space space space rightwards double arrow space space space straight t space equals space minus 2
space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 straight t squared.
    At space straight t space equals space minus 2 comma space space space space space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 left parenthesis negative 2 right parenthesis squared space equals space 12 space greater than 0 space
therefore space space space straight D space is space minimum space when space straight t space equals space minus 2
therefore space space space space straight P space is space left parenthesis 2 comma space minus 2 right parenthesis comma space which space is space nearest space to space straight Q left parenthesis 1 comma space minus 4 right parenthesis

    Question 294
    CBSEENMA12035518

    Find the point on the curve y2 = 2x which is nearest to the point (1,  4).

    Solution

    Any point on the parabola  y2 = 2x  is straight P open parentheses 1 half straight t squared comma space space straight t close parentheses.    Let Q be (1, 4)
    Let a be the distance between straight Q left parenthesis 1 comma space 4 right parenthesis space and space straight P open parentheses 1 half straight t squared comma space space straight t close parentheses
    therefore space space space space straight d space equals space square root of open parentheses straight t squared over 2 minus 1 close parentheses squared plus left parenthesis straight t minus 4 right parenthesis squared end root space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight d squared space equals space open parentheses straight t squared over 2 minus 1 close parentheses squared plus left parenthesis straight t minus 4 right parenthesis squared
therefore space space space space straight D space equals space straight t to the power of 4 over 4 minus straight t squared plus 1 plus straight t squared minus 8 straight t space plus 16 space equals space straight t to the power of 4 over 4 minus 8 straight t plus 17 comma space where space straight D space equals straight d squared
    Now, d is maximum or minimum when D is maximum or minimum.
                           dD over dt space equals space straight t cubed minus 8
              dD over dt space equals 0 space space space space space space space space space space space space space rightwards double arrow space space space space space space space straight t cubed minus 8 space equals space 0 space space space space space rightwards double arrow space space space straight t cubed space equals space 8 space space space space space rightwards double arrow space space space straight t space equals space 2
fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 straight t squared
    At space straight t space equals space 2 comma space space space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 left parenthesis 2 right parenthesis squared space equals 12 greater than 0 space
    therefore space space space straight D space is space minimum space when space straight t space equals space 2
therefore space space space straight P space is space left parenthesis 2 comma space 2 right parenthesis comma space which space is space nearest space to space straight Q left parenthesis 1 comma space 4 right parenthesis

    Question 295
    CBSEENMA12035519

    Find the point on the curve x2 = 8y which is nearest to the point (2, 4).

    Solution

    Let left parenthesis straight x comma space straight y right parenthesis be the point on x2 = 8y which is nearest to the point (2, 4).
    therefore space space space left parenthesis straight x comma space space straight y right parenthesis space lies space on space the space curve space space equals space straight x squared over 8 space space space space rightwards double arrow space space space point space is space open parentheses straight x comma space straight x squared over 8 close parentheses
    Let space space straight d space be space the space distance space between space left parenthesis 2 comma space 4 right parenthesis space and space open parentheses straight x comma space space space straight x squared over 8 close parentheses
therefore space space space space space straight d space equals space square root of left parenthesis straight x minus 2 right parenthesis squared plus open parentheses straight x squared over 8 minus 4 close parentheses squared end root space space space space rightwards double arrow space space space space straight d squared space equals space left parenthesis straight x minus 2 right parenthesis squared plus open parentheses straight x squared over 8 minus 4 close parentheses squared
Put space straight d squared space equals space straight D comma space space space space space space space space therefore space space straight D space equals space left parenthesis straight x minus 2 right parenthesis squared plus open parentheses straight x squared over 8 minus 4 close parentheses squared
    Now d is maximum or minimum when D is maximum or minimum.                                                  dD over dx space equals space 2 left parenthesis straight x minus 2 right parenthesis space plus space 2 space open parentheses straight x squared over 8 minus 4 close parentheses. space space fraction numerator 2 straight x over denominator 8 end fraction space equals space 2 straight x minus 4 plus straight x cubed over 16 minus 2 straight x space equals space minus 4 plus straight x cubed over 16
          dD over dx space equals space 0 space space space space give space us space minus 4 plus straight x cubed over 16 space equals 0 space space space space space space or space space space straight x cubed space equals space 64 space space space space space rightwards double arrow space space space straight x space equals space 4
space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space fraction numerator 3 straight x squared over denominator 16 end fraction
At space straight x space equals space 4 comma space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space fraction numerator 3 cross times 16 over denominator 16 end fraction space equals space 3 space greater than 0
therefore space space space space straight D space is space minimum space when space straight x space equals space 4 comma space space space straight y equals 16 over 8 space equals space 2
    therefore space space space point space is space left parenthesis 4 comma space 2 right parenthesis
               

    Question 296
    CBSEENMA12035520

    Find the point on the curve x2 = 4y which is nearest to the point (–1, 2).

    Solution

    Let (x, y) be the point on straight x squared space equals space 4 straight y which is nearest to the point (–1, 2).
    because space space space left parenthesis straight x comma space space straight y right parenthesis space lies space on space the space curve space straight y space equals space straight x squared over 4 space space space rightwards double arrow space space point space is space space open parentheses straight x comma space straight x squared over 4 close parentheses
Let space straight d space be space the space distance space between space left parenthesis negative 1 comma space space 2 right parenthesis space and space open parentheses straight x comma space straight x squared over 4 close parentheses
therefore space space space straight d space equals space square root of left parenthesis straight x plus 1 right parenthesis squared space plus space open parentheses straight x squared over 4 minus 2 close parentheses squared end root space space space rightwards double arrow space space space space space straight d squared space equals space left parenthesis straight x plus 1 right parenthesis squared plus open parentheses straight x squared over 4 minus 2 close parentheses squared
Put space straight d squared space equals space straight D comma space space space space space space therefore space space space space straight D space equals space left parenthesis straight x plus 1 right parenthesis squared plus open parentheses straight x squared over 4 minus 2 close parentheses squared
Now space straight d space is space maximum space or space minimumn space when space straight D space is space maximum space or space minimum.
                                 dD over dx space equals space 2 left parenthesis straight x plus 1 right parenthesis plus 2 open parentheses straight x squared over 4 minus 2 close parentheses. space fraction numerator 2 straight x over denominator 4 end fraction space equals space 2 straight x plus 2 plus straight x cubed over 4 minus 2 straight x space equals space 2 plus straight x cubed over 4
                          dD over dx space equals space 0 space space give space us space 2 plus straight x cubed over 4 space equals space 0 space space space space or space space space 8 plus straight x cubed space equals space 0
    therefore space space space space space space straight x cubed space equals space minus 8 space space space space space or space space space space straight x space equals space minus 2
space space space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space space equals fraction numerator 3 straight x squared over denominator 4 end fraction
    At  straight x equals 2 comma space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 3 over 4 cross times 4 space equals space 3 greater than 0
    therefore space space space space space straight D space is space minimum space when space straight x space equals space 2 comma space space space straight y space equals 4 over 4 space equals space 1
therefore space space space space space required space point space is space left parenthesis negative 2 comma space 1 right parenthesis.

    Question 297
    CBSEENMA12035521

    Find the points on the curve 1 over straight x squared plus 1 over straight y squared space equals 1 comma space which are nearest from the origin. 

    Solution

    The equation of curve is
           1 over straight x squared plus 1 over straight y squared equals space 1 space space space space space space or space space space 1 over straight y squared space equals space 1 minus 1 over straight x squared space space rightwards double arrow space space space space 1 over straight y squared space equals space fraction numerator straight x squared minus 1 over denominator straight x squared end fraction space space space rightwards double arrow space space space straight y squared space equals space straight x squared over straight x squared minus 1
    therefore space space space space straight y space equals space plus-or-minus fraction numerator straight x over denominator square root of straight x squared minus 1 end root end fraction space open vertical bar straight x close vertical bar space greater than space 1                                      ...(1)
    Let D be the distance of any point (x, y) on the curve 1 over straight x squared plus 1 over straight y squared space equals space 1 from the origin (0, 0).
    therefore space space space space space straight D space equals square root of left parenthesis straight x minus 0 right parenthesis squared space left parenthesis straight y minus 0 right parenthesis squared end root space equals space square root of straight x squared plus straight y squared end root space equals space square root of straight x squared plus fraction numerator straight x squared over denominator straight x squared minus 1 end fraction end root space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
space space space space space space space space space space space space space equals square root of fraction numerator straight x to the power of 4 minus straight x squared plus straight x squared over denominator straight x squared minus 1 end fraction end root space equals space square root of fraction numerator straight x to the power of 4 over denominator straight x squared minus 1 end fraction end root space equals space fraction numerator straight x squared over denominator square root of straight x squared minus 1 end root end fraction
dD over dx space equals space fraction numerator square root of straight x squared minus 1 end root. space space 2 straight x minus straight x squared space begin display style fraction numerator 2 straight x over denominator 2 square root of straight x squared minus 1 end root end fraction end style over denominator straight x squared minus 1 end fraction space equals space fraction numerator begin display style fraction numerator 2 straight x square root of straight x squared minus 1 end root over denominator 1 end fraction end style minus begin display style fraction numerator straight x cubed over denominator square root of straight x squared minus 1 end root end fraction end style over denominator straight x squared minus 1 end fraction

              equals space fraction numerator 2 straight x left parenthesis straight x squared minus 1 right parenthesis minus straight x cubed over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space equals space fraction numerator straight x cubed minus 2 straight x over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space equals space fraction numerator straight x left parenthesis straight x squared minus 2 right parenthesis over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    Now, dD over dx space equals 0 space space space space space space space space space space space space rightwards double arrow space space space space fraction numerator straight x left parenthesis straight x squared minus 2 right parenthesis over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space space space space rightwards double arrow space space space space straight x left parenthesis straight x squared minus 2 right parenthesis space equals space 0 space space space space rightwards double arrow space space space straight x space equals space 0 comma space space plus-or-minus square root of 2
    Rejecting straight x equals 0 space as space open vertical bar straight x close vertical bar greater than 1 comma space space space we space get space straight x space equals space plus-or-minus square root of 2
    fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space fraction numerator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 3 over 2 end style end exponent. space space left parenthesis 3 straight x squared minus 2 right parenthesis thin space minus space left parenthesis straight x cubed minus 2 straight x right parenthesis. space begin display style 3 over 2 end style left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 1 half end style end exponent.2 straight x over denominator left parenthesis straight x squared minus 1 right parenthesis cubed end fraction
                   equals space fraction numerator left parenthesis straight x squared minus 1 right parenthesis thin space left parenthesis 3 straight x squared minus 2 right parenthesis space minus space 3 straight x left parenthesis straight x cubed minus 2 straight x right parenthesis over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 5 over 2 end style end exponent end fraction space equals space fraction numerator 3 straight x to the power of 4 minus 5 straight x squared plus 2 minus 3 straight x to the power of 4 plus 6 straight x squared over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 5 over 2 end style end exponent end fraction
equals space fraction numerator straight x squared plus 2 over denominator left parenthesis straight x squared minus 1 right parenthesis to the power of begin display style 5 over 2 end style end exponent end fraction
    When straight x equals plus-or-minus square root of 2. space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space fraction numerator 2 plus 2 over denominator left parenthesis 2 minus 1 right parenthesis to the power of begin display style 5 over 2 end style end exponent end fraction space equals space 4 greater than 0
    therefore space space straight D space is space minimum space when space straight x space equals space plus-or-minus square root of 2 comma space space space straight y space equals space plus-or-minus fraction numerator square root of 2 over denominator square root of 2 minus 1 end fraction space equals plus-or-minus square root of 2
therefore space space space space required space points space are space left parenthesis plus-or-minus square root of 2 comma space space space plus-or-minus square root of 2 right parenthesis.

    Question 298
    CBSEENMA12035522

    Find the points on the curve straight y equals straight x squared over 4 which are nearest to the point (0, 5).

    Solution

    Let (x, y) be the point on straight y equals straight x squared over 4 which is nearest to the point (0, 5).
    because space space space space left parenthesis straight x comma space straight y right parenthesis space lies space on space the space curve space straight y space equals space straight x squared over 4 space space space space rightwards double arrow space space space point space is space open parentheses straight x comma space straight x squared over 4 close parentheses
    Let d be the distance between (0, 5) and open parentheses straight x comma space space straight x squared over 4 close parentheses
    therefore space space space space straight d space equals space square root of left parenthesis straight x minus 0 right parenthesis squared plus open parentheses straight x squared over 4 minus 5 close parentheses squared end root space space space space space space space space space space space space space rightwards double arrow space space space space straight d squared space equals straight x squared plus open parentheses straight x squared over 4 minus 5 close parentheses squared
Put space straight d squared equals space straight D comma space space space space space therefore space space space straight D space equals space straight x squared plus open parentheses straight x squared over 4 minus 5 close parentheses squared
    Now d is maximum or minimum when D is maximum or minimum.
                         dD over dx space equals 2 straight x plus 2 open parentheses straight x squared over 4 minus 5 close parentheses. space space space fraction numerator 2 straight x over denominator 4 end fraction equals space space 2 straight x plus straight x open parentheses straight x squared over 4 minus 5 close parentheses
dD over dx space equals space 0 space give space us space 2 straight x plus straight x open parentheses straight x squared over 4 minus 5 close parentheses space equals space 0 space space space space rightwards double arrow space space space space 8 straight x plus straight x cubed minus 20 straight x space equals space 0
therefore space space space space space straight x cubed minus 12 straight x space equals space 0 space space or space space space straight x left parenthesis straight x squared minus 12 right parenthesis space equals space 0 space space space space space space space rightwards double arrow space space straight x left parenthesis straight x minus square root of 12 right parenthesis thin space left parenthesis straight x plus square root of 12 right parenthesis space equals space 0
therefore space space space space space straight x equals space space 0 comma space space space space 2 square root of 3 comma space space minus 2 square root of 3
space space space space space space space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 2 plus straight x. fraction numerator 2 straight x over denominator 4 end fraction plus open parentheses straight x squared over 4 minus 5 close parentheses.1 space space equals 2 plus straight x squared over 2 plus straight x squared over 4 minus 5 space equals space fraction numerator 3 straight x squared over denominator 4 end fraction minus 3
    At space straight x space equals space 0 comma space space space fraction numerator straight d squared straight D over denominator dx squared end fraction equals space 0 minus 3 space equals space minus 3 space less than space 0
therefore space space space space straight D space is space maximum space when space straight x space equals space 0
We space are space not space interested space in space this space case
At space straight x space equals space 2 square root of 3 comma space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals 3 over 4. space 12 space minus 3 space equals space 9 minus 3 space equals space 6 greater than 0
therefore space space space space space straight D space is space minimum space when space straight x space equals space 2 square root of 3 comma space space space straight y space equals space 12 over 4 space equals space 3
therefore space space space space space point space is space left parenthesis 2 square root of 3 comma space 3 right parenthesis
    Again at straight x equals negative 2 square root of 3 comma space space fraction numerator straight d squared straight D over denominator dx squared end fraction space equals space 3 over 4.12 space minus space 3 space equals space 6 space greater than space 0
    therefore space space space space straight D space is space minimum space when space straight x space equals 2 square root of 3 comma space space space straight y space equals space 12 over 4 space equals space 3 space space space space space space space rightwards double arrow space space space space points space is space left parenthesis negative 2 square root of 3 comma space 3 right parenthesis

    Question 299
    CBSEENMA12035523

    A jet of an enemy is flying along the curve y = x2 + 2. A soldier is placed at the point (3, 2). What is the nearest distance between the soldier and the jet?

    Solution

    Let (x, y) be any point on y = x2 + 2 at which jet is at a particular moment.
    ∴  jet is at (x, x2 + 2)
    Let d be the distance between the jet at (x, x2 + 2) and solider at (3, 2).
    ∴  d2 = (x – 3)2 + [ (x2 + 2) – 2]2 = (x – 3)2 + (x2)2
      d2 = x4 + x2 – 6 x + 9
    Let f (x) = d2 = x4 + x2 – 6 x + 9
    f ' (x) = 4 x3 + 2 x – 6 = 2 (2 x3 + x – 3) = 2 (x – 1) (2 x2 + 2 x + 3)
    f ' (x) = 0 ⇒ 2 (x – 1) (2 x2 + 2 x + 3) = 0
    rightwards double arrow space space space space straight x space equals space 1 comma space space fraction numerator negative 2 plus-or-minus square root of 4 minus 24 end root over denominator 4 end fraction space equals 1 comma space space space fraction numerator negative 2 plus-or-minus 2 space straight i square root of 5 over denominator 4 end fraction
    ⇒ x = 1 as we reject imaginary values of x.
    f ' ' (x) = 12 x+ 2
    At x = 1, f ' ' (x) = 12 + 2 = 14 > 0 ⇒ f (x) has a local minimum at x = 1
    But x = 1 is only extreme point
    ∴ f (x) is minimum at x = 1
    ∴  nearest distance = d at x = 1
    equals space square root of 1 plus 1 minus 6 plus 9 end root equals space square root of 5

    Question 300
    CBSEENMA12035524
    Question 304
    CBSEENMA12035528

    Given the sum of the perimeters of a square and a circle, prove that the sum of their areas is least when the side of the square is equal to the diameter of the circle.

    Solution
    Let x be the side of the square and r be the radius of the circle. Let P be the sum of perimeters of square and circle.
                 therefore space space space space space space space space space straight P space equals space 4 straight x plus 2 πr                                              ...(1)
    Let A be the sum of areas of squares and circle
    therefore space space space space space space space space space space space space space space space space space space space straight A space equals space straight x squared plus πr squared
or space space space space space space space space space space space space space space space space space space space space straight A space equals space open parentheses fraction numerator straight P minus 2 πr over denominator 4 end fraction close parentheses squared space plus space πr squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space space space space space space space space space space space dA over dr space equals space 2 open parentheses fraction numerator straight P minus 2 πr over denominator 4 end fraction close parentheses. space space open parentheses negative fraction numerator 2 straight pi over denominator 4 end fraction close parentheses space plus space 2 space πr
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space minus straight pi over 4 left parenthesis straight P minus 2 πr right parenthesis space plus space 2 πr
     For A to be minimum or minimum,
                                space space space space space space space space space space space space space space space space space dA over dr space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space minus straight pi over 4 left parenthesis straight P minus 2 straight pi right parenthesis space plus space 2 space πr space equals space 0
rightwards double arrow space space space space space space space space space space space space space space minus straight pi left parenthesis straight P minus 2 πr right parenthesis space plus space 8 space πr space equals 0 space space space space rightwards double arrow space space space space space minus πP plus 2 straight pi squared straight r space plus space 8 space straight pi space straight r space equals space 0
rightwards double arrow space space space space space space space space space space space space space space space space space space space space left parenthesis 2 straight pi squared plus 8 straight pi right parenthesis space straight r space equals space πP space space space space space space space space space rightwards double arrow space space 2 left parenthesis straight pi plus 4 right parenthesis space straight r space equals space straight P space space space space
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space space space straight r space equals space fraction numerator straight P over denominator 2 left parenthesis straight pi plus 4 right parenthesis end fraction
                           fraction numerator straight d squared straight A over denominator dr squared end fraction space equals space minus straight pi over 4 left parenthesis 0 minus 2 straight pi right parenthesis space plus space 2 space straight pi space equals space straight pi squared over 2 plus 2 straight pi
    When space space space space space space space space space space space straight r space equals space fraction numerator straight P over denominator 2 left parenthesis straight pi plus 4 right parenthesis end fraction comma space space space fraction numerator straight d squared straight A over denominator dr squared end fraction space equals space straight pi squared over 2 plus 2 straight pi greater than 0
therefore space space space space space space straight A space is space minimum space when space space space space space space space space space space space space space space space space space space space
                                       straight r space equals space fraction numerator straight P over denominator 2 left parenthesis straight pi plus 4 right parenthesis end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight i. straight e. space space space straight r space equals fraction numerator 4 straight x plus 2 πr over denominator 2 left parenthesis straight pi plus 4 right parenthesis end fraction space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets space
    straight i. straight e. space space space space space space space straight r space equals space fraction numerator 2 straight x plus πr over denominator straight pi plus 4 end fraction space space space space space space or space space space space πr plus 4 straight r space equals space 2 straight x plus πr
straight i. straight e. space space space space space space 4 straight r space equals space 2 straight x space space space space space space space space space straight i. straight e. comma space space space space straight x space equals space 2 straight r
    i.e.  side of the square  = diameter of circle.
    Question 305
    CBSEENMA12035529

    A wire of length 36 cm is cut into two pieces. One of the pieces is turned in the form of a square and the other in the form of an equilateral triangle. Find the length of each piece so that the sum of the areas of the two be minimum.

    Solution

    Total length of wire = 36 cm
    Let x cm be length of each side of square and y cm be length of each side of quilateral triangle.
    Length of wire used for square = 4x cms
    and length of wire used for triangle = 3y cms
    ∴  4x + 3y = 36  ⇒  3y = 36 – 4x
    rightwards double arrow space space space space straight y space equals space fraction numerator 36 minus 4 straight x over denominator 3 end fraction                                                                      ...(1)
    Let A denote the sum of the areas of square and equilateral triangle.
    therefore space space space straight A space equals space left parenthesis straight x right parenthesis squared plus 1 half left parenthesis straight y right parenthesis space left parenthesis straight y right parenthesis space left parenthesis sin space 60 degree right parenthesis                                    open square brackets increment space equals space 1 half bc space sin space straight A close square brackets
                 straight x squared plus fraction numerator square root of 3 over denominator 4 end fraction straight y squared space equals space straight x squared plus fraction numerator square root of 3 over denominator 4 end fraction open parentheses fraction numerator 36 minus 4 straight x over denominator 3 end fraction close parentheses squared                   open square brackets because space of space left parenthesis 1 right parenthesis close square brackets 
    therefore space space space space space space straight A minus straight x squared plus fraction numerator 4 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x squared right parenthesis
                    dA over dx equals 2 straight x plus fraction numerator 4 square root of 3 over denominator 9 end fraction.2 left parenthesis 9 minus straight x right parenthesis thin space left parenthesis negative 1 right parenthesis space equals space 2 straight x minus fraction numerator 8 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x right parenthesis
dA over dx space equals space 0 space space space space gives space us space space 2 straight x minus fraction numerator 8 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x right parenthesis space equals space 0
    therefore space space space straight x minus 4 square root of 3 space plus space fraction numerator 4 square root of 3 over denominator 9 end fraction straight x space equals space 0 space space space space rightwards double arrow space space space space open parentheses 1 plus fraction numerator 4 square root of 3 over denominator 9 end fraction close parentheses straight x space equals space 4 square root of 3
rightwards double arrow space space space space space open parentheses 9 plus 4 square root of 3 close parentheses straight x space equals space 36 square root of 3 space space space rightwards double arrow space space space straight x space equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction
space space space space space space space space space space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 plus fraction numerator 8 square root of 3 over denominator 9 end fraction
    At space space straight x equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction comma space space space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 plus fraction numerator 8 square root of 3 over denominator 9 end fraction greater than 0
    therefore space space space straight A space is space minimum space when space straight x space equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction
             Length of piece required for square  = 4x = fraction numerator 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction cm
    and length of piece required for triangle  = 3y = 36 - 4x
                   equals space 36 minus fraction numerator 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction space equals space fraction numerator 324 plus 144 square root of 3 minus 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction space equals space fraction numerator 324 over denominator 9 plus 4 square root of 3 end fraction cm.

          

    Question 306
    CBSEENMA12035530

    A figure consists of a semi-circle with a rectangle on its diameter. Given perimeter of the figure, find the dimensions in order that the area may be maximum.

    Solution
    Let x, y be ength, breadth of the rectangle ABCD. Let straight x over 2 be the radius of semi-circle with centre at O.

    Let P be the perimeter of figure.
        therefore space space space space space space straight x plus 2 straight y plus straight pi straight x over 2 space equals space straight p
rightwards double arrow space space space space space 2 straight x plus 4 straight y plus πx space equals space 2 space straight p
rightwards double arrow space space space space 4 straight y space equals 2 straight p minus left parenthesis straight pi plus 2 right parenthesis space straight x
rightwards double arrow space space space space space straight y space equals fraction numerator 2 straight p minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let A be area of the figure.
     therefore space space space space straight A space equals space xy plus 1 half straight pi open parentheses straight x over 2 close parentheses squared space equals space straight x open square brackets fraction numerator 2 straight p minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction close square brackets space plus space πx squared over 8
therefore space space space space space straight A space equals space 1 fourth left square bracket 2 space straight p space straight x space minus space left parenthesis straight pi plus 2 right parenthesis space straight x squared right square bracket space plus space straight pi over 8 straight x squared
therefore space space space space space dA over dx space equals space 0 space space space gives space us space 1 fourth left square bracket 2 straight p space minus space 2 left parenthesis straight pi plus 2 right parenthesis space straight x right square bracket space plus space straight pi over 4 straight x space equals space 0
rightwards double arrow space space space space space space space 2 straight p minus 2 left parenthesis straight pi plus 2 right parenthesis space straight x space plus space πx space equals space 0 space space space space space rightwards double arrow space space space space 2 straight p minus left parenthesis straight pi plus 4 right parenthesis space straight x space equals space 0
rightwards double arrow space space space space space space space space straight x space equals space fraction numerator 2 straight p over denominator straight pi plus 4 end fraction
                   fraction numerator straight d squared straight A over denominator dx squared end fraction space equals 1 fourth left square bracket 0 minus 2 left parenthesis straight pi plus 2 right parenthesis plus straight pi over 4 space equals fraction numerator negative 2 straight pi minus 4 over denominator 4 end fraction plus straight pi over 4 space equals space fraction numerator negative straight pi minus 4 over denominator 4 end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction
    When straight x space equals fraction numerator 2 space straight p over denominator straight pi plus 4 end fraction comma space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction less than 0
    therefore space space space space space straight A space is space maximum space when space straight x space equals space fraction numerator 2 straight p over denominator straight pi plus 4 end fraction
and space straight y space equals space fraction numerator 2 straight p minus left parenthesis straight pi plus 2 right parenthesis. space begin display style fraction numerator 2 straight p over denominator straight pi plus 4 end fraction end style over denominator 4 end fraction space equals fraction numerator 2 pπ plus space 8 straight p minus 2 pπ space minus 4 straight p over denominator 4 left parenthesis straight pi plus 4 right parenthesis end fraction space equals fraction numerator 4 straight p over denominator 4 left parenthesis straight pi plus 4 right parenthesis end fraction equals fraction numerator straight p over denominator straight pi plus 4 end fraction
    therefore space space space space space area space of space figure space is space maximum space when
space space space space space space space space space length space of space rectangle space space equals space straight x space equals space fraction numerator 2 straight p over denominator straight pi plus 4 end fraction comma
space space space space space space space space space breadth space of space rectangle space space equals space straight y space equals space fraction numerator straight p over denominator straight pi plus 4 end fraction comma
space space space space space space space space space space radius space of space semi minus circle space equals space straight x over 2 space equals fraction numerator straight p over denominator straight pi plus 4 end fraction
    Question 307
    CBSEENMA12035531

    A window consists of a semi-circle with a rectangle on its diameter. If the perimeter of the window is 30 metres, find the dimensions of the window in order that its area may be maximum.
    Or
    A window is in the form of a rectangle surmounted by a semi-circle. If the total perimeter of the window is 30 m. find the dimensions of the window so that maximum light is admitted.

    Solution
    Let x, y be length, breadth of the rectangle ABCD. Let straight x over 2 be the radius of semi-circle with centre at O.

    Let P be the perimeter of figure.
     therefore space space space space space space straight x plus 2 straight y plus straight pi straight x over 2 space equals space 30
rightwards double arrow space space space space space 2 straight x plus 4 straight y plus πx space equals space 60
rightwards double arrow space space space space 4 straight y space equals 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x
rightwards double arrow space space space space space straight y space equals fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let A be area of the figure.
     therefore space space space space straight A space equals space xy plus 1 half straight pi open parentheses straight x over 2 close parentheses squared space equals space straight x open square brackets fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction close square brackets space plus space πx squared over 8 space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space straight A space equals space 1 fourth left square bracket 60 space minus space left parenthesis straight pi plus 2 right parenthesis space straight x squared right square bracket space plus space straight pi over 8 straight x squared
    therefore space space space space dA over dx space equals 1 fourth left square bracket 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space straight x right square bracket plus space πx over 4
      Now comma space dA over dx space equals 0 space space space rightwards double arrow space space space 1 fourth left square bracket 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space straight x right square bracket plus πx over 4 space equals 0
rightwards double arrow space space space 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space plus space πx space equals space 0 space space space space space space rightwards double arrow space space space 60 minus 2 πx minus 4 straight x plus πx space equals space 0
                   fraction numerator straight d squared straight A over denominator dx squared end fraction space equals 1 fourth left square bracket 0 minus 2 left parenthesis straight pi plus 2 right parenthesis plus straight pi over 4 space equals fraction numerator negative 2 left parenthesis straight pi plus 2 right parenthesis over denominator 4 end fraction plus fraction numerator straight pi plus 4 over denominator 4 end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction
    When straight x space equals fraction numerator 60 over denominator straight pi plus 4 end fraction comma space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction less than 0
    therefore space space space straight A space is space maximum space when space straight x space equals fraction numerator 60 over denominator straight pi plus 4 end fraction
    and   straight y equals fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space. begin display style fraction numerator 60 over denominator straight pi plus 4 end fraction end style over denominator 4 end fraction space equals space fraction numerator 60 straight pi plus 240 minus 60 straight pi minus 120 over denominator 4 left parenthesis straight pi plus 4 right parenthesis end fraction space equals space fraction numerator 30 over denominator straight pi plus 4 end fraction
    therefore area of figure is maximum i.e. maximum light is admitted when length of rectangle = straight x equals fraction numerator 60 over denominator straight pi plus 4 end fraction comma
    breadth of rectangle equals straight y equals space fraction numerator 30 over denominator straight pi plus 4 end fraction
    radius of semi-circle equals straight x over 2 space equals fraction numerator 15 over denominator straight pi plus 4 end fraction


    Question 308
    CBSEENMA12035532

    A window is in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

    Solution
    Let x, y be length, breadth of the rectangle ABCD.
    Let straight x over 2 be the radius of the semi-circle with centre at O.
    Perimeter of figure  = 10 meters
    therefore space space space space straight x plus 2 straight y plus straight pi straight x over 2 space equals space 10 space space space space space space space rightwards double arrow space space 2 straight x plus 4 straight y plus πx space equals 20
therefore space space space space space space 4 straight y space equals 20 minus left parenthesis straight pi plus 2 right parenthesis straight x
rightwards double arrow space space space space space straight y space equals space fraction numerator 20 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space
    Let A be the area of the figure.
           therefore space space space straight A space equals space xy space plus 1 half straight pi open parentheses straight x over 2 close parentheses squared space equals straight x open square brackets fraction numerator 20 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction close square brackets plus πx squared over 8               open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets

         therefore space space space space straight A space equals space left square bracket 20 straight x minus left parenthesis straight pi plus 2 right parenthesis straight x squared right square bracket space plus πx squared over 8
therefore space space space dA over dx space equals 1 fourth left square bracket 20 minus space 2 left parenthesis straight pi plus 2 right parenthesis straight x right square bracket plus space πx over 4
Now space space dA over dx equals 0 space space space space space rightwards double arrow space space space space 1 fourth left square bracket 20 minus 2 left parenthesis straight pi minus 2 right parenthesis straight x right square bracket plus πx over 4 equals 0
rightwards double arrow space space space space space 20 minus space 2 left parenthesis straight pi plus 2 right parenthesis space straight x space plus space πx space equals space 0
rightwards double arrow space space space space space space 20 minus 2 πx minus 4 straight x plus πx space equals space 0
rightwards double arrow space space space space space 20 minus left parenthesis straight pi plus 4 right parenthesis straight x space equals space 0 space space space space rightwards double arrow space space space straight x space equals space fraction numerator 20 over denominator straight pi plus 4 end fraction
                       fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 1 fourth left square bracket 0 minus 2 left parenthesis straight pi plus 2 right parenthesis right square bracket space plus straight pi over 4 space equals 1 fourth left square bracket negative 2 straight pi minus 4 plus straight pi right square bracket space equals negative fraction numerator straight pi plus 4 over denominator 4 end fraction
    When space straight x space equals fraction numerator 20 over denominator straight pi plus 4 end fraction. space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals negative fraction numerator straight pi plus 4 over denominator 4 end fraction less than 0
therefore space space space space space space space space space space straight A space is space maximum space when space straight x space equals fraction numerator 20 over denominator straight pi plus 4 end fraction
    and   straight y space equals space fraction numerator 20 minus left parenthesis straight pi plus 2 right parenthesis space begin display style fraction numerator 20 over denominator straight pi plus 4 end fraction end style over denominator 4 end fraction space equals space fraction numerator 20 straight pi plus 80 minus 20 straight pi minus 40 over denominator 4 left parenthesis straight pi plus 4 right parenthesis end fraction space equals space fraction numerator 10 over denominator straight pi plus 4 end fraction
    therefore   area of figure is maximum i.e., maximum light is admitted when length of rectangle = straight x equals fraction numerator 20 over denominator straight pi plus 4 end fraction comma space space breadth space of space rectangle space equals straight y space equals space fraction numerator 10 over denominator straight pi plus 4 end fraction comma
    radius space of space semi minus circle space equals space straight x over 2 space equals space fraction numerator 5 over denominator straight pi plus 4 end fraction.  
    Question 310
    CBSEENMA12035534
    Question 311
    CBSEENMA12035535

    A wire of length 30 cm is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What could be the length of the two pieces, so that the combined area of the square and the circle is minimum?

    Solution
    Total length of wire = 30 metre. Let x metres be made into a circle and (30 – x) metres into a square.
    therefore space space space radius space of space circle space space equals space fraction numerator straight x over denominator 2 space straight pi end fraction space metres space and space side space of space square space equals space fraction numerator 30 minus straight x over denominator 4 end fraction metres
    Let S be the sum of areas of two figures. 
       therefore space space space space straight S space equals space straight pi open parentheses fraction numerator straight x over denominator 2 space straight pi end fraction close parentheses squared space plus space open parentheses fraction numerator 30 minus straight x over denominator 4 end fraction close parentheses squared space equals space fraction numerator straight x squared over denominator 4 straight pi end fraction plus fraction numerator left parenthesis 30 minus straight x right parenthesis squared over denominator 16 end fraction
                  dS over dx space equals fraction numerator 2 straight x over denominator 4 straight pi end fraction plus fraction numerator 2 left parenthesis 30 minus straight x right parenthesis thin space left parenthesis negative 1 right parenthesis over denominator 16 end fraction space equals space fraction numerator straight x over denominator 2 straight pi end fraction minus fraction numerator 30 minus straight x over denominator 8 end fraction
dS over dx space equals 0 space space space gives space us space fraction numerator straight x over denominator 2 straight pi end fraction minus fraction numerator 30 minus straight x over denominator 8 end fraction equals 0
    therefore space space space space 4 straight x minus 30 space straight pi space plus space straight x space straight pi space equals space 0 space space space space space rightwards double arrow space space space left parenthesis straight pi plus 4 right parenthesis space straight x space equals space 30 space straight pi
therefore space space space space space space space space space space space space space straight x space equals space fraction numerator 30 space straight pi over denominator straight pi space plus 4 end fraction
space space space space space space space space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space fraction numerator 1 over denominator 2 straight pi end fraction plus 1 over 8
When space straight x space equals space fraction numerator 30 space straight pi over denominator straight pi plus 4 end fraction comma space space space space space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space fraction numerator 1 over denominator 2 straight pi end fraction plus 1 over 8 greater than 0
therefore space space space space space space straight S space is space minimum space when space straight x space equals fraction numerator 30 space straight pi over denominator straight pi space plus 4 end fraction
therefore space space space space space space the space wire space is space to space be space cut space at space straight a space distance space of space fraction numerator 30 space straight pi over denominator straight pi plus 4 end fraction space meteres space from space one space end. space
            
    Question 313
    CBSEENMA12035537

    A square piece of 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that volume of the box is maximum?

    Solution
    Let x (0 < x < 15) be the length of each side of the square which is to be cut from corners of the square tin sheet of each side 30 cm. Let V be the volume of the open box formed by folding up the flaps.
     therefore space space space space straight V space equals space straight x space left parenthesis 30 minus 2 straight x right parenthesis thin space left parenthesis 30 minus 2 straight x right parenthesis space equals space straight x left parenthesis 30 minus 2 straight x right parenthesis squared space equals space 4 straight x left parenthesis 15 minus straight x right parenthesis squared
space space space space space space space space space space space space equals space 4 straight x left parenthesis straight x squared minus 30 straight x plus 225 right parenthesis space equals space 4 left parenthesis straight x cubed minus 30 straight x squared plus 225 straight x right parenthesis
space space space space dV over dx space equals space 4 left parenthesis 3 straight x squared minus 60 straight x plus 225 right parenthesis
space space space space dV over dx space equals space 0 space space space space rightwards double arrow space space space space 4 left parenthesis 3 straight x squared minus 60 straight x plus 225 right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space space straight x squared minus 20 straight x plus 75 space equals space 0
rightwards double arrow space space space space space space left parenthesis straight x minus 5 right parenthesis thin space left parenthesis straight x minus 15 right parenthesis space equals space 0 space space space space rightwards double arrow space space space space space straight x space equals space 5 comma space space 15 space space space space space space space rightwards double arrow space space space space space straight x space equals space 5 space space space as space space straight x space equals space 15 space not an element of space left parenthesis 0 comma space 15 right parenthesis
space space space space space space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 left parenthesis 6 straight x minus 60 right parenthesis
At space space space straight x space equals space 5 comma space space space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 space space left parenthesis 30 minus 60 right parenthesis space equals space minus 120 space less than 0
therefore space space space space space space space space space space space straight V space space is space maximum space at space straight x space equals space 5 space space space space space space space space space space space space space space space space space space space space space space space
    But x = 5 is the only extreme point
    therefore space space space space space space straight V space is space maximum space at space straight x space equals space 5
therefore space space space space side space of space the space square space space equals space 5 space cm.
    Question 314
    CBSEENMA12035538

    A square piece of a tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off, so that the volume of the box is the maximum possible?

    Solution
    Let x (0 < x < 9) cm be the length of each side of the square which is to be cut from corners of the square tin sheet of each side 18 cm. Let V be the volume of the box formed by folding up the flaps.
          therefore space space space space straight V space equals space straight x left parenthesis 18 minus 2 straight x right parenthesis space left parenthesis 18 minus 2 straight x right parenthesis space equals space straight x left parenthesis 18 minus 2 straight x right parenthesis squared space equals space 4 straight x left parenthesis 9 minus straight x right parenthesis squared space equals space 4 straight x left parenthesis straight x squared minus 18 straight x plus 81 right parenthesis
space space space space space space space space space space space space space equals 4 left parenthesis straight x cubed minus 18 straight x squared plus 81 straight x right parenthesis
space space dV over dx space equals space 4 left parenthesis 3 straight x squared minus 36 straight x plus 81 right parenthesis
space space dV over dx space equals space 0 space space space space space space space space space space space rightwards double arrow space space space space space 4 left parenthesis 3 straight x squared minus 36 straight x plus 81 right parenthesis space equals space 0
rightwards double arrow space space space space straight x squared minus 12 straight x plus 27 space equals space 0 space space space space rightwards double arrow space space space left parenthesis straight x minus 3 right parenthesis thin space left parenthesis straight x minus 9 right parenthesis space equals space 0 space space space space rightwards double arrow space space straight x space equals space 3 comma space 9
    rightwards double arrow space space straight x space equals space 3                                                                            open square brackets because space space space straight x space equals space 9 space not an element of left parenthesis 0 comma space 9 right parenthesis close square brackets
           fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 space left parenthesis 6 straight x minus 36 right parenthesis
    At space straight x space equals space 3 comma space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 left parenthesis 18 minus 36 right parenthesis space equals space minus 72 space less than 0
therefore space space space space space space straight V space is space local space maximum space at space straight x space equals space 3
But space straight x space equals space 3 space is space the space only space extreme space point
therefore space space space space space space space space straight V space is space maximum space at space straight x space equals space 3
rightwards double arrow space space space space space side space of space the space square space space equals space 3 space cm.
max. space straight V space equals space 3 space left parenthesis 18 minus 6 right parenthesis squared space equals space 3 space cross times space 144 space space equals 432 space cubic space cm.
    Question 315
    CBSEENMA12035539

    A square piece of tin of side 24 cm. is to be made into a box without top by cutting a square from each corner arid folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume.

    Solution
    Let x (0 < x < 12) be the length of each side of the square which is to be cut from corners of the square tin sheet of each side 18 cm. Let V be the volume of the open box formed by folding up the flaps.
    therefore space space space space straight V space equals space straight x left parenthesis 24 minus 2 straight x right parenthesis space left parenthesis 24 minus 2 straight x right parenthesis space equals space straight x left parenthesis 24 minus 2 straight x right parenthesis squared
space space space space space space space space space space space space space equals 4 straight x left parenthesis 12 minus straight x right parenthesis squared space space equals space 4 straight x left parenthesis straight x squared minus 24 straight x plus 144 right parenthesis space equals space 4 left parenthesis straight x cubed minus 24 straight x squared plus 144 straight x right parenthesis
space space space dV over dx space equals space 4 left parenthesis 3 straight x squared minus 48 straight x plus 144 right parenthesis
space space space space dV over dx space equals space 0 space space space space space rightwards double arrow space space space space 4 left parenthesis 3 straight x squared minus 48 straight x plus 144 right parenthesis space space space rightwards double arrow space space space straight x squared minus 16 straight x plus 48 space equals space 0
rightwards double arrow space space space space left parenthesis straight x minus 4 right parenthesis thin space left parenthesis straight x minus 12 right parenthesis space equals space 0 space space space space space space rightwards double arrow space space straight x space equals space 4 comma space space space 12 space space space space rightwards double arrow space space straight x space equals space 4 space as space straight x space equals space 12 space not an element of left parenthesis 0 comma space 12 right parenthesis space
                       fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 left parenthesis 6 straight x minus 48 right parenthesis
    At space straight x space equals 4 comma space space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 4 left parenthesis 24 minus 48 right parenthesis space equals space minus 96 thin space less than 0
therefore space space space space space space space straight V space is space local space maximum space at space straight x space equals space 4
But space straight x space equals 4 space is space the space only space extreme space point
therefore space space space space straight V space is space maximum space at space straight x space equals space 4
therefore space space space side space of space the space square space space equals space 4 space cm.
and space max. space value space equals space 4 space cross times 4 cross times left parenthesis 12 minus 4 right parenthesis squared space equals space 1024 space cubic space cm. space
                       
    Question 316
    CBSEENMA12035540

    An open box with a square base is to be made out of a given quantity of sheet of area c2. Show that the maximum volume of the box is fraction numerator straight c cubed over denominator 6 square root of 3 end fraction.

    Solution
    Let x be the side of the square base of the open box and y be its height. Let V denote the volume of the box.
        therefore space space space space straight V space equals space straight x squared straight y                                               ...(1)
    Also surface area  = c2
    rightwards double arrow space space space space space straight x squared plus 4 xy space equals space straight c squared space space space space space space rightwards double arrow space straight y space equals space fraction numerator straight c squared minus straight x squared over denominator 4 straight x end fraction
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space space space straight V space equals straight x squared open parentheses fraction numerator straight c squared minus straight x squared over denominator 4 space straight x end fraction close parentheses
therefore space space space space space space straight V space equals space 1 fourth straight x left parenthesis straight c squared minus straight x squared right parenthesis space equals space 1 fourth left parenthesis straight c squared straight x minus straight x cubed right parenthesis
space space space space space space space dV over dx equals 1 fourth left parenthesis straight c squared minus 3 straight x squared right parenthesis
space space space space space space space space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 1 fourth left parenthesis negative 6 space straight x right parenthesis space equals space minus fraction numerator 3 straight x over denominator 2 end fraction
    For V to be maximum or minimum,
                                dV over dx space equals space 0
    therefore space space space space space 1 fourth left parenthesis straight c squared minus 3 straight x squared right parenthesis space equals space 0
    rightwards double arrow space space space 3 straight x squared space equals straight c squared space space space space space space space space space space space space space space space space rightwards double arrow space space space straight x squared space equals straight c squared over 3
therefore space space space space straight x space equals space fraction numerator straight c over denominator square root of 3 end fraction space as space straight x space cannot space be space negative
For space straight x space equals space fraction numerator straight c over denominator square root of 3 end fraction comma space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space minus 3 over 2. space fraction numerator straight c over denominator square root of 3 end fraction space equals space minus fraction numerator square root of 3 over denominator 2 end fraction space straight c space less than 0
therefore space space space straight V space is space maximum space when space straight x space equals space fraction numerator straight c over denominator square root of 3 end fraction
    Maximum space value space of space straight V space equals space 1 fourth open parentheses straight c squared fraction numerator straight c over denominator square root of 3 end fraction minus fraction numerator straight c cubed over denominator 3 square root of 3 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 fourth open parentheses fraction numerator straight c cubed over denominator square root of 3 end fraction minus fraction numerator straight c cubed over denominator 3 square root of 3 end fraction close parentheses space equals space 1 fourth fraction numerator 3 straight c cubed minus straight c cubed over denominator 3 square root of 3 end fraction space equals 1 fourth cross times fraction numerator 2 straight c cubed over denominator 3 square root of 3 end fraction space equals fraction numerator straight c cubed over denominator 6 square root of 3 end fraction cubic space units.
    Question 317
    CBSEENMA12035541

    An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminum and folding up the sides. Find the volume of the largest such box.

     

    Solution
    Let x metre be the length of a side of the removed squares. Then the height of the box is x, length is (8 – 2x) and breadth is (3 – 2 x).
    Let V be the volume of the box.
       therefore space space space space space straight V space space equals straight x space left parenthesis 3 minus 2 straight x right parenthesis thin space left parenthesis 8 minus 2 straight x right parenthesis space equals space 4 straight x cubed minus 22 straight x squared plus 24 straight x
space space space space dV over dx space equals space
and space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space
    For V to be maximum or minimum.
                             dV over dx space equals space 0 space space space space space space space space space space space rightwards double arrow space 12 straight x squared minus 44 straight x plus 24 space equals space 0
    rightwards double arrow space space space 3 straight x squared minus 11 straight x plus 6 space equals space 0 space space space space space space space space rightwards double arrow space space space straight x space equals space fraction numerator 11 plus-or-minus square root of 121 minus 72 end root over denominator 6 end fraction
rightwards double arrow space space space space space space straight x space equals space fraction numerator 11 plus-or-minus square root of 49 over denominator 6 end fraction space equals space fraction numerator 11 plus-or-minus 7 over denominator 6 end fraction space equals 3 comma space 2 over 3
    Rejecting x = 3 as breadth cannot be negative, we get, straight x space equals 2 over 3
    At space space straight x space equals space 2 over 3 comma space dV over dx squared space equals space 24 space open parentheses 2 over 3 close parentheses minus 44 minus 16 minus 4 space equals space 28 less than 0
    therefore space space space space space space straight V space space is space maximum space when space straight x space equals space 2 over 3
therefore space space space space space space space volume space of space largest space box space space equals open parentheses 2 over 3 close parentheses space open parentheses 3 minus 4 over 3 close parentheses space open parentheses 8 minus 4 over 3 close parentheses space equals space 2 over 3 cross times 5 over 3 cross times 20 over 3 space equals space 200 over 27 straight m cubed.
    Question 318
    CBSEENMA12035542

    A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off squares from each corner and folding up the flaps. What should be side of the square to be cut off so that the volume of he box is maximum?

    Solution
    Let x (0 < x < 12) cm, be the length of each side of the square which is to be cut from each corner of the rectangular tin sheet of size 45 cm by 24 cm. Let V the volume of the open box formed by folding up the flaps.
     therefore space space space straight V space equals straight x left parenthesis 45 minus 2 straight x right parenthesis thin space left parenthesis 24 minus 2 straight x right parenthesis space equals space 2 left parenthesis 2 straight x cubed minus 69 straight x squared plus 540 straight x right parenthesis
space space space space space dV over dx space equals space 2 left parenthesis 6 straight x squared minus 138 straight x plus 540 right parenthesis
space space space space space dV over dx space equals space 0 space space space space space space space rightwards double arrow space space space 2 left parenthesis 6 straight x squared minus 138 straight x plus 540 right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space straight x cubed minus 23 straight x plus 90 space equals space 0
space space rightwards double arrow space space space space space left parenthesis straight x minus 5 right parenthesis thin space left parenthesis straight x minus 18 right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space straight x space equals space 5 comma space space 18
    space space rightwards double arrow space space space space space straight x space equals space 5                                                                            open square brackets because space space straight x space equals space 18 space not an element of space left parenthesis 0 comma space 12 right parenthesis close square brackets
                       fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 2 left parenthesis 12 straight x minus 138 right parenthesis
    At space straight x space equals space 5 comma space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 2 left parenthesis 60 minus 138 right parenthesis space equals space minus 156 less than space 0 space space space space space rightwards double arrow space space space straight V space has space local space maximum space at space straight x space equals space 5
    But x = 5 is the only extreme point
    therefore space space space space space straight V space is space maximum space when space straight x space equals space 5
rightwards double arrow space space space space side space of space the space square space equals space 5 space cm
    Question 319
    CBSEENMA12035543

    An open box with a square base is to be made out of a given iron sheet of area 27 square m. Show that the maximum volume of the box is 13.5 cubic m.

    Solution
    Let x be the side of the square base of the open box and y be its height. Let V denote the volume of the box.
    therefore space space space space space space space space space space space space space straight V space equals space straight x squared straight y                                              ...(1)
    Also surface area = 27 square metres
     <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    therefore space space space from space left parenthesis 1 right parenthesis comma space space straight V space equals space straight x squared space open parentheses fraction numerator 27 minus straight x squared over denominator 4 straight x end fraction close parentheses
therefore space space space space space space space space straight V space equals space 1 fourth straight x left parenthesis 27 minus straight x squared right parenthesis space equals space 1 fourth left parenthesis 27 minus straight x cubed right parenthesis
space space space space space dV over dx space equals 1 fourth left parenthesis 27 minus 3 straight x squared right parenthesis
space space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space 1 fourth left parenthesis negative 6 straight x right parenthesis space equals space minus fraction numerator 3 straight x over denominator 2 end fraction
    For V to be maximum or minimum,
                       dV over dx space equals space 0 space space space space rightwards double arrow space space space space space 1 fourth left parenthesis 27 minus 3 straight x squared right parenthesis space equals 0 space space rightwards double arrow space space space 27 minus 3 straight x squared space equals 0
    rightwards double arrow space space space space space straight x squared space equals space 9 space space space space space rightwards double arrow space space straight x space equals space 3 space as space straight x space cannot space be space negative
space space space space space space space For space straight x space equals space 3 comma space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space minus 3 over 2 cross times 3 space equals space minus 9 over 2 less than 0
therefore space space space space straight V space is space maximum space when space straight x space equals space 3
therefore space space space space maximum space value space of space straight V space equals space 1 fourth left parenthesis 27 space cross times 3 space minus space 27 right parenthesis space equals space 1 fourth cross times 54 space equals space 13.5 space cubic space metres.
    Question 320
    CBSEENMA12035544

    A square tank of capacity 250 cubic metres has to be dug out. The cost of the land is Rs.50 per square metre. The cost of digging increases with the depth and for the whole tank is Rs 400 h2, where h metres is the depth of the tank. What should be the dimensions of the tank so that the cost be minimum?

    Solution

    Let x side of square base.
     Volume of tank  = 250 cubic metres.
     therefore space space space space space space 250 space equals space straight x squared straight h space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight h space equals space 250 over straight x squared                              ...(1)
    Cost of land = Rs. space left parenthesis straight x squared space cross times space 50 right parenthesis space equals space Rs. space left parenthesis 50 space straight x squared right parenthesis
    Cost of digging  = Rs. space left parenthesis 400 space straight h squared right parenthesis space equals space 400 space cross times space open parentheses 250 over straight x close parentheses squared comma space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    Let C be total cost.
      therefore space space space space space space space space straight C space equals space 50 straight x squared plus 400 space cross times open parentheses 250 over straight x squared close parentheses squared space equals space 50 straight x squared plus 25000000 over straight x to the power of 4
space space space space space space space space dC over dx space equals space 100 straight x minus 100000000 over straight x to the power of 5
Now space space space dC over dx space equals space 0 space space given space us
space space space space space 100 straight x space minus 100000000 over straight x to the power of 5 space equals 0 space space space space space space rightwards double arrow space space space straight x to the power of 6 space equals space 1000000
rightwards double arrow space space space space space space space space straight x space equals space 10
space space space space space space fraction numerator straight d squared straight C over denominator dx squared end fraction space equals space 100 plus 500000000 over straight x to the power of 6
space space space space space space space space
    When         straight x space equals 10 comma space space fraction numerator straight d squared straight C over denominator dx squared end fraction space equals space 100 plus fraction numerator 500000000 over denominator left parenthesis 10 right parenthesis to the power of 6 end fraction space equals space 100 plus 500 space equals space 600 space greater than space 0
    therefore space space space space space straight C space is space minimum space when space straight x space equals space 10
From space left parenthesis 1 right parenthesis comma space space space straight h space equals space fraction numerator 250 over denominator left parenthesis 10 right parenthesis squared end fraction space equals space 250 over 100 space equals space 2.5
therefore space space space square space tank space is space of space side space 10 space metres space and space height space 2.5 space metres.

    Question 321
    CBSEENMA12035545

    The combined resistance R of two resistors R1 and R2 (R1 , R2 > 0) is given by 1 over straight R space equals space 1 over straight R subscript 1 plus 1 over straight R subscript 2.
    If R1 + R2 = C (a constant), show that the maximum resistance R is obtained by choosing R1 = R2.

    Solution

    Here,   1 over straight R space equals space 1 over straight R subscript 1 plus 1 over straight R subscript 2 space space space space space space space space space space rightwards double arrow space space space space 1 over straight R space equals space fraction numerator straight R subscript 1 plus straight R subscript 2 over denominator straight R subscript 1 space straight R subscript 2 end fraction
      rightwards double arrow space space space space 1 over straight R space equals space fraction numerator straight C over denominator straight R subscript 1 left parenthesis straight C minus straight R subscript 1 right parenthesis end fraction                                                     open square brackets because space straight R subscript 1 plus straight R subscript 2 space equals space straight C close square brackets
    rightwards double arrow space space space space space straight R space equals space fraction numerator straight R subscript 1 space left parenthesis straight C minus straight R subscript 1 right parenthesis over denominator straight C end fraction space space space space rightwards double arrow space space space straight R space equals space 1 over straight C left square bracket CR subscript 1 minus space straight R subscript 1 squared right square bracket space space rightwards double arrow space space dR over dR subscript 1 space equals space 1 over straight C left square bracket straight C minus 2 straight R subscript 1 right square bracket
space space space dR over dR subscript 1 space equals 0 space space space space space space space space space space space space space rightwards double arrow space space space space 1 over straight C left square bracket straight C minus 2 straight R subscript 1 right square bracket space equals space 0 space space space space space space space rightwards double arrow space space space straight R subscript 1 space space equals straight C over 2
space space space space space space space space fraction numerator straight d squared straight R over denominator dR subscript 1 squared end fraction equals space 1 over straight C left square bracket negative 2 right square bracket space equals space minus 2 over straight C
    At   straight R subscript 1 space equals space straight C over 2 fraction numerator straight d squared straight R over denominator dR subscript 1 squared end fraction space equals space minus 2 over straight C less than 0 space space space space space space rightwards double arrow space space space straight R space has space straight a space local space maximum space at space straight R subscript 1 space equals space straight C over 2
    But straight R subscript 1 equals space straight C over 2 space is space the space only space extreme space point. space
    therefore space space space straight R space is space maximum space when space straight R subscript 1 space equals space straight C over 2 comma space space straight R subscript 2 space equals space straight C minus straight C over 2 space equals straight C over 2 space straight i. straight e. space when space straight R subscript 1 space equals space straight R subscript 2

    Question 322
    CBSEENMA12035546

    Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius is a square of side straight a square root of 2.

    Solution
    Let O be the centre of circle of radius a. Let ABCD be the rectangle inscribed in the circle such that AB = x, AD = y
    Now,     AB squared plus BC squared space equals space AC squared
    therefore space space space space space space straight x squared plus straight y squared space equals space 4 straight a squared
therefore space space space space space space space space space space space space space space space straight y squared space equals space 4 straight a squared minus straight x squared
therefore space space space space space space space space space space space straight y space equals space square root of 4 straight a squared minus straight x squared end root space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let P be the perimeter of rectangle
             therefore space space space straight P space equals 2 straight x plus 2 straight y       
             therefore space space straight P space equals 2 straight x plus 2 square root of 4 straight a squared minus straight x squared end root                                                  open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
              therefore space space space space dP over dx equals 2 plus 2 open parentheses fraction numerator negative 2 straight x over denominator 2 square root of 4 straight a squared minus straight x squared end root end fraction close parentheses
therefore space space space space space space dP over dx space equals space 2 minus fraction numerator 2 straight x over denominator square root of 4 straight a squared minus straight x squared end root end fraction
space space space space space space space space dP over dx space equals space 0 space space space space gives space us space space space 2 minus fraction numerator 2 straight x over denominator square root of 4 straight a squared minus straight x squared end root end fraction space equals 0
rightwards double arrow space space space straight x space equals space square root of 4 straight a squared minus straight x squared end root space space space space space space space rightwards double arrow space space space space straight x squared space equals space 4 straight a squared minus straight x squared space space space space rightwards double arrow space space space space 2 straight x squared space equals space 4 straight a squared space space space space space space rightwards double arrow space space space space straight x squared space equals space 2 straight a squared

space space space space space
    rightwards double arrow space space space straight x space equals space straight a square root of 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space          open square brackets because space space straight x space cannot space be space negative close square brackets.
                      fraction numerator straight d squared straight P over denominator dx squared end fraction space space equals space 0 minus 2 space open square brackets fraction numerator square root of 4 straight a squared minus straight x squared end root. space 1 minus straight x. space open parentheses begin display style fraction numerator negative 2 straight x over denominator 2 square root of 4 straight a squared minus straight x squared end root end fraction end style close parentheses over denominator left parenthesis square root of 4 straight a squared minus straight x squared end root right parenthesis squared end fraction close square brackets
                     equals negative 2 open square brackets fraction numerator left parenthesis 4 straight a squared minus straight x squared right parenthesis space plus straight x squared over denominator left parenthesis 4 straight a squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets space equals space minus fraction numerator 8 straight a squared over denominator left parenthesis 4 straight a squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
    When space straight x space equals space straight a square root of 2. space space fraction numerator straight d squared straight P over denominator dx squared end fraction space equals space minus fraction numerator 8 straight a squared over denominator left parenthesis 4 straight a squared minus 2 straight a squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space equals space minus fraction numerator 8 straight a squared over denominator 2 square root of 2 straight a cubed end fraction space equals space minus fraction numerator 2 square root of 2 over denominator straight a end fraction less than 0
    therefore space space space straight x space equals space straight y
therefore space space space straight P space is space maximum space when space rectangle space becomes space straight a space square.
Hence space the space result.
    Question 323
    CBSEENMA12035547

    Show that the surface area of a closed cuboid with square base and given volume is minimum when it is a cube.

    Solution

    Let x, x, y be the length, width and height of the cuboid such that base is a square of side x.
    therefore space space space straight V space equals space straight x squared straight y                                                                   ...(1)
    where V is volume of cuboid.
    Let S be surface area of cuboid.
    therefore space space space straight S space equals space straight x squared plus straight x squared plus 4 xy space space space open square brackets because space space straight S space equals area space of space base space plus space area space of space top space plus area space of space four space walls close square brackets
space space space space space space space space space space space
               space equals space 2 straight x squared plus 4 straight x. space straight V over straight x squared                                                    open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space straight S space equals space 2 straight x squared plus fraction numerator 4 straight V over denominator straight x end fraction space space space space rightwards double arrow space space space dS over dx space equals 4 straight x minus fraction numerator 4 straight V over denominator straight x squared end fraction
                     dS over dx space equals 0 space space space space rightwards double arrow space space 4 straight x minus fraction numerator 4 straight V over denominator straight x squared end fraction space equals space 0 space space space space space rightwards double arrow space space space straight x cubed space equals space straight V space space space space rightwards double arrow space space straight x space equals space straight V to the power of 1 third end exponent
fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space 4 plus fraction numerator 8 straight V over denominator straight x cubed end fraction
    When straight x space equals straight V to the power of 1 third end exponent. space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space 4 plus fraction numerator 8 straight V over denominator straight V end fraction space equals space 4 plus 8 space equals space 12 space greater than 0
    therefore    S is minimum when straight x equals straight V to the power of 1 third end exponent
    When straight x space equals space straight V to the power of 1 third end exponent comma space space space space space straight y space equals space straight V over straight x squared space equals space straight V over straight V to the power of begin display style 2 over 3 end style end exponent space equals space straight V to the power of 1 third end exponent space equals space straight x
    therefore space space space space space straight S space is space minimum space when space length comma space width space and space height space are space straight x space each
therefore space space space space straight S space is space minimum space when space cuboid space is space straight a space cube. space

    Question 324
    CBSEENMA12035548

    Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic
    centimetres, find the dimensions of the can which has the minimum surface
    area?
    Or
    Of all the closed cylindrical tin cans (right circular) which enclose a given volume of 100 cubic cm., which has the minimum surface area?

    Solution
    Let V be the volume of cylinder whose radius is r; height is h and surface area is S.
    therefore space space space space space space straight V space equals space πr squared straight h comma space space space space or space space space space 100 space equals space πr squared straight h
    therefore space space space space space space straight h equals space 100 over πr squared                                                                      ...(1)
    Now, straight S space equals space 2 πr squared space plus space 2 πrh space equals space 2 πr squared plus 2 πr. space 100 over πr squared                  open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space straight S space equals space 2 πr squared plus 200 over straight r
space space space space space space space dS over dr space equals space 4 πr minus 200 over straight r squared
Now space space dS over dr space equals 0 space space give space us
space space space space space space 4 πr minus 200 over straight r squared space equals space 0 comma space space space space space rightwards double arrow space space 4 πr cubed minus 200 space equals space 0 space space space space space rightwards double arrow space space straight r cubed space equals space 50 over straight pi space space space rightwards double arrow space space space space straight r space equals space open parentheses 50 over straight pi close parentheses to the power of 1 third end exponent
space space space space space space fraction numerator straight d squared straight S over denominator dr squared end fraction space equals space 4 straight pi space plus 400 over straight r cubed
space space space space space space space space space

space
    When space space straight r space equals space open parentheses 50 over straight pi close parentheses to the power of 1 third end exponent comma space space space space space fraction numerator straight d squared straight S over denominator dr squared end fraction space equals space 4 straight pi plus 400 over 50 cross times straight pi space equals space 12 straight pi greater than 0
therefore space space space space straight S space is space minimum space when space straight r space equals space open parentheses 50 over straight pi close parentheses to the power of 1 third end exponent 
    Question 325
    CBSEENMA12035549

    Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

    Solution

    Let r be the radius of base of circular cylinder and h be its height. Let V be the volume and S be total surface area.
                       therefore space space space space straight S space equals space 2 πrh plus 2 πr squared space space space space space rightwards double arrow space space space space 2 πrh space equals space straight S minus 2 πr squared
space space space space space space
                          straight h space equals space fraction numerator 1 over denominator 2 πr end fraction left parenthesis straight S minus 2 πr squared right parenthesis                                                 ...(1)
                           straight V space equals space πr squared straight h space equals πr squared. space space fraction numerator 1 over denominator 2 πr end fraction left parenthesis straight S minus 2 πr squared right parenthesis                          open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space space straight V space equals space 1 half straight r left parenthesis straight S minus 2 πr squared right parenthesis space equals space 1 half left parenthesis Sr minus 2 πr cubed right parenthesis space where space straight S space is space constant.
                      dV over dr space equals space 1 half left parenthesis straight S minus 6 πr squared right parenthesis
    Now, dV over dr space equals space 0 space space space gives space us space 1 half left parenthesis straight S minus 6 πr squared right parenthesis space space equals 0
    therefore space space space straight S minus 6 πr squared space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 2 πrh plus 2 πr squared minus 6 πr squared space equals space 0
therefore space space space 2 πrh space equals space 4 πr squared space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight h space equals space 2 straight r
space space space space space space space space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals space 1 half left parenthesis 0 minus 12 πr right parenthesis space equals negative 6 πr
When space straight r space equals straight h over 2 comma space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals space minus 6 straight pi. space straight h over 2 space equals space minus 3 πh less than 0
    therefore  V is maximum when h = 2r i.e., height of the cylinder is equal to the diameter of the base.

    Question 326
    CBSEENMA12035550

    Show that a cylinder of given volume open at the top has minimum total surface area provided its height is equal to the radius of its base.

    Solution
    Let r be the radius of base of circular cylinder and h be its height. Let V be volume and S be the total surface area.
    therefore space space space straight V space equals space πr squared straight h space space space space space space space space space space space space space space space rightwards double arrow space space space space straight h space equals space straight V over πr squared                                          ...(1)
    Also,    straight S space equals 2 πrh plus πr squared                                 open square brackets because space cylinder space is space open space at space top close square brackets
                    equals 2 πr. space straight V over πr squared plus πr squared                                                             open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space straight S space space equals fraction numerator 2 straight V over denominator straight r end fraction plus πr squared space space space space space space space space space space space space space rightwards double arrow space space space dS over dr space equals negative fraction numerator 2 straight V over denominator straight r squared end fraction plus 2 πr
    Now,  dS over dr space equals 0 space space space space space rightwards double arrow space space space minus fraction numerator 2 straight V over denominator straight r squared end fraction plus 2 πr space equals space 0 space space space space rightwards double arrow space space space space 2 straight V space equals space 2 πr cubed
    rightwards double arrow space space space space 2 πr squared straight h space equals space 2 πr cubed space space space space space space space space space space space space space space rightwards double arrow space space space straight r space equals space straight h space space space space space space space space space space space space space space open square brackets because space space straight V space equals space πr squared straight h close square brackets
Now comma space space fraction numerator straight d squared straight S over denominator dr squared end fraction space equals fraction numerator 4 straight V over denominator straight h cubed end fraction plus 2 straight pi
When space straight r space equals space straight h comma space space space space space space fraction numerator straight d squared straight S over denominator dr squared end fraction space equals fraction numerator 4 straight V over denominator straight h cubed end fraction plus 2 straight pi greater than 0
therefore space space space space space space straight S space is space minimum space when space straight h space equals space straight r space straight i. straight e. space height space space equals space radius space of space base.
    Question 327
    CBSEENMA12035551

    Show that the height of the cylinder, open at the top, of given surface area and greatest volume is equal to the radius of its base.

    Solution
    Let r be the radius of base of circular cylinder and h be its height. Let V be the volume and S be total surface area.
    therefore space space straight S space equals space πr squared plus 2 πrh space rightwards double arrow space space space straight h space equals space fraction numerator straight S minus πr squared over denominator 2 πr end fraction                        ...(1)
           straight V equals space πr squared straight h space equals space πr squared space open parentheses fraction numerator straight S minus πr squared over denominator 2 πr end fraction close parentheses                                  open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space straight V space equals space 1 half left parenthesis Sr minus πr cubed right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space dV over dr equals space 1 half left parenthesis straight S minus 3 πr squared right parenthesis
space space space space space dV over dr space equals 0 space space space space space rightwards double arrow space space space space 1 half left parenthesis straight S space minus space 3 πr squared right parenthesis space equals space 0 space space space space rightwards double arrow space space space straight r space equals space square root of fraction numerator straight S over denominator 3 straight pi end fraction end root
space space space space space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals space 1 half left parenthesis 0 minus 6 πr right parenthesis space space equals space minus 3 πr
For space space space space straight r space equals space square root of fraction numerator straight S over denominator 3 straight pi end fraction end root comma space fraction numerator straight d squared straight v over denominator dr squared end fraction space equals space minus 3 straight pi square root of fraction numerator straight S over denominator 3 straight pi end fraction end root space equals space minus square root of 3 πS end root less than 0
therefore space space space space space straight V space is space greatest space when space straight r space equals space square root of fraction numerator straight S over denominator 3 straight pi end fraction end root     
    From (1),  straight h equals fraction numerator straight S minus straight pi. space begin display style fraction numerator straight S over denominator 3 straight pi end fraction end style over denominator 2 straight pi. space square root of begin display style fraction numerator straight S over denominator 3 straight pi end fraction end style end root end fraction space equals space fraction numerator begin display style fraction numerator 2 straight S over denominator 3 end fraction end style over denominator 2 square root of begin display style πS over 3 end style end root end fraction space equals fraction numerator 2 straight S over denominator 3 end fraction cross times fraction numerator square root of 3 over denominator square root of πS end fraction space equals space square root of fraction numerator straight S over denominator 3 straight pi end fraction end root
    therefore height = radius of base         

    Question 328
    CBSEENMA12035552

    A rectangle is inscribed in a semi-circle of radius r with one of its sides on the diameter of the semi-circle. Find the dimensions of the rectangle so that its area is maximum Find also this area.

    Solution
    Let PQRS be the rectangle inscribed in the semi-circle of radius r so that OR = r, where O in centre of circle.
    Let PO = OQ =  x and QR = y so that sides of rectangle are of lengths 2x and y respectively.
       Let  Syntax error from line 1 column 49 to line 1 column 152. Unexpected '<mlongdiv '.

               In increment OQR comma
                     straight x over straight r space equals cos space straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight x space equals straight r space cos space straight theta
    and        straight y over straight r space equals space sin space straight theta space space space space space space space space space space space rightwards double arrow space space space straight y space equals space straight r space sin space straight theta
    Let A be area of rectangle PQRS.
     therefore space space space space space space straight A space equals space left parenthesis PQ right parenthesis thin space left parenthesis QR right parenthesis space equals space left parenthesis 2 space straight x right parenthesis thin space left parenthesis straight y right parenthesis space equals space left parenthesis 2 straight r space cos space straight theta right parenthesis thin space left parenthesis straight r space sin space straight theta right parenthesis
space space space space space space space space space space space space space space space equals straight r squared space left parenthesis 2 space sin space straight theta space cos space straight theta right parenthesis space equals space straight r squared space sin space 2 straight theta
therefore space space space space space dA over dθ space equals space 2 straight r squared space cos space 2 straight theta
    For A to be maximum or minimum
                     dA over dθ space equals space 0 space space space space space space space rightwards double arrow space space 2 straight r squared space cos space 2 space straight theta space equals space 0 space space space space space space rightwards double arrow space space space cos space 2 straight theta space equals space 0
    rightwards double arrow space space space 2 straight theta space equals space straight pi over 2 space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight theta space equals space straight pi over 4
Also comma space space space fraction numerator straight d squared straight A over denominator dθ squared end fraction space equals space minus 4 straight r squared space sin space 2 straight theta When space straight theta space equals space straight pi over 4 comma space space fraction numerator straight d squared straight A over denominator dθ squared end fraction space equals space minus 4 straight r squared sin straight pi over 2 space equals space minus 4 straight r squared cross times 1 space equals space minus 4 straight r squared less than 0
    therefore space space space space straight A space is space maximum space when space straight theta space equals space straight pi over 4
therefore space space space straight x space equals space straight r space cos space straight pi over 4 space equals fraction numerator straight r over denominator square root of 2 end fraction comma space space space straight y space equals space straight r space sin straight pi over 4 space equals space fraction numerator straight r over denominator square root of 2 end fraction
therefore space space space sides space are space square root of 2 space straight r comma space space space space fraction numerator straight r over denominator square root of 2 end fraction space and space area space space equals space left parenthesis square root of 2 straight r right parenthesis space open parentheses fraction numerator straight r over denominator square root of 2 end fraction close parentheses space equals straight r squared space sq. space units. space
    Question 329
    CBSEENMA12035553

    Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm.

    Solution

    Let R be radius and l be the slanted height of cone. 
    Let OD = x,   OA = OB = OC = 12, where 12 is a radius of sphere.
     In space rt. space space angle straight d space increment ODC comma space space space space straight R space equals space square root of 144 minus straight x squared end root
In space rt space angle straight d space increment ADC comma space
space space space space space space space l space equals space square root of straight R squared plus left parenthesis straight x plus 12 right parenthesis squared end root space equals space square root of 144 minus straight x squared plus straight x squared plus 144 plus 24 straight x end root
space space space space space space space space space equals square root of 288 plus 24 straight x end root space equals space square root of 24 space equals space square root of straight x plus 12 end root
        
    Let S be curved surface area of cone.
    therefore space space straight S space equals space πR l space equals space straight pi square root of 144 minus straight x squared end root space square root of 24 space square root of straight x plus 12 end root space equals space straight pi square root of 24 space left parenthesis straight x plus 12 right parenthesis thin space square root of 12 minus straight x end root space
        <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
                equals space straight pi square root of 24 open square brackets fraction numerator 12 minus 3 straight x over denominator 2 square root of 12 minus straight x end root end fraction close square brackets
    For S to be maximum or minimum, dS over dx equals 0
    therefore space space space space straight pi square root of 24 space open square brackets fraction numerator 12 minus 3 straight x over denominator 2 square root of 12 minus straight x end root end fraction close square brackets space equals 0 space space space space rightwards double arrow space space space straight x equals space 4
When space straight x less than 4 space left parenthesis slightly right parenthesis comma space space dS over dx space equals space plus ve
     and space when space straight x thin space greater than 4 space left parenthesis slightly right parenthesis comma space dS over dx space equals space minus ve
    therefore space space at space straight x space equals space 4 comma space space space dS over dx space changes space from space plus ve space to space minus ve
therefore space space straight S space is space maximum space at space straight x space equals space 4
therefore space space space space altitude space AD space equals space 4 plus 12 space equals space 16.

    Question 330
    CBSEENMA12035554

    An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water, show that the cost of the material will be least when the depth of the tank is half of its width.

    Solution
    Let x be sides of the square base and h be the depth of the given tank of volume V.
    therefore space space space space straight V space equals space straight x squared straight h space space space space space space space rightwards double arrow space space space space straight h space space equals space space straight V over straight x squared                                                    ...(1)
    Surface area of tanki = left parenthesis straight x squared plus 4 xh right parenthesis space sq. space units
    Let Rs. p be the cost per square unit of material and C be the total cost.
    therefore space space space straight C space equals space left parenthesis straight x squared plus 4 xh right parenthesis straight p space equals space open parentheses straight x squared plus fraction numerator 4 straight V over denominator straight x end fraction close parentheses space straight p. space where space straight p space is space constant. space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
space space space space space dC over dx equals straight p open parentheses 2 straight x minus fraction numerator 4 straight V over denominator straight x squared end fraction close parentheses
Now comma space dC over dx equals 0 space space gives space us
space space
              straight p open parentheses 2 straight x minus fraction numerator 4 straight V over denominator straight x squared end fraction close parentheses space equals 0 space space space space space space or space space space space 2 straight x minus fraction numerator 4 straight V over denominator straight x squared end fraction space equals 0
    therefore space space space straight x cubed minus 2 straight V space equals space 0 space space space space space space space rightwards double arrow space space space straight x cubed space equals space 2 thin space straight V                                                ...(2)
    space fraction numerator straight d squared straight C over denominator dx squared end fraction space equals space straight p open parentheses 2 plus fraction numerator 8 space straight V over denominator straight x cubed end fraction close parentheses space space equals straight p space open parentheses 2 plus 8 over straight x cubed. space straight x cubed over 2 close parentheses space space space space space space space space space space space space space open square brackets because space space of space left parenthesis 2 right parenthesis close square brackets
space space space space space space space space space space space equals space straight p left parenthesis 2 plus 4 right parenthesis space equals space 6 straight p greater than 0
therefore space space space space space space straight C space is space minimum.
    Now space space space straight h space equals space straight V over straight x squared space equals space fraction numerator begin display style straight x cubed over 2 end style over denominator straight x squared end fraction space equals space straight x over 2
    therefore space space space depth space of space tank space equals space half space of space its space width.
    Question 331
    CBSEENMA12035555

    A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m3. If building of tank costs Rs. 70 per sq. metres for the base and Rs. 45 per square metre for sides. What is the cost of least expensive tank ?

    Solution
    Let x metres be length and y metres be breadth of base.
    Now length of tank  = 2 metres
    Let V be volume of tank
      therefore space space space space space straight V space equals 2 xy
    But      straight V space equals space 8 space straight m cubed                                                         (given)
    therefore space space 2 xy space equals 8 space space space space rightwards double arrow space space space xy space equals 4 space space space space rightwards double arrow space space space straight y space equals space 4 over straight x                          ...(1)
    Area of base = xy = 4m2                                                           open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    Area of four sides  = left parenthesis 2 straight x plus 2 straight y plus 2 straight x plus 2 straight y right parenthesis straight m squared space equals space left parenthesis 4 straight x plus 4 straight y right parenthesis straight m squared space equals space 4 left parenthesis straight x plus straight y right parenthesis straight m squared space space space space space space space space space space space space space space space space space
                                         <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>                                   open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    Let C be the total cost of building tank.
    therefore space space space space straight C space equals space Rs. space open square brackets 4 cross times 70 plus 4 open parentheses straight x plus 4 over straight x close parentheses cross times 45 close square brackets space equals space Rs. space open square brackets 280 plus 180 space open parentheses straight x plus 4 over straight x close parentheses close square brackets.
    therefore space space dC over dx space equals space 0 plus 180 space open parentheses 1 minus 4 over straight x squared close parentheses space equals space 180 space open parentheses 1 minus 4 over straight x squared close parentheses
           space dC over dx equals 0 space space space space space space space space space space space space space rightwards double arrow space space space 180 space open parentheses 1 minus 4 over straight x squared close parentheses space equals space 0 space space space space space space space rightwards double arrow space space space 1 minus 4 over straight x squared space equals 0
    therefore space space space straight x squared minus 4 space equals space 0 space space space space rightwards double arrow space space straight x squared space equals space 4 space space space space space rightwards double arrow space space space straight x space equals space minus 2 comma space space 2
    Rejecting x = -2 as x cannot be negative,  we get x =2
                            fraction numerator straight d squared straight C over denominator dx squared end fraction space equals space 180 space open parentheses 0 plus 8 over straight x cubed close parentheses space equals space 1440 over straight x cubed
    When straight x space equals 2 comma space space fraction numerator straight d squared straight C over denominator dx squared end fraction space equals 1440 over 8 greater than 0
    therefore space space space straight C space is space least space when space straight x space equals space 2
therefore space space space space space space space least space cost space equals space 280 plus 180 open parentheses 2 plus 4 over 2 close parentheses space equals space 280 plus 180 cross times 4 space equals space 280 plus 720 space equals space Rs. space 1000
                         
    Question 332
    CBSEENMA12035556

    Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.

    Solution
    Let r be the radius of base of circular cylinder and h be its height. Let V be the volume and S be the total surface area.
    therefore space space space space space straight V space equals space πr squared straight h space space space space space space space space space space space space space space rightwards double arrow space space space straight h space equals straight V over πr squared                                     ...(1)
    Also,    straight S space equals space 2 πrh plus 2 πr squared space equals space 2 πr. space straight V over πr squared plus 2 πr squared                          open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space straight S space equals fraction numerator 2 space straight V over denominator straight r end fraction plus 2 πr squared
therefore space space space dS over dr space equals negative fraction numerator 2 straight V over denominator straight r squared end fraction plus 4 πr
Now space dS over dr equals 0 space space space rightwards double arrow space space space space fraction numerator negative 2 straight V over denominator straight r squared end fraction plus 4 space straight pi space straight r space equals space 0 space space space space space space space space rightwards double arrow space space space space 2 space straight V space equals space 4 πr cubed
    rightwards double arrow space space space 2 πr squared straight h space equals space 4 πr cubed                                                                    open square brackets because space space space straight V space equals space πr squared straight h close square brackets
    rightwards double arrow space space space straight r space equals space straight h over 2
    Now,  fraction numerator straight d squared straight S over denominator dr squared end fraction space equals space fraction numerator 4 straight V over denominator straight r squared end fraction plus 4 straight pi
    When space straight r space equals straight h over 2 comma space fraction numerator straight d squared straight S over denominator dr squared end fraction space equals space fraction numerator 4 straight V over denominator straight h cubed end fraction cross times 8 plus 4 straight pi space equals space fraction numerator 32 space straight V over denominator straight h cubed end fraction plus 4 straight pi space greater than 0
therefore space space space straight S space is space minimum space when space straight r space equals space straight h over 2 space straight i. straight e. comma space straight h space equals space 2 straight r space straight i. straight e. comma space height space equals space diameter.
    Question 333
    CBSEENMA12035557

    Prove that the radius of the right circular cylinder of greatest curved surface which can be inscribed in a given cone is half of that of the cone. 

    Solution
    Let x be the radius of the base of the cone of height PR = h. Let r be the radius of cylinder of height PQ = y.
    Now increment RQA space space and space space increment RPB are similar
    therefore space space space QA over PB space equals RQ over RP
rightwards double arrow space space space space straight r over straight x space equals space fraction numerator straight h minus straight y over denominator straight h end fraction
rightwards double arrow space space space space space straight r space equals space fraction numerator left parenthesis straight h minus straight y right parenthesis space straight x over denominator straight h end fraction

    Let S be the curved surface of cylinder
    therefore space space straight S space equals space 2 πry space equals 2 straight pi fraction numerator left parenthesis straight h minus straight y right parenthesis space straight x over denominator straight h end fraction straight y space equals fraction numerator 2 πx over denominator straight h end fraction left parenthesis hy minus straight y squared right parenthesis
therefore space space dS over dv space equals space fraction numerator 2 πx over denominator straight h end fraction left parenthesis straight h minus 2 straight y right parenthesis
    For S to be maximum or minimum.
                           dS over dy space equals space 0
      therefore space space space space space space fraction numerator 2 πx over denominator straight h end fraction left parenthesis straight h minus 2 straight y right parenthesis space equals space 0 space space space space space rightwards double arrow space space space space space straight h minus 2 straight y space equals space 0 space space space space space space space rightwards double arrow space space space straight h space equals space 2 straight y
Also comma space space fraction numerator straight d squared straight S over denominator dy squared end fraction space equals fraction numerator 2 πx over denominator straight h end fraction left parenthesis negative 2 right parenthesis space equals space fraction numerator negative 4 πx over denominator straight h end fraction
When space straight h space equals space 2 straight y comma space space space space space fraction numerator straight d squared straight s over denominator dy squared end fraction space equals negative fraction numerator 4 πx over denominator straight h end fraction less than 0
therefore space space space space space straight S space is space maximum space when space straight h space equals space 2 straight y
Now comma space space space space straight r space equals space fraction numerator straight x over denominator 2 straight y end fraction left parenthesis 2 straight y minus straight y right parenthesis space equals space straight x over 2
    Question 334
    CBSEENMA12035558

    Show that the height of the right circular cylinder of maximum volume that can be inscribed in a given circular cone of height h is 1 third straight h

    Solution
    Let PR = h be the height of the right circular cone and PQ = y be the height of right circular cylinder of radius v.
    In rt. angle straight d space RQB comma space space RQ over QB space equals space cot space straight alpha
    therefore space space space space space space space RQ over straight x space equals space cot space straight alpha comma space space space where space QB space equals space straight x space space space space space space rightwards double arrow space space space space space RQ space space equals space straight x space cot space straight alpha
therefore space space space space space space space space space space straight y space equals space PR space minus space QR space equals space straight h minus straight x space cot space straight alpha space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let v be volume of right circular cylinder.
                  therefore space space space space straight v space equals space πx squared left parenthesis straight h minus straight x space cot space straight alpha right parenthesis                                open square brackets Volume space space equals space πr squared straight h close square brackets
              dv over dx space equals space straight pi open square brackets straight x squared straight d over dx left parenthesis straight h minus straight x space cot space straight alpha right parenthesis space plus space left parenthesis straight h minus straight x space cot space straight alpha right parenthesis space straight d over dx left parenthesis straight x squared right parenthesis close square brackets
                     equals space straight pi open square brackets straight x squared left parenthesis negative cot space straight alpha right parenthesis space plus space left parenthesis straight h minus straight x space cot space straight alpha right parenthesis thin space left parenthesis 2 space straight x right parenthesis close square brackets space equals space πx open square brackets negative straight x space cot space straight alpha space plus space 2 space straight h space minus space 2 straight x space cot space straight alpha close square brackets
                dv over dx space equals space πx left square bracket 2 straight h space minus space 3 space straight x space cot space straight alpha right square bracket
    Now  dv over dx space equals space 0 space space space space gives space us space space space space straight pi space straight x left square bracket 2 straight h minus space 3 space straight x space cot space straight alpha right square bracket space equals 0
    therefore space space space space 2 straight h minus 3 straight x space cot space straight alpha space equals space 0 space space as space space straight x space not equal to 0 space space space space space rightwards double arrow space space space space straight x space equals space fraction numerator 2 space straight h over denominator 3 space cot space straight alpha end fraction space equals space fraction numerator 2 straight h over denominator 3 end fraction space tan space space straight alpha
space space space space space space space space fraction numerator straight d squared straight v over denominator dx squared end fraction space equals space straight pi open square brackets straight x space left parenthesis negative 3 space cot space straight alpha right parenthesis space plus space 2 straight h space minus space 3 space straight x space cot space straight alpha close square brackets
                         space equals space straight pi left square bracket negative 3 straight x space cot space straight alpha space plus space 2 straight h space minus space 3 straight x space cot space straight alpha right square bracket space equals space straight pi left square bracket 2 straight h minus 6 straight x space cot space straight alpha right square bracket
    When straight x space equals space fraction numerator 2 straight h over denominator 3 end fraction space tan space straight alpha comma space space then space
                 fraction numerator straight d squared straight v over denominator dx squared end fraction space equals space straight pi space open square brackets 2 straight h minus 6. space fraction numerator 2 straight h over denominator 3 end fraction tan space straight alpha space cot space straight alpha close square brackets space equals space straight pi left square bracket 2 straight h minus 4 straight h right square bracket space equals space minus 2 πh less than 0
    therefore space space space space space space straight v space is space maximum space when space straight x space equals space fraction numerator 2 straight h over denominator 3 end fraction space tan space space straight alpha
    therefore space space space space space space straight v space equals space straight h minus fraction numerator 2 straight h over denominator 3 end fraction space tan space straight alpha. space space cot space straight alpha                                 open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
              equals space straight h minus fraction numerator 2 straight h over denominator 3 end fraction space equals space straight h over 3.
    Hence the result.
                 
          
              
                
    Question 335
    CBSEENMA12035559

    Show that the height of a cylinder of maximum volume that can be inscribed in a sphere of radius R is a sphere of radius R is fraction numerator 2 straight R over denominator square root of 3 end fraction. Also, find the maximum volume.

    Solution

    Let h be the height and r be the base radius of the inscribed cylinder in a sphere of radius R.
        In rt. angled increment OCA comma
          OC squared plus CA squared space space equals OA squared
therefore space space space space straight h squared over 4 plus straight r squared space equals space straight R squared
therefore space space space space space straight r squared space equals space straight R squared minus straight h squared over 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
        Let V be the volume of the cylinder

    therefore space space space straight V space equals space πr squared straight h space equals space straight pi open parentheses straight R squared minus straight h squared over 4 close parentheses straight h space equals space straight pi over 4 left parenthesis 4 straight R squared minus straight h cubed right parenthesis
space space space space space space space dV over dh space equals space straight pi over 4 left parenthesis 4 straight R squared minus 3 straight h squared right parenthesis
and space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space straight pi over 4 left parenthesis negative 6 straight h right parenthesis space equals space minus fraction numerator 3 πh over denominator 2 end fraction
For space straight V space to space be space maxima space or space minima. space dV over dx space equals space 0
therefore space space space space straight pi over 4 left parenthesis 4 straight R squared minus 3 straight h squared right parenthesis space equals space 0 space space space space space space rightwards double arrow space space space space space space space space space 4 straight R squared minus 3 straight h squared space equals space 0 space space space space space space space space rightwards double arrow space space space space space space straight h squared space equals space fraction numerator 4 straight R squared over denominator 3 end fraction
therefore space space space straight h space equals space fraction numerator 2 straight R over denominator square root of 3 end fraction
When space straight h space equals space fraction numerator 2 straight R over denominator square root of 3 end fraction comma space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space minus fraction numerator 3 straight pi over denominator 2 end fraction. space fraction numerator 2 straight R over denominator square root of 3 end fraction space equals space minus square root of 3 space straight pi space straight R space less than space 0
therefore space space space space space straight V space is space maximum space when space straight h space equals space fraction numerator 2 over denominator square root of 3 end fraction straight R
Max space volume space equals space straight pi over 4 open parentheses 4 straight R squared cross times fraction numerator 2 over denominator square root of 3 end fraction straight R. space fraction numerator 8 over denominator 3 square root of 3 end fraction straight R cubed close parentheses space equals space straight pi over 4 cross times fraction numerator 8 straight R cubed over denominator 3 square root of 3 end fraction left parenthesis 3 minus 1 right parenthesis space equals fraction numerator 4 πR cubed over denominator 3 square root of 3 end fraction
              

    Question 337
    CBSEENMA12035561

    Show that the volume of the greatest cylinder which can be inscribed in a cone of height h and semi-vertical angle 30° is 4 over 81 πh cubed

    Solution
    Let PR = h be the height of circular one and PQ = y be the height of right circular cylinder of radius x.
     In rt. angle straight d space increment space RQB comma space space space RQ over QB space equals space cot space 30 degree
    therefore space space space space space space RQ over straight x space equals space cot space 30 degree comma space space where space QB space equals space straight x
rightwards double arrow space space space space space space space RQ space space equals straight x space cot space 30 degree
therefore space space space space space space space space RQ space equals space square root of 3 space straight x
therefore space space space space space space space space space space space space space space straight y space equals space PR space minus space QR space space equals space straight h minus square root of 3 space straight x space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let v be volume of right circular cylinder
    therefore space space space space straight v space equals space πx squared left parenthesis straight h minus square root of 3 space straight x right parenthesis                                   open square brackets because space space volume space space equals space πr squared straight h close square brackets
    dv over dx space equals straight pi open square brackets straight x squared left parenthesis negative square root of 3 right parenthesis space plus space left parenthesis straight h minus square root of 3 straight x right parenthesis space 2 straight x close square brackets space equals space straight pi space open square brackets negative square root of 3 straight x squared plus 2 hx minus 2 square root of 3 straight x squared close square brackets
space space space space space space space space space space equals space straight pi open square brackets 2 hx minus 3 square root of 3 space straight x squared close square brackets space space equals space straight pi space straight x left parenthesis 2 straight h minus 3 square root of 3 straight x right parenthesis
Now space dv over dx space equals 0 space space gives space us space space space πx left parenthesis 2 straight h minus 3 square root of 3 space straight x right parenthesis space equals space 0
therefore space space space space space 2 straight h minus 3 square root of 3 space straight x space equals space 0 space space space space space as space space straight x not equal to 0 space space space space space space rightwards double arrow space space space straight x space equals space fraction numerator 2 straight h over denominator 3 square root of 3 end fraction
fraction numerator straight d squared straight v over denominator dx squared end fraction space equals space straight pi left parenthesis 2 straight h minus 6 square root of 3 space straight x right parenthesis
    When space straight x space equals space fraction numerator 2 straight h over denominator square root of 3 end fraction. space fraction numerator straight d squared straight v over denominator dx squared end fraction space equals straight pi space open parentheses 2 straight h minus 6 square root of 3. space fraction numerator 2 straight h over denominator 3 square root of 3 end fraction close parentheses space equals space straight pi space left parenthesis 2 straight h minus 4 straight h right parenthesis
space space space space space space space space space space space space space space space space space space equals negative 2 πh space less than space 0
therefore space space space space straight v space is space maximum space when space straight x space equals space fraction numerator 2 straight h over denominator 3 square root of 3 end fraction
Max. space value space of space straight v space equals space straight pi space open parentheses fraction numerator 2 straight h over denominator 3 square root of 3 end fraction close parentheses squared space space space open parentheses straight h minus square root of 3 cross times fraction numerator 2 over denominator 3 square root of 3 end fraction close parentheses space equals space straight pi space cross times space fraction numerator 4 straight h squared over denominator 27 end fraction cross times straight h over 3 equals space space fraction numerator 4 πh cubed over denominator 81 end fraction

    Question 338
    CBSEENMA12035562

    Show that height of the cylinder of greatest volume which can be inscribed in a right ciruclar cone of height h and semi vertical angle straight alpha is one-third that of the cone and the greatest volume of cylinder is 4 over 27 πh cubed space tan squared straight alpha.

    Solution
    Let PR = h be the height of the right circular cone and PQ = y be the height of right circular cylinder of radius x.
    In rt. angle straight d space increment RQB comma space space space RQ over QB space equals space cot space straight alpha
       because space space space RQ over straight x space equals space cot space straight alpha comma space space where space QB space equals space straight x
rightwards double arrow space space space space space space RQ space equals space straight x space cot space straight alpha
    therefore space space space space straight v space equals space PR space minus space QR space equals space straight h minus straight x space cot space straight alpha space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
            
    Let v be volume of right circular cylinder.
       therefore space space space space space straight v space equals space πx squared left parenthesis straight h minus straight x space cot space straight alpha right parenthesis                               open square brackets Volume space space equals space πr squared straight h close square brackets
              dv over dx space equals space straight pi open square brackets straight x squared straight d over dx left parenthesis straight h minus straight x space cot space straight alpha right parenthesis space plus space left parenthesis straight h minus straight x space cot space straight alpha right parenthesis space straight d over dx left parenthesis straight x squared right parenthesis close square brackets
space space space space space space space space space space equals space straight pi open square brackets straight x squared left parenthesis negative cot space straight alpha right parenthesis space plus space left parenthesis straight h minus straight x space cot space straight alpha right parenthesis space left parenthesis 2 straight x right parenthesis close square brackets space equals space πx left square bracket negative straight x space cot space straight alpha space plus space 2 straight h space minus space 2 straight x space cot space straight alpha right square bracket
space space space dv over dx space equals space straight pi space straight x space left square bracket 2 straight h minus 3 straight x space cot space straight alpha right square bracket
Now space dv over dx equals 0 space space space give space us space space space space πx left square bracket 2 straight h minus 3 straight x space cot space straight alpha right square bracket space equals space 0
therefore space space space space space space 2 straight h minus 3 straight x space cot space straight alpha space equals space 0 space space space as space space space straight x space not equal to space 0
rightwards double arrow space space space space space space space straight x space equals space fraction numerator 2 straight h over denominator 3 space cot space straight alpha end fraction space equals space fraction numerator 2 straight h over denominator 3 end fraction tan space straight alpha
fraction numerator straight d squared straight v over denominator dx squared end fraction space equals space straight pi open square brackets straight x space left parenthesis negative 3 space cot space straight alpha space plus space 2 straight h space minus space 3 straight x space cot space straight alpha close square brackets space equals space straight pi left square bracket negative 3 straight x space cot space straight alpha space plus space 2 straight h minus 3 straight x space cot space straight alpha right square bracket
space space space space space space space space space space space space space space space space equals straight pi left square bracket 2 straight h minus 6 straight x space cot space straight alpha right square bracket
    When straight x equals fraction numerator 2 straight h over denominator 3 end fraction space tan space straight alpha comma space space space then space
    fraction numerator straight d squared straight v over denominator dx squared end fraction space equals space straight pi open square brackets 2 straight h minus 6. space fraction numerator 2 straight h over denominator 3 end fraction space tan space straight alpha space cot space straight alpha close square brackets space equals space straight pi left square bracket 2 straight h minus 4 straight h right square bracket space equals space minus 2 πh less than 0
    therefore   v is maximum when straight x equals fraction numerator 2 straight h over denominator 3 end fraction space tan space straight alpha
    therefore space space space maximum space value space space equals space straight pi space open parentheses fraction numerator 2 straight h over denominator 3 end fraction tan space straight alpha close parentheses squared. space space open parentheses straight h minus fraction numerator 2 straight h over denominator 3 end fraction tan space straight alpha space space cot space straight alpha close parentheses
                                    equals space straight pi space cross times space space fraction numerator 4 straight h squared over denominator 9 end fraction space tan squared straight alpha space cross times straight h over 3 space space space space space space space space space space space space space space space space open square brackets because space space tan space straight alpha space space cot space straight alpha space equals space 1 close square brackets
space equals space fraction numerator 4 πh cubed over denominator 27 end fraction tan squared straight alpha
    Question 339
    CBSEENMA12035563

    Find the volume of the largest cylinder that can be inscribed in a sphere of radius r.

    Solution
    Let h be the height and R be the base radius of the inscribed cylinder.
    In increment OCA comma
           OC squared plus CA squared space equals space OA squared space space space space rightwards double arrow space space space space open parentheses straight h over 2 close parentheses squared plus straight R squared space equals space straight r squared
therefore space space space space space straight R squared space equals space straight r squared minus straight h squared over 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let V be volume of cylinder
    therefore space space space straight V space equals space πR squared straight h space equals space straight pi open parentheses straight r squared minus straight h squared over 4 close parentheses straight h space equals space straight pi over 4 left parenthesis 4 straight r squared straight h minus straight h cubed right parenthesis
space space space space space space space space dV over dh space equals straight pi over 4 left parenthesis 4 straight r squared minus 3 straight h squared right parenthesis
space space space space space space space space dV over dh space equals space 0 space space space space rightwards double arrow space space space space space straight pi over 4 left parenthesis 4 straight r squared minus 3 straight h squared right parenthesis space equals space 0 space space space space space rightwards double arrow space space space 4 straight r squared space minus 3 space straight h squared space equals space 0 space space space space space space rightwards double arrow space space space space space space straight h squared space equals space 4 over 3 straight r squared
space space space space space space space space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space straight pi over 4 left parenthesis 0 minus 6 straight h right parenthesis space equals space minus fraction numerator 3 πh over denominator 2 end fraction
When space straight h space equals space fraction numerator 2 over denominator square root of 3 end fraction straight r comma space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space minus fraction numerator 3 straight pi over denominator 2 end fraction. space fraction numerator 2 straight r over denominator square root of 3 end fraction space equals space minus square root of 3 space straight pi space straight r space less than 0
    therefore space space space space space space space straight V space space is space maximum space when space straight h space equals space fraction numerator 2 over denominator square root of 3 end fraction straight r
therefore space space space space greatest space volume space space equals space straight pi over 4 open parentheses 4 straight r squared. space space fraction numerator 2 over denominator square root of 3 end fraction straight r space minus space fraction numerator 8 over denominator 3 square root of 3 end fraction straight r cubed close parentheses
space space space space equals space straight pi over 4 open parentheses fraction numerator 8 over denominator square root of 3 end fraction straight r cubed space minus space fraction numerator 8 over denominator 3 square root of 3 end fraction straight r cubed close parentheses space equals space straight pi over 4 open parentheses fraction numerator 24 straight r cubed minus 8 straight r cubed over denominator 3 square root of 3 end fraction close parentheses equals straight pi over 4 open parentheses fraction numerator 16 straight r cubed over denominator 3 square root of 3 end fraction close parentheses space equals space fraction numerator 4 πr cubed over denominator 3 square root of 3 end fraction
    Question 340
    CBSEENMA12035564

    Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius 5 square root of 3 space cm space is space 500 space straight pi space cm cubed.

    Solution
    Let h be the height and R be the base radius of the inscribed cylinder.
     r, radius of sphere  = 5 square root of 3 space cm
    In increment OAC comma
         OC squared plus CA squared space equals space OA squared space space space space space rightwards double arrow space space space space space space open parentheses straight h over 2 close parentheses squared plus space straight R squared space equals space left parenthesis 5 square root of 3 right parenthesis squared
therefore space space space space straight R squared space equals space 75 space minus space straight h squared over 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Let V be volume of the cylinder.
    therefore space space space space space space space straight V space equals space πR squared straight h space equals space straight pi space open parentheses 75 minus straight h squared over 4 close parentheses straight h space equals space straight pi over 4 left parenthesis 300 minus straight h squared right parenthesis space straight h space equals space straight pi over 4 left parenthesis 300 minus straight h cubed right parenthesis
space space space space space space dV over dh space equals space straight pi over 4 left parenthesis 300 minus 3 straight h squared right parenthesis.
space space space space space space space dV over dh space equals space 0 space space space space space space space space space space rightwards double arrow space space space space space straight pi over 4 left parenthesis 300 minus 3 straight h squared right parenthesis space equals space 0 space space space space space space rightwards double arrow space space 300 minus 3 straight h squared space equals space 0
space space rightwards double arrow space space space space space space space straight h squared space equals space 100 space space space space space space space space space space space space rightwards double arrow space space space space space straight h space equals space 10
space space space space space space space space space space space space space space space space space space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space straight pi over 4 left parenthesis negative 6 space straight h right parenthesis space equals negative fraction numerator 3 πh over denominator 2 end fraction
    When space space space space space space space straight h space equals space 10 comma space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space minus fraction numerator 3 straight pi over denominator 2 end fraction cross times 10 space equals space minus 15 space straight pi space less than 0
therefore space space space space straight V space is space maximum space when space straight h space equals space 10
therefore space space space space space greatest space volume space equals space straight pi over 4 left parenthesis 300 minus 100 right parenthesis thin space left parenthesis 10 right parenthesis space equals space straight pi over 4 cross times 200 space cross times space 10 space equals space 500 space straight pi space cm cubed.
    Question 341
    CBSEENMA12035565

    Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 8 over 27 of the volume of the sphere.
    Or
    Find the volume of the largest cone that can be inscribed in a sphere of radius r.

    Solution

    Let R be the radius of cone, r be the radius of sphere and OD = x
    ∴   height of cone i.e. h = x + r
    Now x2 + R2 = r2 ⇒ R2 = r2 – x2 ...(1)
    Let V be the volume of cone.

    therefore space space space space space straight V space equals space 1 third πR squared straight h space equals space 1 third straight pi left parenthesis straight r squared minus straight x squared right parenthesis thin space left parenthesis straight x plus straight r right parenthesis
space space space space space space space space space space space space space space equals space straight pi over 3 left parenthesis straight x plus straight r right parenthesis squared space left parenthesis straight r minus straight x right parenthesis
dV over dx space equals space straight pi over 3 open square brackets straight x plus straight r right parenthesis squared space left parenthesis negative 1 right parenthesis space plus space left parenthesis straight r minus straight x right parenthesis. space 2 left parenthesis straight x plus straight r right parenthesis close square brackets
space space space space space space space space space space space equals space straight pi over 3 left parenthesis straight x plus straight r right parenthesis open square brackets negative straight x minus straight r plus 2 straight r minus 2 straight x close square brackets space equals space straight pi over 3 left parenthesis straight x plus straight r right parenthesis thin space left parenthesis straight r minus 3 straight x right parenthesis
dV over dx space equals space 0 space space space space space space space rightwards double arrow space space space space straight pi over 3 left parenthesis straight x plus straight r right parenthesis thin space left parenthesis straight r minus 3 straight x right parenthesis space equals 0 space space space space rightwards double arrow space space space space straight x space equals space minus straight r comma space space straight r over 3
    Now x = – r is not possible as x cannot be negative.
    therefore space space space space straight x space equals space straight r over 3
    space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space straight pi over 3 open square brackets left parenthesis straight x plus straight r right parenthesis. space left parenthesis negative 3 right parenthesis space plus space left parenthesis straight r minus 3 straight x right parenthesis. space 1 close square brackets space equals space straight pi over 3 open square brackets negative 3 straight x minus 3 straight r plus straight r minus 3 straight x close square brackets space equals space minus fraction numerator 2 straight pi over denominator 3 end fraction left parenthesis straight r plus 3 straight x right parenthesis
At space space straight x space equals space straight r over 3 comma space space fraction numerator straight d squared straight V over denominator dx squared end fraction space equals space minus fraction numerator 2 straight pi over denominator 3 end fraction left square bracket straight r plus straight r right square bracket space equals space minus fraction numerator 4 straight pi over denominator 3 end fraction straight r less than 0
therefore space space space space space space volume space straight V space is space maximum space when space straight x space equals space straight r over 3
therefore space space space space greatest space volume space space equals space straight pi over 3 open square brackets open parentheses straight r over 3 plus straight r close parentheses squared space space space open parentheses straight r minus straight r over 3 close parentheses close square brackets space equals space straight pi over 3 cross times fraction numerator 16 space straight r squared over denominator 9 end fraction cross times space fraction numerator 2 straight r over denominator 3 end fraction space equals fraction numerator 32 πr cubed over denominator 81 end fraction

    Question 342
    CBSEENMA12035566

    Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan to the power of negative 1 end exponent square root of 2.

    Solution

    Let x be radius, h be the vertical height and y be the slant height of the cone.
    ∴    y= x2 + h2 ...(1)
    Let V be volume of cone

    therefore space space space space straight V space equals space 1 third πx squared straight h space equals space 1 third straight pi left parenthesis straight y squared minus straight h squared right parenthesis space straight h space space space space space space space space space space space space space space left square bracket because space space of space left parenthesis 1 right parenthesis right square bracket
therefore space space space space space space straight V space equals space 1 third straight pi left parenthesis straight y squared straight h minus straight h cubed right parenthesis
space space space space space space dV over dh space equals straight pi over 3 left parenthesis straight y squared minus 3 straight h squared right parenthesis
    For V to be maximum or minimum,  dV over dh space equals space 0
    therefore space space space straight pi over 3 left parenthesis straight y squared minus 3 straight h squared right parenthesis space equals space 0 space space space space space space space rightwards double arrow space space space space space straight y squared minus 3 straight h squared space equals space 0 space space space space space rightwards double arrow space space space space straight h space equals space fraction numerator straight y over denominator square root of 3 end fraction
space space space space space space space space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space straight pi over 3 left parenthesis 0 minus 6 straight h right parenthesis space equals space minus 2 space straight pi space straight h
At space space space straight h equals fraction numerator straight y over denominator square root of 3 end fraction space fraction numerator straight d squared straight V over denominator dh squared end fraction space equals space minus 2 straight pi fraction numerator straight y over denominator square root of 3 end fraction less than 0
    therefore space space space space space space space straight V space is space max. space when space straight h space equals space fraction numerator straight y over denominator square root of 3 end fraction space straight i. straight e. comma space space space space when space straight h squared space equals space straight y squared over 3
straight i. straight e. comma space when space 3 straight h squared space equals space straight y squared space space space space space space space space straight i. straight e. comma space space space when space 3 straight h squared space equals space straight x squared plus straight h squared space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
straight i. straight e. comma space when space 2 straight h squared space equals space straight x squared space space space space space space space space straight i. straight e. space space space space when space square root of 2 space straight h space equals space straight x
straight i. straight e. comma space when space straight x over straight h equals space square root of 2 space space space space space space space straight i. straight e. space space space when space tanθ space equals square root of 2 space space space space straight i. straight e. comma space when space tanθ space equals space tan to the power of negative 1 end exponent square root of 2

    Question 343
    CBSEENMA12035567

    For a given current surface area of right circular cone when the volume is maximum. Prove that the semi-vertical angle is straight theta where sin space straight theta space equals space fraction numerator 1 over denominator square root of 3 end fraction.

    Solution

    Let x be radius, h be the vertical height and y be the slant height of cone.
    ∴    y2 = h2+ x2 ...(1)
    Let V be volume of cone.

    therefore space space space space space straight V space equals space 1 third πx squared straight h space equals space 1 third πx squared square root of straight y squared minus straight x squared end root space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space straight V squared space equals space 1 over 9 straight pi squared straight x to the power of 4 left parenthesis straight y squared minus straight x squared right parenthesis
therefore space space space space space space fraction numerator 9 straight V squared over denominator straight pi squared end fraction space equals space straight x to the power of 4 left parenthesis straight y squared minus straight x squared right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Now total surface area of cone = constant
    therefore space space space space πx squared plus πxy space equals constant
rightwards double arrow space space space space straight x squared plus xy space equals space constant space space rightwards double arrow space space space 2 straight x plus straight x dy over dx plus straight y. space 1 space equals space 0
rightwards double arrow space space space space space dy over dx space equals space minus open parentheses fraction numerator 2 straight x plus straight y over denominator straight x end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
    Now, V will be maximum when straight V squared space space or space space fraction numerator 9 straight V squared over denominator straight pi squared end fraction is maximum.
    Let space fraction numerator 9 straight V squared over denominator straight pi squared end fraction equals straight Z
therefore space space space space space straight z space equals space straight x to the power of 4 left parenthesis straight y squared minus straight x squared right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets space space space
space space space space space space space space dz over dx space equals space 4 straight x cubed space. space left parenthesis straight y squared minus straight x squared right parenthesis space plus space straight x to the power of 4 open parentheses 2 straight y dy over dx minus 2 straight x close parentheses
space space space space space space space space space space space space space equals space 4 straight x cubed left parenthesis straight y squared minus straight x squared right parenthesis plus straight x to the power of 4 open square brackets 2 straight y open parentheses negative fraction numerator 2 straight x plus straight y over denominator straight x end fraction close parentheses minus 2 straight x close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 3 right parenthesis close square brackets
                equals 4 straight x cubed left parenthesis straight y squared minus straight x squared right parenthesis space minus space 2 straight x cubed straight y left parenthesis 2 straight x plus straight y right parenthesis space minus 2 straight x to the power of 5 space equals space 4 straight x cubed straight y squared minus 4 straight x to the power of 5 minus 4 straight x to the power of 4 straight y minus 2 straight x cubed straight y squared space minus 2 straight x to the power of 5
equals space 2 straight x cubed straight y squared minus 6 straight x to the power of 5 minus 4 straight x to the power of 4 straight y
       Now comma space dz over dx space equals space 0 space space gives space us space space space 2 straight x cubed straight y cubed space minus space 6 straight x to the power of 5 space minus space 4 straight x to the power of 4 straight y space equals space 0
space space space space therefore space space space space straight x cubed left parenthesis straight y squared minus 3 straight x squared minus 2 xy right parenthesis space equals space 0 space space space rightwards double arrow space space space space straight x cubed left parenthesis straight y plus straight x right parenthesis thin space left parenthesis straight y minus 3 straight x right parenthesis space equals space 0
space space space space therefore space space space space straight x space equals space 0 comma space space minus straight y comma space space space straight y over 3
      Now space straight x space equals space 0 comma space minus straight y space are space not space possible comma space space space therefore space space space straight y space equals space 3 straight x space space
When space straight y space is space slightly space less than space 3 straight x comma space space dz over dx space equals plus ve
When space straight y space is space slightly greater than 3 straight x comma space space dz over dx space equals space minus ve
therefore space space space space space space space straight z space or space space straight V space is space maximum space for space straight y space equals space 3 straight x.
Let space space straight theta space be space the space semi minus vertical space angle
therefore space space space space space space sin space straight theta space equals space straight x over straight y space equals space fraction numerator straight x over denominator 3 straight x end fraction space equals space 1 third
space space space

    Question 344
    CBSEENMA12035568

    Prove that a conical tent of given capacity will require the least amount of convas when the height is square root of 2 times the radius of the base.

    Solution

    Let x be the radius of the base, h be the height and y the slant height of the conical tent.
    Let V be the given capacity (i.e., volume)
    therefore space space space space straight V space equals space 1 third πx squared straight h
rightwards double arrow space space space space space space straight h space equals space fraction numerator 3 straight V over denominator πx squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Let S be the curved surface.
    therefore space space space straight S space equals space πxy space equals space πx square root of straight h squared plus straight x squared end root space space space space rightwards double arrow space space space space space straight S squared space equals space straight pi squared straight x squared open square brackets straight h squared plus straight x squared close square brackets
                   equals space straight pi squared straight x squared space open square brackets fraction numerator 9 straight V squared over denominator straight pi squared straight x to the power of 4 end fraction plus straight x squared close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space straight S squared space equals space fraction numerator 9 straight V squared over denominator straight x squared end fraction plus straight pi squared space straight x to the power of 4
         Let space straight z space equals space straight S squared space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight z space equals space fraction numerator 9 straight V squared over denominator straight x squared end fraction plus straight pi squared straight x to the power of 4
space space space space space dz over dx space equals space minus fraction numerator 18 space straight V squared over denominator straight x cubed end fraction plus 4 space straight pi squared space straight x cubed
space space space space space
            dz over dx space equals space 0 space space space space rightwards double arrow space space space space space fraction numerator negative 18 space straight V squared over denominator straight x cubed end fraction plus 4 straight pi squared straight x cubed space equals space 0 space space space space rightwards double arrow space space space space 9 straight V squared space equals space 2 space straight pi squared space straight x to the power of 6 space... left parenthesis 2 right parenthesis
space space fraction numerator straight d squared straight z over denominator dx squared end fraction space equals space fraction numerator 54 space straight V squared over denominator straight X to the power of 4 end fraction plus 12 straight pi squared space straight x squared greater than 0 space for all space straight x
therefore space space space space straight z space straight i. straight e. comma space straight S squared space and space hence space straight S space is space minimum space when space straight x space is space given space by space 9 straight V squared space equals space 2 space straight pi squared space straight x to the power of 6
straight i. straight e. comma space space space 9 1 over 9 straight pi squared space straight x to the power of 4 space straight h squared space equals space 2 straight pi squared straight x to the power of 6 space space space space space straight i. straight e. comma space space space straight h squared space equals space 2 straight x squared space space straight i. straight e. comma space straight h space equals space square root of 2 straight x
therefore space space space space space straight S space is space minimum space when space height space is space square root of 2 space times space the space radius space of space the space base.

    Question 346
    CBSEENMA12035570

    Find the altitude of a right circular cone of maximum curved surface which can be inscribed in a sphere of radius r.

    Solution

    Let R be radius and l be the slanted height of cone.
    Let OD = x, OA = OB = OC = r, where r is radius of sphere.
    In space rt. space angle straight d space increment ODC comma space space space space space space straight R space equals space square root of straight r squared minus straight x squared end root
In space rt. space angle straight d space increment ADC comma
space space space space space space space space space space straight l space equals space square root of straight R squared plus left parenthesis straight x plus straight r right parenthesis squared end root space equals space square root of straight r squared minus straight x squared plus straight x squared plus straight r squared plus 2 space straight r space straight x end root
space space space space space space space space space space space equals space square root of 2 straight r squared plus 2 xr end root space equals space square root of 2 straight r end root space square root of straight x plus straight r end root

    Let S be curved surface area of cone. 
    therefore space space space space straight S space equals space πRl space equals space straight pi square root of straight r squared minus straight x squared end root space square root of 2 straight r end root space square root of straight x plus straight r end root space equals space straight pi square root of 2 straight r end root left parenthesis straight x plus straight r right parenthesis space square root of straight r minus straight x end root
space space space space space space dS over dx space equals space straight pi square root of 2 straight r end root open square brackets left parenthesis straight x plus straight r right parenthesis space fraction numerator negative 1 over denominator 2 square root of straight r minus straight x end root end fraction plus square root of straight r minus straight x end root. space 1 close square brackets space equals straight pi space square root of 2 straight r end root space open square brackets fraction numerator negative straight x minus straight r plus 2 straight r minus 2 straight x over denominator 2 square root of straight r minus straight x end root end fraction close square brackets
space space space space space space space space space space space space space space space space space equals space straight pi square root of 2 straight r end root open square brackets fraction numerator straight r minus 3 straight x over denominator 2 square root of straight r minus straight x end root end fraction close square brackets
    For S to be maximum or minimum,  dS over dx space equals space 0
    therefore space space space space space straight pi square root of 2 straight r end root space open square brackets fraction numerator straight r minus 3 straight x over denominator 2 square root of straight r minus straight x end root end fraction close square brackets space equals space 0 space space space space rightwards double arrow space space space space straight x space equals space straight r over 3
    When  straight x less than straight r over 3 (slightly), dS over dx space equals space plus ve
    and space space When space straight x greater than straight r over 3 space left parenthesis slightly right parenthesis comma space ds over dx space equals space minus ve
    therefore space space space at space straight x space equals space straight r over 3 comma space dS over dx space changes space from space plus ve space to space minus ve
therefore space space space space straight S space is space maximum space at space straight x space equals space straight r over 3
therefore space space space altitude space AD space equals space straight r over 3 plus straight r space equals space fraction numerator 4 straight r over denominator 3 end fraction

    Question 347
    CBSEENMA12035571

    Find the equation of the line through the point (3, 4) which cuts from the first quadrant a triangle of minimum area.

    Solution
    The equation of any line through P (3, 4) is
       straight y minus 4 space equals space straight m left parenthesis straight x minus 3 right parenthesis space space space space space space space... left parenthesis 1 right parenthesis
    where m is slope of line
       Put y = 0 in (1)
    therefore space space space space space minus 4 space equals space mx space minus space 3 straight m space space space space space rightwards double arrow space space space mx space equals space 3 straight m minus 4
rightwards double arrow space space space space space space straight x space equals space 3 minus 4 over straight m
therefore space space space space space space line space left parenthesis 1 right parenthesis space meets space straight x minus axis
space space space space space space space space space space space space space in space straight A space open parentheses 3 minus 4 over straight m comma space 0 close parentheses
Again space put space straight x space equals space 0 space in space left parenthesis 1 right parenthesis
therefore space space space space space space space space straight y minus 4 space equals space minus 3 space straight m space space space rightwards double arrow space space space space straight y space equals space minus 3 straight m plus 4
therefore space space space space space line space left parenthesis 1 right parenthesis space meets space straight y minus axis space in space straight B left parenthesis 0 comma space minus 3 straight m space plus 4 right parenthesis

    Let ∆ denote the area of ∆OAB
      therefore space space space space increment space equals space 1 half OA. space space OB space equals space 1 half open parentheses 3 minus 4 over straight m close parentheses space left parenthesis negative 3 straight m space plus space 4 right parenthesis
space space space space space space space space space space space space equals space 1 half open parentheses negative 9 straight m space plus 12 space plus space 12 space minus 16 over straight m close parentheses space equals space minus 9 over 2 straight m minus 8 over straight m
space space space space space fraction numerator straight d increment over denominator dm end fraction space equals space minus 9 over 2 plus 8 over straight m squared
space space space space space space space space fraction numerator straight d squared increment over denominator dm squared end fraction space equals space minus 16 over straight m cubed
    For increment to be maximum or minimum,
              space fraction numerator straight d increment over denominator dm end fraction space equals space 0 space space space space or space space minus 9 over 2 plus 8 over straight m squared space equals space 0 space space space space space space rightwards double arrow space space space minus 9 straight m squared plus 16 space equals space 0
    rightwards double arrow space space space straight m squared space equals space 16 over 9 space space space rightwards double arrow space space space space straight m space equals space minus 4 over 3 comma space space 4 over 3
    When space straight m space equals space minus 4 over 3 comma space fraction numerator straight d squared increment over denominator dm squared end fraction greater than 0
therefore space space space space space space space increment space space space is space minimum space when space straight m space equals space minus 4 over 3
When space space space straight m space equals space 4 over 3 comma space space space fraction numerator straight d squared increment over denominator dm squared end fraction less than 0
therefore space space space space space space straight A space is space maximum space when space straight m space equals space 4 over 3
therefore space space space space space space space increment space space is space minimum space when space straight m space equals space minus 4 over 3
Putting space straight m space equals space minus 4 over 3 space in space left parenthesis 1 right parenthesis comma space we space get comma
space space space space space space space space space space straight y minus 4 space equals space minus 4 over 3 left parenthesis straight x minus 3 right parenthesis space space space space space space space space space or space space space space 3 straight y minus 12 space equals space minus 4 straight x plus 12
or space space space 4 straight x plus 3 straight y space equals space 24 comma
space
    which is required equation of line.

    Question 348
    CBSEENMA12035572

    Prove that the area of a right angled triangle of given hypotenuse is maximum when the triangle is isosceles.

    Solution

    Let ABC be right angled triangle in which
            angle ABC space equals space 90 degree
         AB space equals space straight x comma space space space space AC space equals space straight y
    therefore space space space space space space space space BC space equals space square root of straight y squared minus straight x squared end root space where space straight y space is space hypotenuse.

    Let ∆ denote the area of triangle ABC.
     therefore space space space space space increment space equals space 1 half BC. space AB space equals space 1 half square root of straight y squared minus straight x squared end root space space. straight x
space space space space fraction numerator straight d increment over denominator dx end fraction space equals space 1 half open square brackets straight x. space straight d over dx open parentheses square root of straight y squared minus straight x squared end root close parentheses space plus space square root of straight y squared minus straight x squared end root. space straight d over dx left parenthesis straight x right parenthesis close square brackets
space space space space space space space space space space space space space space space equals space 1 half open square brackets straight x. space fraction numerator negative 2 straight x over denominator 2 square root of straight y squared minus straight x squared end root end fraction plus square root of straight y squared minus straight x squared end root. space 1 close square brackets space space space space space space space left square bracket Here space straight y space is space constant right square bracket
space space space space space space space space space space space space space space space equals space 1 half open square brackets fraction numerator negative straight x squared plus straight y squared minus straight x squared over denominator square root of straight y squared minus straight x squared end root end fraction close square brackets space equals space 1 half open square brackets fraction numerator left parenthesis straight y squared minus 2 space straight x squared over denominator square root of straight y squared minus straight x squared end root end fraction close square brackets
Now space space space fraction numerator straight d increment over denominator dx end fraction space equals space 0 space space gives space us space space space space space 1 half open square brackets fraction numerator straight y squared minus 2 straight x squared over denominator square root of straight y squared minus straight x squared end root end fraction close square brackets space space equals 0 comma space space space space space space or space straight y squared space minus space 2 straight x squared space equals space equals 0
therefore space space space space space straight x squared space equals space space straight y squared over 2 space space space space space space space space space space space space space space rightwards double arrow space space space space space space straight x space equals plus-or-minus fraction numerator straight y over denominator square root of 2 end fraction.
    Rejecting straight x space equals space minus fraction numerator straight y over denominator square root of 2 end fraction comma space space space we space get comma space space space space straight x space equals space fraction numerator straight y over denominator square root of 2 end fraction.
                     fraction numerator straight d squared increment over denominator dx squared end fraction space equals space 1 half open square brackets fraction numerator square root of straight y squared minus straight x squared end root. space left parenthesis negative 4 straight x right parenthesis space minus space left parenthesis straight y squared minus 2 straight x squared right parenthesis. space space begin display style fraction numerator negative 2 straight x over denominator 2 square root of straight y squared minus straight x squared end root end fraction end style over denominator straight y squared minus straight x squared end fraction close square brackets
space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator space 2 end fraction open square brackets fraction numerator begin display style fraction numerator negative 4 straight x square root of straight y squared minus straight x squared end root over denominator 1 end fraction end style plus begin display style fraction numerator straight x left parenthesis straight y squared minus 2 straight x squared right parenthesis over denominator square root of straight y squared minus straight x squared end root end fraction end style over denominator straight y squared minus straight x squared end fraction close square brackets
space space space space space space space space space space space space space space space space equals space 1 half open square brackets fraction numerator negative 4 straight x left parenthesis straight y squared minus straight x squared right parenthesis space plus space straight x left parenthesis straight y squared minus 2 straight x squared right parenthesis over denominator left parenthesis straight y squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets space space space space space space space space space space space space space space space
                      equals space 1 half open square brackets fraction numerator negative 4 xy squared plus 4 straight x cubed plus xy squared minus 2 straight x cubed over denominator left parenthesis straight y squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets space equals space open square brackets fraction numerator 2 straight x cubed minus 3 xy squared over denominator left parenthesis straight y squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
     When space straight x space equals space fraction numerator straight y over denominator square root of 2 end fraction comma space space space fraction numerator straight d squared increment over denominator dx squared end fraction space equals space 1 half open square brackets fraction numerator 2. space begin display style fraction numerator straight y cubed over denominator 2 square root of 2 end fraction end style space minus 3 space straight y squared. begin display style fraction numerator straight y over denominator square root of 2 end fraction end style over denominator open parentheses straight y squared minus begin display style straight y squared over 2 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
space space space space space space space space space space space space equals 1 half open square brackets fraction numerator begin display style fraction numerator straight y cubed over denominator square root of 2 end fraction end style minus begin display style fraction numerator 3 straight y cubed over denominator square root of 2 end fraction end style over denominator begin display style fraction numerator straight y cubed over denominator 2 square root of 2 end fraction end style end fraction close square brackets space equals space 1 half open square brackets fraction numerator negative square root of 2 space straight y cubed over denominator begin display style fraction numerator straight y cubed over denominator 2 square root of 2 end fraction end style end fraction close square brackets space equals space minus 2 space less than space 0
    therefore space space space space increment space is space maximum space when space straight x space equals space fraction numerator straight y over denominator square root of 2 end fraction
therefore space space space space AB space equals space fraction numerator straight y over denominator square root of 2 end fraction
space space space space space space space space space space BC space equals space square root of straight y squared minus straight x squared end root space equals space square root of straight y squared minus straight y squared over 2 end root space equals space fraction numerator straight y over denominator square root of 2 end fraction
therefore space space space space AB space equals space BC space space space space space rightwards double arrow space space space space increment ABC space is space isosceles.
    ∴   area of a right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

    Question 349
    CBSEENMA12035573

    Prove that the perimeter of a right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

    Solution

    Let ABC be right-angled triangle in which ∠ABC = 90°, AB = x, AC = y (constant).
    angle ABC space equals space 90 degree comma space space AB space equals straight x comma space space AC space equals space straight y space space left parenthesis constant right parenthesis.
therefore space space space space BC space equals space square root of straight y squared minus straight x squared end root
    Let S denote the perimeter of the triangle.
    therefore space space space straight S space equals space straight x plus straight y plus square root of straight y squared minus straight x squared end root
space space space dS over dx equals 1 plus 0 plus fraction numerator negative 2 straight x over denominator 2 square root of straight y squared minus straight x squared end root end fraction space equals space 1 minus fraction numerator straight x over denominator square root of straight y squared minus straight x squared end root end fraction
For space straight S space to space be space maximum space or space minimum comma space dS over dx space equals space 0
therefore space space space space space space space 1 minus fraction numerator straight x over denominator square root of straight y squared minus straight x squared end root end fraction space equals space 0 comma space space space space space or space space square root of straight y squared minus straight x squared end root space equals space straight x
therefore space space space space space space space space straight y squared minus straight x squared space equals space straight x squared space space space space space space space or space space space 2 straight x squared space equals space straight y squared space space space space space space space space rightwards double arrow space space space space space straight x squared space equals space straight y squared over 2
therefore space space space space space space space straight x space equals space fraction numerator straight y over denominator square root of 2 end fraction space as space straight x space is space plus ve
    fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space 0 minus fraction numerator square root of straight y squared minus straight x squared end root. space space 1 space space minus straight x space begin display style fraction numerator negative 2 straight x over denominator 2 square root of straight y squared minus straight x squared end root end fraction end style over denominator left parenthesis square root of straight y squared minus straight x squared end root right parenthesis squared end fraction space equals space minus fraction numerator begin display style fraction numerator square root of straight y squared minus straight x squared end root over denominator 1 end fraction end style plus begin display style fraction numerator straight x squared over denominator square root of straight y squared minus straight x squared end root end fraction end style over denominator straight y squared minus straight x squared end fraction
space space space space space space space space space space space equals negative fraction numerator straight y squared minus straight x squared plus straight x squared over denominator left parenthesis straight y squared minus straight x squared right parenthesis end fraction space equals space minus fraction numerator straight y squared over denominator left parenthesis straight y squared minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
When space straight x space equals fraction numerator straight y over denominator square root of 2 end fraction. space fraction numerator straight d squared straight S over denominator dx squared end fraction space equals space minus straight y squared over open parentheses straight y squared minus begin display style straight y squared over 2 end style close parentheses to the power of begin display style 3 over 2 end style end exponent space equals space fraction numerator straight y squared over denominator begin display style fraction numerator straight y cubed over denominator 2 square root of 2 end fraction end style end fraction space equals space minus fraction numerator 2 square root of 2 over denominator straight y end fraction less than 0
    therefore space space space space space straight S space is space maximum space when space straight x space equals space fraction numerator straight y over denominator square root of 2 end fraction
therefore space space space space AB space equals space fraction numerator straight y over denominator square root of 2 end fraction
space space space space space space space space space BC space equals space square root of straight y squared minus straight x squared end root space equals space square root of straight y squared minus straight y squared over 2 end root space equals space fraction numerator straight y over denominator square root of 2 end fraction.
therefore space space space space space AB space equals space BC
therefore space space space space space space increment ABC space is space isosceles

    Question 351
    CBSEENMA12035575

    Find the largest possible area of a right-angled triangle whose hypotenuse is 5 cm long.

    Solution
    Let x cm and y cm be two sides of a right angled triangle with hypotenuse 5 cm.
    therefore space space space straight x squared plus straight y squared space equals space 25 space space space rightwards double arrow space space space straight y squared space equals space 25 minus straight x squared
therefore space space space space straight y space equals space square root of 25 minus straight x squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis

    Let A be area of triangle
    therefore space space space space straight A space equals space 1 half xy space equals space 1 half straight x square root of 25 minus straight x squared end root space space space space space space open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space dA over dx space equals 1 half open square brackets straight x. space fraction numerator negative 2 straight x over denominator 2 square root of 25 minus straight x squared end root end fraction plus square root of 25 minus straight x squared end root.1 close square brackets
space space space space space space space space space space space space space space space space space space space equals 1 half open square brackets negative fraction numerator straight x squared over denominator square root of 25 minus straight x squared end root end fraction plus fraction numerator square root of 25 minus straight x squared end root over denominator 1 end fraction close square brackets
                  equals space 1 half open square brackets fraction numerator negative straight x squared plus 25 minus straight x squared over denominator square root of 25 minus straight x squared end root end fraction close square brackets space equals space 1 half open parentheses fraction numerator 25 minus 2 straight x squared over denominator square root of 25 minus straight x squared end root end fraction close parentheses
    For maximum or minimum values,
                dA over dx space equals space 0
    therefore space space space space 1 half open parentheses fraction numerator 25 minus 2 straight x squared over denominator square root of 25 minus straight x squared end root end fraction close parentheses space equals space 0 space space space space space space space space space space space space rightwards double arrow space space space 25 minus 2 straight x squared space equals space 0
rightwards double arrow space space space space space space straight x squared space equals space 25 over 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight x space equals space fraction numerator 5 over denominator square root of 2 end fraction as space straight x space cannot space be space negative
fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 1 half open square brackets fraction numerator square root of 25 minus straight x squared end root. space left parenthesis negative 4 straight x right parenthesis space minus space left parenthesis 25 minus 2 straight x right parenthesis squared. space begin display style fraction numerator negative 2 straight x over denominator 2 square root of 25 minus straight x squared end root end fraction end style over denominator 25 minus straight x squared end fraction close square brackets
space space space space space space space space space space space space equals space fraction numerator 1 over denominator 2 left parenthesis 25 minus straight x squared right parenthesis end fraction open square brackets negative 4 straight x square root of 25 minus straight x squared end root plus fraction numerator straight x left parenthesis 25 minus 2 straight x squared right parenthesis over denominator square root of 25 minus straight x squared end root end fraction close square brackets
space space space space space space space space space space space space equals space fraction numerator 1 over denominator 2 left parenthesis 25 minus straight x squared right parenthesis end fraction open square brackets fraction numerator negative 4 straight x left parenthesis 25 minus straight x squared right parenthesis space plus space straight x left parenthesis 25 minus 2 straight x squared right parenthesis over denominator square root of 25 minus straight x squared end root end fraction close square brackets space space space space
space space space space space space space space
             equals space fraction numerator 1 over denominator 2 left parenthesis 25 minus straight x squared right parenthesis end fraction open square brackets fraction numerator negative 100 straight x plus 4 straight x cubed plus 25 straight x minus 2 straight x cubed over denominator square root of 25 minus straight x squared end root end fraction close square brackets
equals space fraction numerator 1 over denominator 2 left parenthesis 25 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space left parenthesis 2 straight x cubed minus 75 straight x right parenthesis
     When space straight x space equals space fraction numerator 5 over denominator square root of 2 end fraction. fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space fraction numerator 1 over denominator 2 open parentheses 25 minus begin display style 25 over 2 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction open square brackets fraction numerator 2 cross times 125 over denominator 2 square root of 2 end fraction minus 75 cross times fraction numerator 5 over denominator square root of 2 end fraction close square brackets
space space space space space space space space space space space space space space space space space space equals fraction numerator 1 over denominator 2 open parentheses begin display style 25 over 2 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction open square brackets fraction numerator 125 over denominator square root of 2 end fraction minus fraction numerator 375 over denominator square root of 2 end fraction close square brackets space equals space fraction numerator 1 over denominator 2 open parentheses begin display style 25 over 2 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction open square brackets negative fraction numerator 250 over denominator square root of 2 end fraction close square brackets less than 0
    therefore space space space straight A space is space maximum space when space straight x space equals space fraction numerator 5 over denominator square root of 2 end fraction
therefore space space space maximum space area space space equals space 1 half fraction numerator 5 over denominator square root of 2 end fraction square root of 25 minus 25 over 2 end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 5 over denominator 2 square root of 2 end fraction cross times square root of 25 over 2 end root space equals space fraction numerator 5 over denominator 2 square root of 2 end fraction cross times fraction numerator 5 over denominator square root of 2 end fraction space equals space 25 over 4 space sq. space units. space
    Question 352
    CBSEENMA12035576

    A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the maximum length of the hypotenuse is open parentheses straight a to the power of 2 over 3 end exponent plus straight b to the power of 2 over 3 end exponent close parentheses to the power of 3 over 2 end exponent. 

    Solution

    Let ABC be given triangle in whichSyntax error from line 1 column 49 to line 1 column 152. Unexpected '<mlongdiv '., so that AC = is hypotenuse.
    Let P be any point on AC and PM perpendicular BC comma space space PN perpendicular AB space so space that space PM space equals space straight b comma space space space PN space equals space straight a.
              Let  Syntax error from line 1 column 49 to line 1 column 152. Unexpected '<mlongdiv '.
       Now,   l space equals space AC space equals space AP plus PC
       equals space straight a space secθ space plus space space straight b space cosecθ comma space space where space 0 less than straight theta less than straight pi over 2
therefore space space space space space dl over dθ space equals space straight a space secθ space tanθ minus space space straight b space cosecθ space cotθ
space space space For space maximum space or space minimum comma
space space space space space space space space dl over dθ space equals space 0

    rightwards double arrow space space space straight a space secθ space tanθ space minus space straight b space cosecθ space cotθ space equals space 0
rightwards double arrow space space space straight a space secθ space tanθ space equals space straight b space cosecθ space cot space straight theta
rightwards double arrow space space space space straight a 1 over cosθ. space fraction numerator sin space straight theta over denominator cos space straight theta end fraction space equals space straight b. space fraction numerator 1 over denominator sin space straight theta end fraction. space fraction numerator cos space straight theta over denominator sin space space straight theta end fraction
rightwards double arrow space space space fraction numerator sin cubed space straight theta over denominator cos cubed space straight theta end fraction space equals space straight b over straight a space space rightwards double arrow space space space tan cubed straight theta space equals space straight b over straight a space space space rightwards double arrow space space space space tan space straight theta space equals space open parentheses straight b over straight a close parentheses to the power of 1 third end exponent space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now, fraction numerator straight d squared straight l over denominator dθ squared end fraction space equals space space straight a space sec space straight theta space. sec squared straight theta space plus space straight a space secθ space tan squared straight theta space plus space straight b space cosecθ space cot squared straight theta space plus space straight b space cosec cubed straight theta
                     space equals space straight a space secθ space left parenthesis sec squared straight theta space plus space tan squared straight theta right parenthesis space plus space straight b space cosecθ thin space left parenthesis cosec squared straight theta space plus space cot squared straight theta right parenthesis thin space greater than space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space 0 less than 0 less than straight pi over 2 comma space space therefore space space secθ comma space tanθ space are space positive comma space Also comma space straight a comma space straight b space are space positive. close square brackets
therefore space space space space space space space straight l space is space minimum space when space tanθ space equals space open parentheses straight b over straight a close parentheses to the power of 1 third end exponent
therefore space space space space space space minimum space value space of
                straight l space equals space straight a fraction numerator square root of straight a to the power of begin display style 2 over 3 end style end exponent plus straight b to the power of begin display style 2 over 3 end style end exponent end root over denominator straight a to the power of begin display style 1 third end style end exponent end fraction plus straight b fraction numerator square root of straight a to the power of begin display style 2 over 3 end style end exponent plus straight b to the power of begin display style 2 over 3 end style end exponent end root over denominator straight b to the power of begin display style 1 third end style end exponent end fraction
                   equals space straight a to the power of 2 over 3 end exponent square root of straight a to the power of 2 over 3 end exponent plus straight b to the power of 2 over 3 end exponent end root space plus space straight b to the power of 2 over 3 end exponent square root of straight a to the power of 2 over 3 end exponent plus straight b to the power of 1 third end exponent end root space equals space square root of straight a to the power of 2 over 3 end exponent plus straight b to the power of 2 over 3 end exponent end root space open parentheses straight a to the power of 2 over 3 end exponent plus straight b to the power of 2 over 3 end exponent close parentheses
equals space open parentheses straight a to the power of 2 over 3 end exponent plus straight b to the power of 2 over 3 end exponent close parentheses to the power of 3 over 2 end exponent

    Question 353
    CBSEENMA12035577

    Find the maximum-area of an isosceles triangle inscribed in the ellipse straight x squared over straight a squared plus straight y squared over straight b squared space equals space 1 with its vertex at one end of the major axis.

    Solution

    Let APQ be the isosceles triangle inscribed in the ellipse with centre at C. A is (a, 0).
    Let P and Q be (a cos ө , b sin ө) and (a cos ө, – b sin ө) respectively.
    Let ∆ be area of ∆ APQ

    therefore space space space space increment space equals space 1 half left parenthesis PQ right parenthesis space left parenthesis AM right parenthesis space equals space 1 half left parenthesis 2 straight b space sin space straight theta right parenthesis thin space left parenthesis straight a minus acosθ right parenthesis space equals space ab space sin space straight theta space left parenthesis 1 minus cos space straight theta right parenthesis
space space space space space space space space space space space space space space space space space space space equals ab space left parenthesis sin space straight theta space minus space sin space straight theta space cos space straight theta right parenthesis space equals space ab open parentheses sin space straight theta space minus space 1 half sin space 2 straight theta close parentheses
therefore space space space space space space fraction numerator straight d increment over denominator dθ end fraction space equals space ab space left parenthesis cos space straight theta space minus space cos space 2 straight theta right parenthesis
space space space space space space space space space space space fraction numerator straight d increment over denominator dθ end fraction space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space ab space left parenthesis cos space straight theta space minus space cos space 2 straight theta right parenthesis space equals space 0
rightwards double arrow space space space space space cos space straight theta minus space cos space 2 straight theta space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space cos space 2 straight theta space equals space cos space straight theta
rightwards double arrow space space space space space space space 2 straight theta space equals space 2 straight pi minus straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 3 straight theta space equals space 2 straight pi space space space space space rightwards double arrow space space space straight theta space equals space fraction numerator 2 straight pi over denominator 3 end fraction space space space space
            fraction numerator straight d squared increment over denominator dθ squared end fraction space equals space ab space left parenthesis negative sinθ space plus space 2 space sin 2 straight theta right parenthesis
     When space space space straight theta equals space fraction numerator 2 straight pi over denominator 3 end fraction comma space space fraction numerator straight d squared increment over denominator dθ squared end fraction space equals space ab open parentheses negative sin space fraction numerator 2 straight pi over denominator 3 end fraction plus space 2 space sin fraction numerator 4 straight pi over denominator 3 end fraction close parentheses space equals space ab space open parentheses negative sin space straight pi over 2 space minus space 2 space sin space straight pi over 3 close parentheses
space space space space space space space space space space space space space space space space space equals space ab open parentheses negative space 3 space sin space straight pi over 3 close parentheses space equals space ab space open parentheses negative 3 space cross times space 3 over 2 close parentheses space equals space minus fraction numerator 3 square root of 3 over denominator 2 end fraction ab less than 0
therefore space space space space space space space space increment space is space maximum space when space straight theta space equals space fraction numerator 2 straight pi over denominator 3 end fraction
therefore space space space space space space maximum space area space equals space ab space open parentheses sin space fraction numerator 2 straight pi over denominator 3 end fraction space minus space 1 half sin space fraction numerator 4 straight pi over denominator 3 end fraction close parentheses space equals space ab space open parentheses sin space straight pi over 3 plus 1 half sin space straight pi over 3 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals ab open parentheses 3 over 2 sin space straight pi over 3 close parentheses space equals space ab space open parentheses 3 over 2 cross times fraction numerator square root of 3 over denominator 2 end fraction close parentheses equals space fraction numerator 3 square root of 3 over denominator 4 end fraction space ab space space sq. space units.
                     

    Question 354
    CBSEENMA12035578

    Let AP and BQ be two vertical poles at points A and B, respectively. If AP = 16 m. BQ = 22 m and AB = 20 m, then find the distance of a point R on AB from the point A such that RP2 + RQ2 is minimum.

    Solution

    Let R be a point on AB such that AR = x metres, RB = (20 – x) metres
    ∴  RP2 = AR2 + AP= x2 + (16)= x2+ 256
    and RQ2 = RB2 + BQ2
    = (20 – x)2 + (22)2
    = 400+ x2 – 40 x + 484
    = x– 40 x + 884
    Let y = RP2 + RQ2

    therefore space space space space space straight y space equals space left parenthesis straight x squared plus 256 right parenthesis space plus left parenthesis straight x squared minus 40 straight x plus 884 right parenthesis
therefore space space space space space straight y space equals space 2 straight x squared minus 40 straight x plus 1140
space space space space space space space space space space space space dy over dx space equals space 4 straight x minus 40
space space space space space space space space space space space space space dy over dx space equals space 0 space space space space rightwards double arrow space space space space 4 straight x minus 40 space equals space 0 space space space space rightwards double arrow space space space space straight x space equals space 10
space space space space space space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space 4
When space straight x space equals space 10 comma space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space 4 greater than 0
therefore space space space space space space straight y space is space minimum space when space straight x space space equals 10
therefore space space space space space space straight y space is space minimum space when space AR space equals space 10 space metres.

    Question 355
    CBSEENMA12035579

    If length of three sides of a trapezium other than base are equal to 10 cm. then find the area of the trapezium when it is maximum.

    Solution
    Let ABCD be given trapezium such that BC = CD = DA = 10 cm

    From D, draw DP X ⊥ and from C, draw CQ ⊥ AB
    so that PQ = 10 cm.
    Now ∆APD ≡ ∆QBC
    AP = QB = x cm. say.
    In rt. ∠ d ∆APD.
    DP2 = AD2 – AP3 = 100 – x2 ⇒ DP =square root of 100 minus straight x squared end root
    Also  CQ space equals space DP space equals space square root of 100 minus straight x squared end root
    Let y be area of trapezium.
    therefore space space space space space space space space space space space straight y space equals space 1 half left parenthesis sum space of space parallel space sides right parenthesis space left parenthesis height right parenthesis
space space space space space space space space space space space space space space space space space space space equals space 1 half left parenthesis 2 straight x plus 10 plus 10 right parenthesis space square root of 100 minus straight x squared end root
therefore space space space space space space space space space space space space space space space space space space space straight y space equals space left parenthesis straight x plus 10 right parenthesis space square root of 100 minus straight x squared end root
therefore space space space space space space space space space space space space space dy over dx space equals space left parenthesis straight x plus 10 right parenthesis space straight d over dx left parenthesis square root of 100 minus straight x squared end root right parenthesis space plus space left parenthesis square root of 100 minus straight x squared end root right parenthesis. space straight d over dx left parenthesis straight x plus 10 right parenthesis
                        equals space left parenthesis straight x plus 10 right parenthesis. space space space fraction numerator negative 2 straight x over denominator 2 square root of 100 minus straight x squared end root end fraction plus square root of 100 minus straight x squared end root. space 1
                          equals space minus fraction numerator straight x left parenthesis straight x plus 10 right parenthesis over denominator square root of 100 minus straight x squared end root end fraction plus fraction numerator square root of 100 minus straight x squared end root over denominator 1 end fraction
space equals space fraction numerator negative straight x left parenthesis straight x plus 1 right parenthesis space plus 100 space minus straight x squared over denominator square root of 100 minus straight x squared end root end fraction space equals space fraction numerator negative straight x squared minus 10 straight x plus 100 minus straight x squared over denominator square root of 100 minus straight x squared end root end fraction
    therefore space space space space space space dy over dx space equals space fraction numerator negative 2 straight x squared minus 10 straight x plus 100 over denominator square root of 100 minus straight x squared end root end fraction
Now comma space space dy over dx space equals space 0 space space space space space space space space rightwards double arrow space space space fraction numerator negative 2 straight x squared minus 10 straight x plus 100 over denominator square root of 100 minus straight x squared end root end fraction space equals space 0
rightwards double arrow space space minus 2 straight x squared minus 10 straight x plus 100 space equals 0 space space space space space space space space space rightwards double arrow space space space straight x squared plus 5 straight x minus 50 space equals space 0
therefore space space space space space space space left parenthesis straight x minus 5 right parenthesis left parenthesis straight x plus 10 right parenthesis space equals space 0 space space space space space space space space rightwards double arrow space space space space straight x space equals space 5 comma space space minus 10
    Rejecting x = -10 as distance x cannot be negative, we get, x = 5
    fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space fraction numerator square root of 100 minus straight x squared end root. space begin display style straight d over dx end style left parenthesis negative 2 straight x squared minus 10 straight x plus 100 right parenthesis space minus left parenthesis negative 2 straight x squared minus 10 straight x plus 100 right parenthesis begin display style straight d over dx end style left parenthesis square root of 100 minus straight x squared end root right parenthesis over denominator open parentheses square root of 100 minus straight x squared end root close parentheses squared end fraction
space space space space space space space space space space space space equals fraction numerator square root of 100 minus straight x squared. end root space space left parenthesis negative 4 straight x minus 10 right parenthesis space minus space left parenthesis negative 2 straight x squared minus 10 straight x plus 100 right parenthesis space begin display style fraction numerator negative 2 straight x over denominator 2 square root of 100 minus straight x squared end root end fraction end style over denominator 100 minus straight x squared end fraction
space space space space space space space space space space space equals space fraction numerator begin display style fraction numerator left parenthesis negative 4 straight x minus 10 right parenthesis thin space left parenthesis square root of 100 minus straight x squared end root right parenthesis over denominator 1 end fraction end style plus begin display style fraction numerator straight x left parenthesis negative 2 straight x squared minus 10 straight x plus 100 right parenthesis over denominator square root of 100 minus straight x squared end root end fraction end style over denominator 100 minus straight x squared end fraction space space space
    equals space fraction numerator left parenthesis negative 4 straight x minus 10 right parenthesis thin space left parenthesis 100 minus straight x squared right parenthesis space plus straight x left parenthesis negative 2 straight x squared minus 10 straight x plus 100 right parenthesis over denominator left parenthesis 100 minus straight x squared right parenthesis begin display style 3 over 2 end style end fraction
equals space fraction numerator negative 400 straight x plus 4 straight x cubed minus 1000 plus 10 straight x squared minus 2 straight x cubed minus 10 straight x squared plus 100 straight x over denominator left parenthesis 100 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
therefore space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space fraction numerator 2 straight x cubed minus 300 straight x minus 100 over denominator left parenthesis 100 minus straight x squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction
When space straight x space equals space 5 comma space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space fraction numerator 2 left parenthesis 5 right parenthesis cubed minus 300 left parenthesis 5 right parenthesis space minus 1000 over denominator left parenthesis 100 minus 25 right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction space equals space fraction numerator negative 2250 over denominator 75 square root of 75 end fraction less than 0
therefore space space space space straight y space is space maximum space when space straight x space equals space 5
and space maximum space area space space equals space left parenthesis 5 plus 10 right parenthesis space square root of 100 minus 25 end root space equals space 15 square root of 75 space equals space 15 space cross times 5 square root of 3 space equals space 75 square root of 3 space cm squared
space space space space space space space space
             
      

    Question 356
    CBSEENMA12035580

    Use differentials to approximate square root of 25.3 end root.

    Solution

    Take      straight y equals space square root of straight x comma space space space straight x space equals space 25 space comma space space space dx space equals space δx equals space 0.3 space space so space that space straight x plus δx space equals space 25.3
    Then       δy space equals space square root of 25.3 end root space minus space square root of 25                                       open square brackets because space space space δy space equals space square root of straight x plus δx end root space minus square root of straight x close square brackets space
    therefore space space space space square root of 25.3 end root space space equals space 5 space plus space δy                                                                     ...(1)
    Now, δy is approximately equal to dy and
      dy space equals dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction left parenthesis 0.3 right parenthesis space equals space fraction numerator 1 over denominator 2 square root of 25 end fraction left parenthesis 0.3 right parenthesis space equals space fraction numerator 0.3 over denominator 10 end fraction space equals space 0.03
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space square root of 25.3 end root space equals space 5 plus 0.03 space equals space 5.03

    Question 357
    CBSEENMA12035581

    Use differentials to approximate square root of 0.037 end root.

    Solution

    Take straight y space equals space square root of straight x comma space space space space straight x space equals space 0.0361 comma space space space space dx space equals space δx space equals space 0.0009 space space so space that space space straight x plus δx space equals space 0.037
    Now  straight y plus δy space equals space square root of straight x plus δx end root
    rightwards double arrow space space space space space δy space equals square root of straight x plus δx end root space minus space square root of straight x space equals space square root of 0.037 end root space minus space square root of 0.0361 end root space equals space square root of 0.037 end root space minus 0.19
rightwards double arrow space space space space square root of 0.037 end root space equals space δy space plus 0.19 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space δy space is space approximately space equal space to space dy
    and space space dy space equals dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 0.0361 end root end fraction left parenthesis 0.0009 right parenthesis
space space space space space space equals space fraction numerator 0.0009 over denominator 2 left parenthesis 0.19 right parenthesis end fraction space equals space fraction numerator 0.0009 over denominator 0.38 end fraction space equals 0.023
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space square root of 0.037 end root space equals space 0.0023 plus space 0.19 space equals space 0.1923.

    Question 358
    CBSEENMA12035582

    Use differentials to approximate square root of 36.6 end root

    Solution

    Take straight y space equals space square root of straight x comma space space space space straight x space equals space 36 comma space space space dx space equals space dδ space equals space 0.6 comma space so space that space straight x space plus space δx space equals space 36.6
    Now,        straight y plus δy space equals space square root of straight x plus δx end root
    therefore space space space space space space space space space space space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 36.6 end root space minus space square root of 36
rightwards double arrow space space space space space space space space space space space space space δy space equals space square root of 36.6 end root space minus space 6
rightwards double arrow space space space space space space space space square root of 36.6 end root space equals space δy minus 6 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space δy space is space approximately space equal space to space dy
    and               dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx
                             equals space fraction numerator 1 over denominator 2 square root of 36 end fraction left parenthesis 0.6 right parenthesis space equals space fraction numerator 0.3 over denominator 6 end fraction space equals space 0.05
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space square root of 36.6 end root space equals space 0.05 plus 6 space equals space 6.05.

    Question 359
    CBSEENMA12035583

    Use differentials to approximate:
    square root of 49.5 end root


    Solution
    Take    straight y space equals space square root of straight x comma space space space space space straight x space equals space 49 comma space space space space space dx space equals space δx space equals space 0.5 space space space so space tha space straight x plus δx space equals space 49.5
    Now, space space space space straight y plus δy space equals space space square root of straight x plus δx end root space space space space space space space space space space space space space rightwards double arrow space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 49.5 end root space minus space 7
    rightwards double arrow                  square root of 49.5 end root space equals space space δy space plus space 7                                       ...(1)
    Now,    δy is approximately equal to dy
    and                   dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 49 end fraction left parenthesis 0.5 right parenthesis space equals space fraction numerator 0.5 over denominator 14 end fraction space equals space 0.0357
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space space square root of 49.5 end root space equals space 0.0357 space plus space space 7 space equals space 7.0357
    Question 360
    CBSEENMA12035584

    Use differentials to approximate:
    square root of 0.6 end root



    Solution

    Take straight y space equals square root of straight x comma space space space space straight x space space equals 0.64 comma space space space dx space equals space δx space equals space minus 0.04 space so space that space straight x space plus space straight delta space straight x space equals space 0.6
    Now,        straight y plus δy space equals space square root of straight x plus δx end root space space space space space rightwards double arrow space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 0.6 end root space space minus space 0.8
    rightwards double arrow space space space space space space space space space space space space space square root of 0.6 end root space equals space δy space plus space 0.8                                       ...(1)
    Now,    δy is approximately equal to dy
    and            dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 0.64 end root end fraction left parenthesis negative 0.04 right parenthesis
                           equals negative fraction numerator 0.04 over denominator 2 space cross times space 0.8 end fraction space equals space minus fraction numerator 0.04 over denominator 1.6 end fraction space equals space minus 0.025
    therefore space space space space space from space left parenthesis 1 right parenthesis comma space space space square root of 0.6 end root space equals space minus 0.025 plus 0.8 space equals space 0.775

    Question 361
    CBSEENMA12035585

    Use differentials to approximate:
    square root of 3.968 end root




    Solution

    Solution not provided.

    Question 362
    CBSEENMA12035586

    Use differentials to approximate:
    square root of 25.2 end root





    Solution

    Take straight y equals space square root of straight x comma space space space space straight x space equals space 25 comma space space space space dx space equals space 0.2 space space so space that space straight x plus dx space equals space 25.2
    Then         δy space equals space square root of 25.2 end root space minus space square root of 25 space equals space square root of 25.2 space end root space minus space 5 space space space space space space space space space space space space space space space space space space space space space space open square brackets space because space space space δy space equals space square root of straight x plus δx end root space minus space square root of straight x close square brackets
    therefore space space space space space square root of 25.2 end root space equals space 5 plus δy                                                     ...(1)
    Now,    δy is approximately equal to dy and
                            dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction left parenthesis 0.2 right parenthesis space equals space fraction numerator 1 over denominator 2 square root of 25 end fraction left parenthesis 0.2 right parenthesis space equals space fraction numerator 0.2 over denominator 10 end fraction space equals space 0.02
    therefore space space space space from space left parenthesis 1 right parenthesis comma space space space square root of 25.2 end root is approximately equal to 5.02.

    Question 363
    CBSEENMA12035587

    Use differentials to approximate:
    left parenthesis 0.0037 right parenthesis to the power of 1 half end exponent







    Solution

    Take straight y space equals space square root of straight x comma space space space space straight x space space equals 0.0036 space space space dx space equals space δx space equals space 0.0001 space space so space that space space straight x space plus space δx space equals space 0.0037
         Now space space space space space space space space space straight y space plus space δy space equals space square root of straight x plus δx end root
    rightwards double arrow space space space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of.0037 end root space minus space square root of.0036 end root space space space space space rightwards double arrow space space space space space space δy space equals space square root of.0037 end root space minus space.06
rightwards double arrow space space space space space square root of.0037 end root space equals space δy space plus space.06 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space space space space space δy space is space approximately space equal space to space dy space space space space space space space
      and space dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 0.0036 end root end fraction left parenthesis 0.0001 right parenthesis space equals fraction numerator 0.0001 over denominator 2 left parenthesis 0.06 right parenthesis end fraction space equals space fraction numerator 0.0001 over denominator 0.12 end fraction space equals space fraction numerator 0.01 over denominator 12 end fraction
space space space space space space equals space 0.000833
space space space therefore space space space from space left parenthesis 1 right parenthesis comma space space space square root of 0.0037 end root space equals space 0.000833 space plus space 0.6 space equals space 0.060833

    Question 364
    CBSEENMA12035588

    Use differentials to approximate:
    square root of 36.3 end root








    Solution

    Take   straight y space equals space square root of straight x comma space space space space straight x space equals space 36 comma space space space dx space equals space δx equals 0.3 space space space space so space that space space straight x space plus space δx space equals space 36.3
    Now,          straight y plus δy space equals space square root of straight x plus δx end root
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
     and space dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 36 end fraction left parenthesis 0.3 right parenthesis space equals space fraction numerator 0.3 over denominator 12 end fraction space equals space 0.025
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space space space square root of 36.3 end root space equals space 0.025 plus 6 space equals space 6.025

    Question 365
    CBSEENMA12035589

    Use differentials to approximate:
    square root of 49.7 end root








    Solution

     Take space straight y equals space square root of straight x space space comma space space space space straight x space equals space 49 comma space space space space space dx space equals space δx space equals space 0.7 space space space so space that space straight x space space plus δx space equals space 49.7
    Now space space space space straight y space plus space δy space equals space square root of straight x plus δx end root space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 49.7 end root space minus space 7
    rightwards double arrow space space space space space square root of 49.7 end root space equals space δy plus 7 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Now δy is approximately equal to dy
    and    dy space equals dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 49 end fraction left parenthesis 0.7 right parenthesis space equals space fraction numerator 0.7 over denominator 14 end fraction space equals space 0.05
    space therefore space space space space from space left parenthesis 1 right parenthesis comma space space space square root of 49.7 end root space equals space 0.05 space plus space 7 space space equals space 7.05.
    Question 366
    CBSEENMA12035590

    Use differentials to approximate:
    square root of 401









    Solution

    Take straight y space equals space square root of straight x comma space space space space straight x space equals space 400 comma space space space space space space dx space equals space δx space equals space 1 space space space so space that space straight x space plus space δx space equals space 401
    Now space space space space straight y space plus space δy space equals space square root of straight x plus δx end root
rightwards double arrow space space space space space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 401 space minus space 20
rightwards double arrow space space space space space space space square root of 401 space equals space δy space plus space 20 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space δy space is space approximately space equal space to space dy   
    and space dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 square root of 400 end fraction left parenthesis 1 right parenthesis space equals space 1 over 40 space equals space 0.025
therefore space space space from space left parenthesis 1 right parenthesis comma space space space square root of 401 space equals space 0.025 plus 20 space equals space 20.025.

    Question 367
    CBSEENMA12035591

    Use differentials to approximate:
    square root of 402










    Solution

    Take straight y space equals square root of straight x comma space space space straight x space equals space 400 comma space space space dx space equals space δx space equals space 2 space space space so space that space straight x space plus space δx space equals space 402
    Now,    straight y plus δy space equals space square root of straight x plus δx end root space space space space space space space rightwards double arrow space space space space space δy space equals space square root of straight x plus δx end root space space minus space straight y space equals space square root of 402 space space minus 20
    rightwards double arrow space space space space space square root of 402 space equals space δy space plus space 20                                                ...(1)
    Now  δy is approximately equal to dy
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Question 368
    CBSEENMA12035592

    Use differentials to approximate:
    square root of 51











    Solution

     Take space space space straight y space equals space square root of straight x comma space space space space space space straight x space equals space 49 comma space space space space dx space equals space δx space equals space 2 space space space so space that space straight x space plus space δx space equals space 51
      Now comma space straight y plus δy space equals space square root of straight x plus δx end root space space space space space space space rightwards double arrow space space space space space δy space equals space square root of straight x plus δx end root space minus space straight y space equals space square root of 51 space minus space 7
space rightwards double arrow space space space space space space square root of 51 space equals space δy space plus space 7 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space


    Now   δy is approximately equal to dy 
     and space space space space space space dy space equals space dy over dx dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 left parenthesis 7 right parenthesis end fraction left parenthesis 2 right parenthesis space equals space 1 over 7 space equals space 0.14
therefore space space space from space left parenthesis 1 right parenthesis comma space space space space square root of 51 space equals space 0.14 plus 7 space equals 7.14.

    Question 369
    CBSEENMA12035593

    Use differentials to approximate:
    square root of 26












    Solution

     Take space straight y space equals space square root of straight x comma space space space straight x space equals space 25 comma space space space space dx space equals space δx space equals space 1 space space so space that space straight x space space plus δx space equals space 26
Now comma space space space space straight y space plus space δy space equals space square root of straight x plus δx end root
rightwards double arrow space space space space space δy space equals space square root of straight x plus δx end root space minus space square root of straight x space equals space square root of 26 space space minus 5
rightwards double arrow space space space space space space square root of 26 space equals space δy space plus space 5 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
Now space δy space is space approximately space equal space to space dy
      and space space space dy space equals space dy over dx space equals space fraction numerator 1 over denominator 2 square root of straight x end fraction dx space equals space fraction numerator 1 over denominator 2 cross times 5 end fraction cross times 1 space equals space 1 over 10 space equals space 0.1
therefore space space space from space left parenthesis 1 right parenthesis comma space space square root of 26 space equals space 0.1 plus 5 space equals space 5.01.

    Question 370
    CBSEENMA12035594

    Use differentials to approximate the cube root of 28.

    Solution
    Take space straight y space equals straight x to the power of 1 third end exponent comma space space space straight x space equals space 27 comma space space space dx space equals space 1 space space space space space so space that space space straight x plus space dx space equals space 28
Now space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent space minus space straight x to the power of 1 third end exponent space equals space left parenthesis 27 plus 1 right parenthesis to the power of 1 third end exponent space minus space 27 to the power of 1 third end exponent space equals space left parenthesis 28 right parenthesis to the power of 1 third end exponent space minus space 3
    therefore space space space left parenthesis 28 right parenthesis to the power of 1 third end exponent space equals space 3 space plus space δy                                                       ...(1)
    Now  δy is approximately equal to dy and
        dy space equals space open parentheses dy over dx close parentheses dx space equals space open parentheses 1 third straight x to the power of negative 2 over 3 end exponent close parentheses space dx
space space space space space space space equals 1 third left parenthesis 27 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 1 right parenthesis space equals space 1 third left parenthesis 3 cubed right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 1 right parenthesis space equals space 1 third left parenthesis 3 right parenthesis to the power of negative 2 end exponent left parenthesis 1 right parenthesis space equals space 1 third cross times 1 over 9 cross times left parenthesis 1 right parenthesis space equals 1 over 27
therefore space space from space left parenthesis 1 right parenthesis comma space left parenthesis 28 right parenthesis to the power of 1 third end exponent space is space approximately space equal space to space 3 plus 1 over 27 space equals 82 over 27.
    Question 371
    CBSEENMA12035595

    Use differentials to approximate:
    open parentheses 25 close parentheses to the power of 1 third end exponent

    Solution
    Take space straight y space equals space straight x to the power of 1 third end exponent comma space space space space straight x space equals space 27 comma space space space dx space equals space minus 2 space space space space so space that space straight x plus dx space equals space 25
Now space space space space space space space space space space δy space equals space space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent space minus space straight x to the power of 1 third end exponent space equals space left parenthesis 27 minus 2 right parenthesis to the power of 1 third end exponent space minus space 27 to the power of 1 third end exponent space equals space left parenthesis 25 right parenthesis to the power of 1 third end exponent minus 3
    therefore space space space space space space space left parenthesis 25 right parenthesis to the power of 1 third end exponent space equals space 3 space plus space δy                                              ...(1)
    Now δy is approximately equal to dy and
                                 dy space equals space open parentheses dy over dx close parentheses dx space equals space open parentheses 1 third straight x to the power of negative 2 over 3 end exponent close parentheses space dx space equals space 1 third left parenthesis 27 right parenthesis to the power of 2 over 3 end exponent left parenthesis negative 2 right parenthesis
space space space space space space space space equals space 1 third left parenthesis 3 cubed right parenthesis to the power of negative 2 over 3 end exponent left parenthesis negative 2 right parenthesis space equals space 1 third left parenthesis 3 right parenthesis to the power of negative 2 end exponent left parenthesis negative 2 right parenthesis space equals space 1 third cross times 1 over 9 cross times left parenthesis negative 2 right parenthesis space equals space minus 2 over 27
therefore space space space from space left parenthesis 1 right parenthesis comma space left parenthesis 25 right parenthesis to the power of 1 third end exponent space equals space 3 minus 2 over 27 space equals fraction numerator 81 minus 2 over denominator 27 end fraction space equals 79 over 27 space equals 2.926
    Question 372
    CBSEENMA12035596

    Use differentials to approximate:
    left parenthesis 26.57 right parenthesis to the power of 1 third end exponent

    Solution
    Let space space space straight y space equals space straight x to the power of 1 third end exponent comma space space space space straight x space equals space 27 comma space space dx space equals space minus 0.43
space space space space
                      δy space equals space left parenthesis straight x plus dx right parenthesis to the power of 1 third end exponent space space minus space straight x to the power of 1 third end exponent space equals space left parenthesis 26.57 right parenthesis to the power of 1 third end exponent space minus space left parenthesis 27 right parenthesis to the power of 1 third end exponent space equals space left parenthesis 26.57 right parenthesis to the power of 1 third end exponent space minus space 3
    therefore space space space space space left parenthesis 26.57 right parenthesis to the power of 1 third end exponent space equals space 3 space plus space δy                                                  ...(1)
    Now δy is approximately equal to dy
        and space space dy space equals space dy over dx dx space equals space 1 third straight x to the power of negative 2 over 3 end exponent cross times dx space equals space fraction numerator 1 over denominator 3 straight x to the power of negative begin display style 2 over 3 end style end exponent end fraction cross times dx space equals space fraction numerator 1 over denominator 3 left parenthesis 27 right parenthesis to the power of negative begin display style 2 over 3 end style end exponent end fraction cross times space left parenthesis negative 0.43 right parenthesis

                    equals space fraction numerator 1 over denominator 3 cross times 9 end fraction cross times left parenthesis negative 0.43 right parenthesis space equals space minus fraction numerator 0.43 over denominator 27 end fraction space equals space minus 0.0159
    therefore space space space space space space δy space equals space minus 0.0159
therefore space space from space left parenthesis 1 right parenthesis comma space space space left parenthesis 26.57 right parenthesis to the power of 1 third end exponent space equals space 3 space minus space 0.0159 space equals space 2.9841 space equals space 2.984

    Question 373
    CBSEENMA12035597
    Question 374
    CBSEENMA12035598

    Use differentials to approximate:
    cube root of 63


    Solution

    Take straight y space equals space straight x to the power of 1 third end exponent comma space space space space straight x space equals space 64 comma space space space space dx space equals space δx space equals space minus 1 space space space space so space that space space straight x space plus space δx space equals space 63
    Now comma space space space straight y plus space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent
rightwards double arrow space space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent space minus space straight y space equals space left parenthesis 63 right parenthesis to the power of 1 third end exponent space minus space left parenthesis 64 right parenthesis to the power of 1 third end exponent space minus space 4
    rightwards double arrow space space space space space space left parenthesis 63 right parenthesis to the power of 1 third end exponent space equals space δy space plus space 4                                                ...(1)
    Now, δy is approximately equal to dy
    and space dy space equals space dy over dx dx space equals space 1 third straight x to the power of negative 2 over 3 end exponent space dx space equals space fraction numerator 1 over denominator 3 straight x to the power of begin display style 2 over 3 end style end exponent end fraction dx space equals space fraction numerator 1 over denominator 3 left parenthesis 64 right parenthesis to the power of begin display style 2 over 3 end style end exponent end fraction left parenthesis negative 1 right parenthesis space equals fraction numerator space minus 1 over denominator 3 cross times space 16 end fraction space equals space minus 1 over 48
therefore space space space from space left parenthesis 1 right parenthesis comma space space left parenthesis 63 right parenthesis to the power of 1 third end exponent space equals space minus 1 over 48 plus 4 space equals space fraction numerator negative 1 plus 192 over denominator 48 end fraction equals 191 over 48.

    Question 375
    CBSEENMA12035599

    Use differentials to approximate:
    cube root of 0.009


    Solution
    Take space straight y space equals space straight x to the power of 1 third end exponent comma space space space space straight x space equals space 0.008 comma space space space dx space equals space δx space equals space 0.001 space space space so space that space space straight x plus space δx space equals space 0.009
Now comma space space straight y space plus space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent
rightwards double arrow space space space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent space minus straight y space equals space left parenthesis 0.009 right parenthesis to the power of 1 third end exponent minus space left parenthesis 0.008 right parenthesis to the power of 1 third end exponent space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space δy space equals space left parenthesis 0.009 right parenthesis to the power of 1 third end exponent space minus 0.2 space space
    rightwards double arrow space space space space left parenthesis 0.009 right parenthesis to the power of 1 third end exponent space equals space δy space plus space 0.2                                               ...(1)
    Now,    δy is approximately equal to dy
    and space dy space equals space dy over dx dx space equals 1 third straight x to the power of negative 2 over 3 end exponent dx space equals space fraction numerator 1 over denominator 3 straight x to the power of begin display style 2 over 3 end style end exponent end fraction dx space equals space fraction numerator 0.001 over denominator 3 left parenthesis 0.008 right parenthesis to the power of begin display style 2 over 3 end style end exponent end fraction space equals space fraction numerator 0.001 over denominator 3 left parenthesis 0.2 right parenthesis squared end fraction space equals space fraction numerator 0.001 over denominator 0.12 end fraction space equals space 0.008
therefore space space space space from space left parenthesis 1 right parenthesis comma space space left parenthesis 0.009 right parenthesis to the power of 1 third end exponent space equals space 0.2 plus 0.008 space equals space 0.208.
    Question 376
    CBSEENMA12035600

    Use differentials to approximate fourth root of 82.

    Solution
    Take space straight y space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 81 comma space space space space dx space equals space δx space equals space 1 space space space so space that space straight x space plus space δx space equals space 82
Now space space space straight y space plus space δy space equals left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent space space space space space rightwards double arrow space space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent space minus space straight y space equals left parenthesis 82 right parenthesis to the power of 1 fourth end exponent minus 3
    rightwards double arrow space space space space left parenthesis 82 right parenthesis to the power of 1 fourth end exponent space equals space δy space plus space 3                                                      ...(1)
    Now δy is approximately equal to dy.
    and space space dy space equals space dy over dx dx space equals space 1 fourth straight x to the power of negative 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction dx space equals space fraction numerator 1 over denominator 4 left parenthesis 81 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction space left parenthesis 1 right parenthesis space equals space fraction numerator 1 over denominator 4 cross times 27 end fraction space equals space 1 over 108 space equals space 0.009
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space space space left parenthesis 82 right parenthesis to the power of 1 fourth end exponent space equals space 0.009 plus 3 space equals space 3.009.

    Question 377
    CBSEENMA12035601
    Question 378
    CBSEENMA12035602

    Use differentials to approximate fourth root of 255.

    Solution
    Take space straight y space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 256 comma space space space dx space equals space δx space equals space minus 1 space space space space space so space that space straight x space plus space δx space equals space 255
Now space space space straight y plus δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent space space space space space space rightwards double arrow space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent minus straight y space equals left parenthesis 255 right parenthesis to the power of 1 fourth end exponent minus 4
rightwards double arrow space space space space space space left parenthesis 255 right parenthesis to the power of 1 fourth end exponent space equals space δy space plus 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
    Now δy is approximately equal to dy
    and space dy space equals space dy over dx dx space equals space 1 fourth straight x to the power of negative 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction dx space equals space fraction numerator 1 over denominator 4 left parenthesis 256 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction left parenthesis negative 1 right parenthesis
space space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator 4 cross times 64 end fraction space equals space minus 1 over 256 space equals space minus 0.0039
therefore space space space space space space space from space left parenthesis 1 right parenthesis comma space space space left parenthesis 255 right parenthesis to the power of 1 fourth end exponent space equals space minus 0.0039 plus 4 space equals space 3.9961.
    Question 379
    CBSEENMA12035603

    Use differentials to approximate fourth root of 80.

    Solution
    Take space straight y space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 81 comma space space space space dx space equals space δx space equals negative 1 space space space space so space that space straight x space plus space δx space equals space 80
Now comma space space space straight y space plus space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent space space space space space space space rightwards double arrow space space space space space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fourth end exponent minus straight y space equals space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent minus 3
    rightwards double arrow space space space space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent space equals space δy plus 3                                             ...(1)
    Now δy is approximately equal to dy
    and space dy space equals space dy over dx dx space equals space 1 fourth straight x to the power of negative 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction dx space equals space fraction numerator 1 over denominator 4 left parenthesis 81 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction left parenthesis negative 1 right parenthesis space equals space fraction numerator negative 1 over denominator 4 cross times 27 end fraction space equals space fraction numerator negative 1 over denominator 108 end fraction
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space left parenthesis 80 right parenthesis to the power of 1 fourth end exponent space equals space minus 1 over 108 plus 3 space equals space 323 over 108.
    Question 380
    CBSEENMA12035604

    Use differentials to approximate fourth root of 81.5.

    Solution

              straight y space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 81 comma space space space dx space equals space 0.5
          δy space equals space left parenthesis straight x plus dx right parenthesis to the power of 1 fourth end exponent minus straight x to the power of 1 fourth end exponent space equals space left parenthesis 81.5 right parenthesis to the power of 1 fourth end exponent space minus left parenthesis 81 right parenthesis to the power of 1 fourth end exponent space equals space left parenthesis 81.5 right parenthesis to the power of 1 fourth end exponent space minus space 3
    therefore space space space space left parenthesis 81.5 right parenthesis to the power of 1 fourth end exponent space equals space 3 space plus space straight delta space straight y                                      ...(1)
    Now δy is approximately equal to dy.
    and space space space space space space space space dy space equals space dy over dx dx space equals space 1 fourth straight x to the power of negative 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction cross times dx
                    equals space fraction numerator 1 over denominator 4 left parenthesis 81 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction cross times space 0.5 space equals space fraction numerator 0.5 over denominator 4 cross times 27 end fraction space equals space fraction numerator 0.5 over denominator 108 end fraction space equals space 0.0046
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space space space left parenthesis 81.5 right parenthesis to the power of 1 fourth end exponent space equals space 3 plus 0.0046 space equals space 3.0046 space equals space 3.005
       

    Question 381
    CBSEENMA12035605

    Use differentials to approximate fourth root of 17 over 81.

    Solution
    open parentheses 17 over 81 close parentheses to the power of 1 fourth end exponent space equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator left parenthesis 81 right parenthesis to the power of begin display style 1 fourth end style end exponent end fraction space equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator 3 end fraction
    Let    straight f left parenthesis straight x right parenthesis space equals space straight x to the power of 1 fourth end exponent comma space space space straight x space equals space 16 comma space space dx space equals space 1 comma space space straight f left parenthesis straight x plus increment straight x right parenthesis space equals space 17 to the power of 1 fourth end exponent
                 increment straight y space equals space straight f left parenthesis straight x plus increment straight x right parenthesis space minus space straight f left parenthesis straight x right parenthesis
    therefore space space space straight f left parenthesis straight x plus increment straight x right parenthesis space equals space straight f left parenthesis straight x right parenthesis plus increment straight y
    δy is approximately equal to dy
    and space space space space space space dy space equals space dy over dx cross times dx space equals space 1 fourth straight x to the power of 3 over 4 end exponent dx space equals space fraction numerator 1 over denominator 4 straight x to the power of begin display style 3 over 4 end style end exponent end fraction cross times space dx space equals space fraction numerator 1 over denominator 4 left parenthesis 16 right parenthesis to the power of begin display style 3 over 4 end style end exponent end fraction cross times 1
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator 4 space cross times 8 end fraction space equals space 1 over 32
therefore space space space space space space 17 to the power of 1 fourth end exponent space equals space 2 plus 1 over 32 space equals space 2.03125
therefore space space space space space space open parentheses 17 over 81 close parentheses to the power of 1 fourth end exponent equals space fraction numerator left parenthesis 17 right parenthesis to the power of begin display style 1 fourth end style end exponent over denominator 3 end fraction space equals space fraction numerator 2.03125 over denominator 3 end fraction space equals space 0.677083 space equals space 0.677
    Question 382
    CBSEENMA12035606

    Use differentials, find the approximate value of each of the following upto 3 places of decimal:
    left parenthesis 31.9 right parenthesis to the power of 1 fifth end exponent

    Solution

     Take space straight y space equals space straight x to the power of 1 fifth end exponent comma space space space space straight x space equals space 32 comma space space space dx space equals space δx space equals space 0.1 space space space space so space that space straight x space plus space δx space equals space 31.9
Now comma space space space space space straight y space plus space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 fifth end exponent space space space space space rightwards double arrow space space space space space δy space equals space left parenthesis straight x plus space δx right parenthesis to the power of 1 fifth end exponent space minus space straight y space equals space left parenthesis 31.9 right parenthesis to the power of 1 fifth end exponent space minus space 2
rightwards double arrow space space space space left parenthesis 31.9 right parenthesis to the power of 1 fifth end exponent space equals space δy plus 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Now δy is approximately equal to dy
    and space dy space equals space dy over dx dx space equals space 1 fifth straight x to the power of 4 over 5 end exponent dx space equals space fraction numerator 1 over denominator 5 straight x to the power of begin display style 4 over 5 end style end exponent end fraction dx


                  equals space fraction numerator 1 over denominator 5 left parenthesis 32 right parenthesis to the power of begin display style 4 over 5 end style end exponent end fraction left parenthesis negative 0.1 right parenthesis space equals space fraction numerator negative 0.1 over denominator 5 space cross times space 16 end fraction space equals space minus fraction numerator 0.1 over denominator 80 end fraction equals negative 0.001
    therefore space space space from space left parenthesis 1 right parenthesis comma space space space space left parenthesis 31.9 right parenthesis to the power of 1 fifth end exponent space equals space minus 0.001 plus 2 space equals space 1.999
    Question 386
    CBSEENMA12035610

    If y = x4 – 10 and if x changes from 2 to 1.99, what is the approximate change in y?

    Solution

    Now,    δy is approximately equal to dy and 
    Here,     straight y space equals straight x to the power of 4 minus 10                                dy space equals space dy over dx dx space equals space 4 straight x cubed dx
    therefore space space space dy over dx space equals 4 straight x cubed                               equals space 4 left parenthesis 2 right parenthesis cubed space left parenthesis negative 0.01 right parenthesis space equals space minus 32 space cross times space 0.01 space equals space minus 0.32
                                               When space straight x space equals space 2 comma space space space straight y space equals left parenthesis 2 right parenthesis to the power of 4 space minus 10 space equals space 16 minus 10 space equals space 6
    therefore space space space space straight x space changes space from space 2 space to space 1.99 space space space space space space space space space space space space space therefore space space space straight y space plus space δy space equals space 6 plus left parenthesis negative 0.32 right parenthesis space equals space 5.68
therefore space space space space straight x space equals space 2 comma space space space space space space δx space equals space dx space equals space minus 0.01 space space space space space space space space space therefore space space space straight y space changes space from space 6 space to space 5.68

    Question 387
    CBSEENMA12035611
    Question 388
    CBSEENMA12035612

    Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 .

    Solution

    f (x) =4 x2+ 5x + 2
    Let x = 2 and ∆x = 0.01
    Now ∆y = f (x + ∆x) – f (x)
    ∴ f (x + ∆x) = f (x) + ∆y
    ⇒ f (x + ∆x) = f (x) + f ' (x) ∆x [∵ dx = ∆x]
    ⇒ (x + ∆x) = f (x) + (8 x + 5) ∆x
    ∴ f (3.2) = f (2) + {8(2) + 5 } (0.01)
    = [4 (2)+ 5(2)+ 2] + (16 + 5) (0.01)
    = (16 + 10 + 2) +(21) (0.01)
    = 28 + 0.21
    ∴  f (3.2) = 28.21

    Question 389
    CBSEENMA12035613

    Find the approximate value of f (5.001), where f (x) = x3 –7x2 + 15.

    Solution

     f (x) = x3 – 7 x2 + 15
    Let x = 5, ∆x = 0.001

    Now ∆y = f (x + ∆y) – f (x)

    ∴ f (x + ∆x) = f (x) + ∆x

    ⇒ f (x + ∆x) = f (x) + f ' (x) ∆x [∵ dx = ∆x]

    ∴ f (x + ∆x) = f (x)+ (3 x2 – 14 x) ∆y

    ∴ f (5.001) = f (5) + {3 (5)2 – 14 (5)} (0.001)

    = [(5)3 – 7(5)2 +15] + {3 (25) – 70} (0.001)

    = (125 – 175 + 15)+ (75 – 70) (0.001)

    = (– 35) + 5 (0.001) = – 35 + 0.005

    ∴ f (5.001) = – 34. 995

    Question 390
    CBSEENMA12035614

    Find the approximate value of f(3.02), where f (x) = 3x2 + 5x + 3 .

    Solution

    f (x) = 3 x2 + 5x + 3
    Let x = 3 and ∆x = 0.02.
    ∆y = f (x + ∆x) – f (x)
    ∴  f (x + ∆x) = f (x) + ∆y = f (x) + f ' (x) ∆x (as dx = ∆x)
    ⇒ f (x + ∆x) = f (x) + (6 x + 5) ∆x
    ∴ f (3.2) = f(3) + {6(3) + 5} (0.02)
    = [3 (3)2 + 5(3) + 3] + (18 + 5) (0.02)
    = (27 + 15 + 3)+ 23 (0.02)
    = 45 + 0.46 = 45.046
    ∴ approximate value of f (3.02) is 45.46.

     
    Question 391
    CBSEENMA12035615

    If f (x) = 3x2 + 15x + 5, then find the approximate value of f (3.02) is

    • 47.66

    • 57.66

    • 67.66

    • 77.66

    Solution

    D.

    77.66

    f (x) = 3 x2 + 15 x + 5
    Let x = 3 and ∆x = 0.02
    ∆y = f (x + ∆x) – f (x)
    ∴ f (x + ∆x) = f (x) + ∆y = f (x) + f ' (x) ∆x [∵ dx = ∆x]
    ⇒ f (x + ∆x) = f (x) + (6 x + 15) ∆x
    ∴ f (3.02) = f (3)+ {6 (3) + 15} (0.02)
    = [3 (3)2 + 15 (3) + 5]+ (18 + 15) (0.02)1111
    = (27+ 45 + 5) + 33 (0.02)
    = 77 + 0.66 = 77.66
    ∴ approximate value of f (3.02) is 77.66.

    Question 393
    CBSEENMA12035617

    Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%.

    Solution

                    straight V space equals space straight x cubed
     Now space space space space space space space space space dV space equals space open parentheses dV over dx close parentheses increment straight x space equals space 3 straight x squared increment straight x
space space space space space space space space space space space space space space space space space space space space space space equals space 3 straight x squared left parenthesis 0.01 space straight x right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space 1 percent sign space of space straight x space is space 0.01 space straight x close square brackets
                       equals space 0.03 space straight x cubed straight m cubed
    therefore space space space space approximate space change space in space volume space space equals space 0.03 space straight x cubed straight m cubed.

    Question 394
    CBSEENMA12035618

    Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

    Solution
    Let S be surface area of cube of side x metre.
    therefore space space space space space space space straight S space equals space 6 straight x squared
    Now,    dS space equals space open parentheses dS over dx close parentheses increment straight x space equals space 12 space straight x space increment straight x
space space space space
                   equals 12 straight x left parenthesis negative 0.01 space straight x right parenthesis space space space space space space space space space space space space space space space space space space space open square brackets because space space 1 percent sign space of space straight x space is space 0.01 space straight x close square brackets
equals space minus 0.12 space straight x squared
    therefore space space space space approximate space change space in space volume space equals space 0.12 space straight x squared space straight m squared left parenthesis numerically right parenthesis.
    Question 395
    CBSEENMA12035619

    If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximate error in calculating its volume.

    Solution
    Let r be the radius of the sphere and ∆r be the error in measuring the radius. Then r = 9cm and ∆ r = 0.03 cm. Now, the volume V of the sphere is given by
                             straight V space equals space 4 over 3 πr cubed space space space space space space space or space space space dV over dr space equals space 4 πr squared
    therefore space space space space dV space equals space open parentheses dV over dr close parentheses space increment straight r space equals space left parenthesis 4 πr squared right parenthesis space increment straight r
space space space space space space space space space space space space space space equals space 4 straight pi left parenthesis 9 right parenthesis squared space left parenthesis 0.03 right parenthesis space equals space 9.72 space straight pi space cm cubed
therefore space space space the space approximate space error space in space calculating space the space volume space is space 9.72 space straight pi space cm cubed.
    Question 396
    CBSEENMA12035620

    If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the approximate error in calculating its volume.

    Solution

    Let r be the radius of the sphere and ∆r be the error in measuring the radius.
    ∴    r =7 m. ∆r = 0.02 m
    Let V be volume of sphere
    therefore space space space space space space space straight V space equals space 4 over 3 πr cubed
Now comma space space space space space space dV space equals space open parentheses dV over dr close parentheses increment straight r

space
                      equals space 4 πr squared increment straight r space equals space 4 straight pi left parenthesis 7 right parenthesis squared space left parenthesis 0.02 right parenthesis
space equals space 4 straight pi space cross times space 49 space cross times space 0.02
space equals space 3.92 space straight pi space straight m cubed
    therefore approximate error in caluclating the volume = 3.92 space straight pi space straight m cubed.

    Question 397
    CBSEENMA12035621

    If the radius of a sphere is measured as 9 m with an error of 0.03 m. then find the approximate error in calculating its surface area.

    Solution

     Let r be the radius of the sphere and ∆r be the error in measuring the radius.
    ∴    r = 9 m, ∆r = 0.03 m.  Let S be the surface area of sphere.
    therefore space space space space space straight S space equals space 4 πr squared
Now comma space space space space space dS space equals space open parentheses dS over dr close parentheses increment straight r space equals space left parenthesis 8 πr right parenthesis space increment straight r
space space space space space space space space space space space space space space space space space space space space space equals space 8 straight pi space cross times 9 space cross times space 0.03 space equals space 2.16 space straight pi space straight m squared
therefore space space space space approximate space error space in space calculating space the space surface space area space equals 2.16 space straight pi space straight m squared

    Question 399
    CBSEENMA12035623
    Question 400
    CBSEENMA12035624

    If the sum of the lengths of hypotenuse and a side of a right angled triangle is given, show that the area is maximum when the angle between them is 60°.

    Solution
    Let ABC be a triangle in which AB = x, AC – y, ∠BAC = 6straight theta.
    therefore space space space space space space BC space equals space square root of AC squared minus AB squared end root space equals space square root of straight y squared minus straight x squared end root
    From given conditon, 
            straight x plus straight y space equals space straight k                         ...(1)
    where k is constant.
    Let ∆ be area of ∆ABC.

    Let ∆ be area of ∆ABC.
    therefore space space space space space increment space equals space 1 half cross times AB cross times BC space equals space 1 half open square brackets straight x square root of straight y squared minus straight x squared end root close square brackets
space space space space space space space space space space space space space space space equals 1 half open square brackets straight x square root of left parenthesis straight k minus straight x right parenthesis squared minus straight x squared end root close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space increment space equals space 1 half open square brackets straight x square root of straight k squared minus 2 kx end root close square brackets
therefore space space space space space space fraction numerator straight d increment over denominator dx end fraction space space equals 1 half open square brackets straight x. space fraction numerator negative 2 straight k over denominator 2 square root of straight k squared minus 2 kx end root end fraction plus square root of straight k squared minus 2 kx end root.1 close square brackets space
space space space space space space space space space space space space space space space space space space space space space equals space 1 half open square brackets negative fraction numerator kx over denominator square root of straight k squared minus 2 kx end root end fraction plus fraction numerator square root of straight k squared minus 2 kx end root over denominator 1 end fraction close square brackets space space equals space 1 half open square brackets fraction numerator negative kx plus straight k squared minus 2 kx over denominator square root of straight k squared minus 2 kx end root end fraction close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    therefore space space space space space fraction numerator straight d increment over denominator dx end fraction space equals space 1 half open square brackets fraction numerator straight k squared minus 3 kx over denominator square root of straight k squared minus 2 kx end root end fraction close square brackets
    Now,   fraction numerator straight d increment over denominator dx end fraction space equals space 0 gives us
               1 half open square brackets fraction numerator straight k squared minus 3 kx over denominator square root of straight k squared minus 2 kx end root end fraction close square brackets equals 0 space space space space or space space space space straight k squared minus 3 kx space equals space 0
    therefore space space space space space space straight k space minus space 3 space straight x space equals space 0 space space space space space space space space space space space rightwards double arrow space space space straight x space equals space straight k over 3 comma space space space space straight y space equals space fraction numerator 2 straight k over denominator 3 end fraction                         open square brackets because space space of space left parenthesis 1 right parenthesis close square brackets
    Now space fraction numerator straight d squared increment over denominator dx squared end fraction equals space 1 half open square brackets fraction numerator square root of straight k squared minus 2 straight k space straight x end root. space left parenthesis negative 3 straight k right parenthesis minus left parenthesis straight k squared minus 3 kx right parenthesis. space begin display style fraction numerator negative 2 straight k over denominator 2 square root of straight k squared minus 2 kx end root end fraction end style over denominator open parentheses square root of straight k squared minus 2 kx end root close parentheses squared end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space equals space 1 half open square brackets fraction numerator begin display style fraction numerator negative 3 straight k square root of straight k squared minus 2 kx end root over denominator 1 end fraction end style plus begin display style fraction numerator straight k left parenthesis straight k squared minus 3 kx right parenthesis over denominator square root of straight k squared minus 2 kx end root end fraction end style over denominator straight k squared minus 2 kx end fraction close square brackets
therefore space space space space space fraction numerator straight d squared increment over denominator dx squared end fraction space equals 1 half open square brackets fraction numerator negative 3 straight k left parenthesis straight k squared minus 2 kx right parenthesis plus straight k left parenthesis straight k squared minus 3 kx right parenthesis over denominator left parenthesis straight k squared minus 2 kx right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
At space space straight x space equals space straight k over 3 comma space we space have
    fraction numerator straight d squared increment over denominator dx squared end fraction space equals space 1 half open square brackets fraction numerator negative 3 straight k open parentheses straight k squared minus begin display style fraction numerator 2 straight k squared over denominator 3 end fraction end style close parentheses plus straight k left parenthesis straight k squared minus straight k squared right parenthesis over denominator open parentheses straight k squared minus begin display style fraction numerator 2 straight k squared over denominator 3 end fraction end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
space space space space space space space space space space space space space space equals 1 half open square brackets fraction numerator negative 3 straight k open parentheses begin display style straight k squared over 3 end style close parentheses plus 0 over denominator open parentheses begin display style straight k squared over 3 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets space equals space 1 half open square brackets fraction numerator negative straight k cubed over denominator open parentheses begin display style straight k squared over 3 end style close parentheses to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets less than 0
therefore space space space space space space increment space is space maximum space when space straight x space equals space straight k over 3 comma space space space straight y space equals space fraction numerator 2 straight k over denominator 3 end fraction
therefore space space space space space space space space space space space space cos space straight theta space equals space AB over AC space equals space straight x over straight y equals space straight k over 3 cross times fraction numerator 3 over denominator 2 space straight k end fraction space equals space 1 half
therefore space space space space space space space space space space space space space space space space straight theta space equals space 60 degree
therefore space space space space space space area space is space maximum space when space straight theta space equals space 60 degree.

    Question 401
    CBSEENMA12035704
    Question 402
    CBSEENMA12035705

    Find the equations of the tangent and normal to the curve straight x squared over straight a squared minus straight y squared over straight b squared equals 1 space at space the space point space open parentheses square root of 2 straight a comma space straight b close parentheses.

    Solution

    Let straight x squared over straight a squared minus straight y squared over straight b squared equals 1 be the equation of the curve.
    Rewriting the above equation as,
    straight y squared over straight b squared equals straight x squared over straight a squared minus 1
space rightwards double arrow space space space straight y squared space equals space straight b squared over straight a squared straight x squared minus straight b squared
    Differentiating the above function with respect to x, we get,
    2 straight y dy over dx equals straight b squared over straight a squared 2 straight x
rightwards double arrow space space dy over dx equals straight b squared over straight a squared straight x over straight y
rightwards double arrow space space open square brackets dy over dx close square brackets subscript left parenthesis square root of 2 straight a comma space straight b right parenthesis end subscript space equals space straight b squared over straight a squared fraction numerator square root of 2 straight a over denominator straight b end fraction equals fraction numerator square root of 2 straight b over denominator straight a end fraction
    Slope of the tangent is straight m equals fraction numerator square root of 2 straight b over denominator straight a end fraction
    Equation of the tangent is
    left parenthesis straight y minus straight y subscript 1 right parenthesis space equals space straight m left parenthesis straight x minus straight x subscript 1 right parenthesis
rightwards double arrow space space space left parenthesis straight y minus straight b right parenthesis equals fraction numerator square root of 2 straight b over denominator straight a end fraction open parentheses straight x minus square root of 2 straight a close parentheses
rightwards double arrow space space straight a left parenthesis straight y minus straight b right parenthesis equals square root of 2 straight b left parenthesis straight x minus square root of 2 straight a right parenthesis
rightwards double arrow space square root of 2 bx minus ay plus ab minus 2 ab equals 0
rightwards double arrow square root of 2 bx minus ay minus ab space equals space 0
    Slope of the normal is negative fraction numerator 1 over denominator begin display style fraction numerator square root of 2 straight b over denominator straight a end fraction end style end fraction
    Equation of the normal is
    open parentheses straight y minus straight y subscript 1 close parentheses space equals space straight m left parenthesis straight x minus straight x subscript 1 right parenthesis
rightwards double arrow space space left parenthesis straight y minus straight b right parenthesis space equals space fraction numerator negative straight a over denominator square root of 2 straight b end fraction left parenthesis straight x minus square root of 2 straight a right parenthesis
rightwards double arrow square root of 2 straight b left parenthesis straight y minus straight b right parenthesis equals negative straight a left parenthesis straight x minus square root of 2 straight a right parenthesis
rightwards double arrow ax plus square root of 2 by minus square root of 2 straight b squared plus square root of 2 straight a squared equals 0
rightwards double arrow ax plus square root of 2 by plus square root of 2 left parenthesis straight a squared minus straight b squared right parenthesis space equals space 0

    Question 403
    CBSEENMA12035722

    If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle between them is 60 degree.

    Solution

    Let ABC be the right angle triangle with base b and hypotenuse h. 
    Given that b+ h = k
    Let A be the area of the right triangle.
    straight A equals 1 half cross times straight b cross times square root of straight h squared minus straight b squared end root
rightwards double arrow space space straight A squared space equals space 1 fourth straight b squared left parenthesis straight h squared minus straight b squared right parenthesis
rightwards double arrow space straight A squared equals space space straight b squared over 4 open parentheses open parentheses straight k minus straight b close parentheses squared minus straight b squared close parentheses space space space space space space open square brackets because space straight h space equals space straight k minus straight b close square brackets
rightwards double arrow straight A squared space equals space straight b squared over 4 open parentheses straight k squared plus straight b squared minus 2 kb minus straight b squared close parentheses
rightwards double arrow straight A squared space equals space straight b squared over 4 left parenthesis straight k squared minus 2 kb right parenthesis
rightwards double arrow straight A squared equals space fraction numerator straight b squared straight k squared minus 2 kb cubed over denominator 4 end fraction
    Differentiating the above function with respect to be, we have
    2 straight A dA over db equals fraction numerator 2 bk squared minus 6 kb squared over denominator 4 end fraction space... left parenthesis 1 right parenthesis
rightwards double arrow space space dA over db equals fraction numerator bk squared minus 3 kb squared over denominator 2 straight A end fraction
    For the area to be maximum, we have
    dA over db equals 0
    rightwards double arrow space bk squared minus 3 kb squared space equals 0
rightwards double arrow space bk space equals space 3 straight b squared
rightwards double arrow space straight b space equals space straight k over 3
    Again differentiating the function in equation (1), with respect to b, we have
    2 open parentheses dA over db close parentheses squared plus 2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction equals fraction numerator 2 straight k squared minus 12 kb over denominator 4 end fraction space... left parenthesis 2 right parenthesis
    Now substituting dA over db equals 0 space and space straight b space equals space straight k over 3 in equation (2), we have
    2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction space equals space fraction numerator 2 straight k squared minus 12 straight k open parentheses begin display style straight k over 3 end style close parentheses over denominator 4 end fraction
space space space rightwards double arrow 2 straight A fraction numerator straight d squared straight A over denominator db squared end fraction space equals space fraction numerator 6 straight k squared minus 12 straight k squared over denominator 12 end fraction
space space rightwards double arrow space 2 straight a fraction numerator straight d squared straight A over denominator db squared end fraction equals negative straight k squared over 2
space space space rightwards double arrow space fraction numerator straight d squared straight A over denominator db squared end fraction equals negative fraction numerator straight k squared over denominator 4 straight A end fraction less than 0
    Thus area is maximum at straight b equals straight k over 3.
    Now, straight h equals straight k minus straight k over 3 equals fraction numerator 2 straight k over denominator 3 end fraction
    Let straight theta be the angle between the base of the triangle and the hypotenuse of the right angle. 
    Thus comma space cosθ equals straight b over straight h equals fraction numerator begin display style straight k over 3 end style over denominator begin display style fraction numerator 2 straight k over denominator 3 end fraction end style end fraction equals 1 half
rightwards double arrow space straight theta equals space cos to the power of negative 1 end exponent open parentheses 1 half close parentheses equals space straight pi over 3

    Question 404
    CBSEENMA12035751

    Show that the height of the cylinder of maximum volume, which can be inscribed in a sphere of radius R is fraction numerator 2 straight R over denominator square root of 3 end fraction. Also find the maximum volume. 

    Solution

    Given, radius of the sphere is R. 
    Let r and h be the radius and the height of the inscribed cylinder respectively. 
    We have:
    straight h equals 2 square root of straight R squared minus straight r squared end root
    Let Volume of cylinder  = V
    straight V equals πr squared straight h
       equals πr squared cross times 2 square root of straight R squared minus straight r squared end root
equals 2 πr squared square root of straight R squared minus straight r squared end root

    Differentiating the above function w.r.t r, we have, 
    straight V space equals space 2 straight pi squared square root of straight R squared minus straight r squared end root
dV over dr equals 4 πr open parentheses square root of straight R squared minus straight r squared end root close parentheses minus fraction numerator 4 πr cubed over denominator 2 square root of straight R squared minus straight r squared end root end fraction
space space space space space equals fraction numerator 4 πr open parentheses straight R squared minus straight r squared close parentheses minus 4 πr cubed over denominator 2 square root of straight R squared minus straight r squared end root end fraction
dV over dr equals fraction numerator 4 πrR squared minus 4 πr cubed minus 2 πr cubed over denominator 2 square root of straight R squared minus straight r squared end root end fraction
space space space space space equals fraction numerator 4 πrR squared minus 6 πr cubed over denominator 2 square root of straight R squared minus straight r squared end root end fraction
    For maxima or minima, 
    dV over dr equals 0 space rightwards double arrow space space 4 πrR squared minus 6 πr cubed space equals 0
rightwards double arrow space 6 πr cubed space equals space 4 πR squared
rightwards double arrow space straight r squared space equals space fraction numerator 2 straight R squared over denominator 3 end fraction
dV over dr space equals space fraction numerator 4 πrR squared minus 6 πr cubed over denominator 2 square root of straight R squared minus straight r squared end root end fraction
    Now comma space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals 1 half open square brackets fraction numerator square root of straight R squared minus straight r squared end root left parenthesis 4 πR squared minus 18 πr squared right parenthesis minus left parenthesis 4 πrR squared minus 6 πr cubed right parenthesis begin display style fraction numerator left parenthesis negative 2 straight r right parenthesis over denominator 2 square root of straight R squared minus straight r squared end root end fraction end style over denominator left parenthesis straight R squared minus straight r squared right parenthesis end fraction close square brackets
                       equals space 1 half open square brackets fraction numerator left parenthesis straight R squared minus straight r squared right parenthesis left parenthesis 4 πR squared minus 18 πr squared right parenthesis plus straight r left parenthesis 4 πrR squared minus 6 πr cubed right parenthesis over denominator left parenthesis straight R squared minus straight r squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
equals 1 half open square brackets fraction numerator 4 πR to the power of 4 minus 22 πr squared straight R squared plus 12 πr to the power of 4 plus 4 πr squared straight R squared over denominator left parenthesis straight R squared minus straight r squared right parenthesis to the power of begin display style 3 over 2 end style end exponent end fraction close square brackets
    Now,  when straight r squared space equals space fraction numerator 2 straight R squared over denominator 3 end fraction comma space fraction numerator straight d squared straight V over denominator dr squared end fraction less than 0.
    therefore space space Volume space is space the space maximum space when space straight r squared space equals space fraction numerator 2 straight R squared over denominator 3 end fraction.
    When straight r squared equals space fraction numerator 2 straight R squared over denominator 3 end fraction comma space space straight h space equals space 2 square root of straight R squared minus fraction numerator 2 straight R squared over denominator 3 end fraction end root space equals space 2 square root of straight R squared over 3 end root space equals space fraction numerator 2 straight R over denominator square root of 3 end fraction.
    Hence, the volume of the cylinder is the maximum when the height of the cylinder is fraction numerator 2 straight R over denominator square root of 3 end fraction.

    Question 405
    CBSEENMA12035752

    Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also, find the equation of the corresponding tangent.

    Solution

    The equation of the given curve is x2 = 4y.
    Differentiating w.r.t. x, we get
    dy over dx equals x over 2
    Let (h, k) be the co-ordinates of the point of contact of the normal to the curve x2 = 4y.
    Now, slope of the tangent at (h, k) is given by
    right enclose dy over dx end enclose subscript left parenthesis straight h comma space straight k right parenthesis end subscript space equals space straight h over 2
    Hence, slope of the normal at (h, k)  = fraction numerator negative 2 over denominator straight h end fraction
    Therefore, the equation of normal at (h, k) is 
    straight y minus straight k space equals space fraction numerator negative 2 over denominator straight h end fraction left parenthesis straight x minus straight h right parenthesis space space space space space space... left parenthesis 1 right parenthesis
    Since, it passes through the point (1, 2) we have
    2 minus straight k equals fraction numerator negative 2 over denominator straight h end fraction left parenthesis 1 minus straight h right parenthesis space or space space straight k space equals space 2 plus 2 over straight h left parenthesis 1 minus straight h right parenthesis space space space... left parenthesis 2 right parenthesis
    Now, (h, k) lies on the curve x2 = 4y, so, we have:
    straight h squared equals 4 straight k                        ...(3) 
    Solving (2) and (3),  we get,
    h = 2  and k = 1.
    From (1), the required equation of the normal is:
    straight y minus 1 equals fraction numerator negative 2 over denominator 2 end fraction left parenthesis straight x minus 2 right parenthesis space space or space space straight x plus straight y space equals 3
    Also, slope of the tangent  = 1
    therefore Equation of tangent at (1, 2) is:
    straight y minus 2 space equals space 1 left parenthesis straight x minus 1 right parenthesis space space or space space space straight y space equals space straight x plus 1

    Question 406
    CBSEENMA12035796

    The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 - 0.02 x2 + 30 x +5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of total cost at any level of output.

    Solution

    Given,

    C(x)  = 0.05x3 - 0.02 x2 + 30 x +5000

    Marginal cost (CM),

    ddx(C(x)) = 0.005x 3x2 - 0.02 x 2x + 30 x = 3CM = 0.005 x 3 x 9 - 0.02 x 2 x 3 + 30= 0.135 - 0.12 = 30.015

    Question 407
    CBSEENMA12035797

    Differentiate tan-1 1 + cos xsin x with respect x.

    Solution

    Let f(x) = tan-1 1 + cos xsin xf'(x) = 11 + 1 + cos xsin x2x ddx1 + cos xsin x = sin2 xsin2 x  + (1 + cos x)2 x sin x (-sinx) - (1 + cos x)cosxsin2 x = sin2 xsin2 x  + 1 + cos2 x  +  2 cos xx (-sin2x - cos x-cos2 x)sin2 x = - cos x -11 + 1 + 2cos x = -(1 + cos x)2(1 + cos x) = -12

    Question 408
    CBSEENMA12035810

    Find the equations of the tangent and the normal, to curve 16x2 + 9y2 = 145 at the point (x1,y1) where x1 = 2 and y1 > 0

    Solution

    16x2 + 9y2 = 145 is the curve and points (x1,y1) where

    x1 = 2 and y1 >0

    ⇒ 16 (2)2 + 9

     16 (2)2 + 9y12 = 145 9y12 = 145 -64 = 81 y12 = 9y1 = ± 3since y1 > 0 y1 =3

    So, the required point is (2,3). Now 16x2 + 9y2 = 145, on differentiating w.r.t. x gives

    16 (2x) + 18 y dydx = 0dydx = -32 x 18 y = - 16 x 9ySlope of tangent at (2,3) =dydx(2,3) = 16 x 29 x3 = -3227So, equation of tangent is y-y1 = m (x- x1)y -3 = -3227 (x-2)27 y - 81 = 32x + 64323x + 27y = 145 is the equation of tangentslope of normal is -1m = -1-3227 = 2732Equation of normal is y - 3 = 2732 (x-2)32 y- 96 = 27 x -54 27 x - 32 y = 54-96 = -42 27 x -32 + 42 = 

    Question 409
    CBSEENMA12035811

    Find the intervals in which the function f(x)  = x44 -x3 - 5x2 + 24 x + 12 is

    a) Strictly increasing

    b) Strictly decreasing

    Solution

    f'(x) = x3 -3x2 - 10 x +24

    f'(x) = (x+ 3)(x-2)(x-4)

    f(x) is strictly increasing

    if f'(x)>0

     x  (-3, 2) (4,)f(x) is strictly decreasing if f'(x)<0 x  (-,-3)(2,4)

    Question 410
    CBSEENMA12035815

    An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be least when depth of the tank is half of its width. If the cost is to be borne by nearby settled lower income families, for whom water will be provided, what kind of value is hidden in this question?

    Solution

    Let the length, width and height of the open tank be x, x and y units respectively. Then, its volume is x2Y and the total surface area is x2 + 4xy.

    It is given that the tank can hold a given quantity of water. This means that its volume is constant. Let it be V. Then,

    V = x2y

    The cost of the material will be least if the total surface area is least. Let S denote the total surface area. 

    Then,

    S = x2 + 4xy

    We have to minimize S object to the condition that the volume V is constant.

    Now,

    S = x2 + 4xy S = x2 + 4Vx dSdx = 2x - 4Vx2 and d2Sdx2 = 2 + 8Vx3

    The critical numbers of S are given by dS/dx = 0

    Now, ds/dx = 0

    ⇒2x - 4Vx2 = 0 2x3 - 4V = 02x3  = 4x2y x = 2yClearly, d2Sdx2 =  2 + 8Vx3 >0 for all x

    Hence, S is minimum when x =2y i.e the depth (height) of the tank is half of its width.

    Question 411
    CBSEENMA12035843

    Find the equation of tangent to the curve x = sin 3t, y = cos 2t, at t = π4

    Solution

    X = sin3t    dxdt = 3 cos3t   xt = π4 = sin3π4 = 12y = coc2t dydt = -2 sin2t  yt = π4 = cos2t = cos2π4 = 0 dydx =  dydt. dtdx             = -2sin2t13cos3t              = -23sin2tcos3t

     

    dydxt = π4 = -23sin2 x π4cos3 x π4                        =  -23sinπ2cos3π4 = 223Therefore, the equation of the tangent at the point 12,0 isy - 0 = 223 x - 12 y = 223 x  - 233y - 22x + 2 = 0

    Question 412
    CBSEENMA12035854

    Show that the rectangle of maximum area that can be inscribed in a circle is a square.

    Solution

    Let a rectangle ABCD be inscribed in a circle with radius r.

                              

    Let DBC = θIn right BCD:BCBD = cosθBC = BD cosθ = 2r cosθCDBD = sinθ CD = BD sinθ = 2r sinθ

    Let A be the area of the rectangle ABCD.

     A = BC X CD A = 2r cosθ  x 2r sinθ = 4r2 sinθcosθ  A =  2r2 sin2θ               .......( sin2θ =2 sinθcosθ )dA = 2 x   2r2 cos2θ =   4r2 cos2θNow, dA = 0 4r2 cos2θ = 0   cos2θ = 0 cos2θ = cosπ2 θ = π4 d2Ad2θ = - 2 x  4r2 sin2θ = - 8 r2 sin2θ d2Ad2θθ = π4 =  - 8 r2 sin  2 xπ4  =   - 8 r2 x 1 = - 8 r2 <0

    Therefore, by the second derivative test, θ = π4 is the point of the local maxima of A.

    So, the area of the rectangle ABCD is the maximum at θ = π4

    Now, θ = π4

     CDBC = tan π4 CDBC = 1  CD = BC Rectangle ABCD is a square.

    Hence, the rectangle of the maximum area that can be inscribed in a circle is a square.

    Question 413
    CBSEENMA12035855

    Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is 13h.

    Solution

    Let a cylinder be inscribed in a cone of radius R and height h.

    Let a radius of the cylinder be  r and its height be h1.

                        

    It can be easily seen that AGI and   ABD are similar.

    AIAD = GIBD h - h1h = rRr = Rh h - h1Volume (V) of the cylinder  = πr2h1 V = π R2h2  ( h - h1 )2  h1 V = π R2h2 [ h2 + h12 - 2hh1 ] x  h1dvdh1 =  π R2h2  h2 + h12 - 2hh1 + h1(2h1  - 2h )dvdh1 =  π R2h2  ( h2 + 3h12 - 4hh1 )

     

    Now,dVdh1 = 0πR2h2 ( h2 + 3h12 - 4hh1 ) = 0 3h12 - 4hh1  + h2 = 0 3h12 - 3hh1  -  hh1 + h2 = 0 3h1( h1 - h ) -h ( h1 - h ) = 0   ( h1 - h ) ( 3h1 - h ) = 0   h1  = h,     h1  = h3

    It can be noted that if h1 = h, then the cylinder cannot be inscribed in the cone.

     h1 = h3Now,  d2Vdh12 = πR2h2 0 + 6h1 - 4h = πR2h26h1 - 4h d2Vdh12 h1 = h3 =  πR2h26h3 - 4h = -2πR2h<0

    Therefore, by the second derivative test, h1h3 is the point of local maxima of V.

    So, the volume of the cylinder is the maximum when  h1h3.

    Hence, the height of the cylinder of the maximum volume that can be inscribed in a cone of height h is 13h.

    Question 414
    CBSEENMA12035878

    Find the equation of the tangent to the curve y = 3x - 2 which is parallel to the line 4x – 2y + 5 = 0

    Solution

    Curve  y =  3x - 2dy dx = 12  3x - 2 -12 x 3 dy dx = 32   3x - 2           .........(i)

    Since, the tangent is parallel to the line  4x - 2y = - 5

    Therefore, slope of tangent can be obtained from equation

    y = 4x2 + 52Slope = 2 dydx = 2                               ...........(ii)

    Comparing  equations (i)  and (ii), we have,

    32 x 1 3x - 2 = 2 1 3x - 2 = 43  1 3x - 2 = 169 9 = 48x - 32 x = 4148We have,   y =  3x - 2

    Thus, substituting the value of x in the above euation,

         y =  3 x 4148 - 2 y =   4116 - 2 y =   41 - 3216   y =   916   y = 34

    Equation of tangent is

          y - 34  = 2  x - 4148  y - 34  = 2x - 4124  y = 2x - 4124 + 34 y = 2x - 4124 + 1824  y = 2x - 2324 24y = 48x - 23 48x - 24y - 23 = 0

    Question 415
    CBSEENMA12035879

    Find the intervals in which the function f given by f ( x ) = x3 + 1x3,     x  0 is

    (i) increasing

    (ii) decreasing.

    Solution

           f ( x ) = x3 + 1x3,     x  0 f' ( x ) = 3x2 - 3x-4 = 3  x2 - 1x4 f' ( x ) = 3x2 - 3x-4 = 3x4  x6 - 1  f' ( x ) =  3x4  x2 - 1   x4 + x2 + 1  f' ( x ) = 3  x4 + x2 + 1x4  x2 - 1 

    (i) For an increasing function, we should have,

    f'( x ) > 0 3   x4 + x2 + 1x4  x2 - 1  > 0  x2 - 1  > 0         3   x4 + x2 + 1x4 > 0   x - 1     x + 1   > 0  x  -, - 1   x   1,  

    So, f( x ) is increasing on   - , - 1    1,  

     

    (ii) For a decreasing function, we should have f ( x ) < 0

    f' ( x ) < 0 3 x4 + x2 + 1x4  x2 - 1  < 0   x2 - 1  < 0            3 x4 + x2 + 1x4 > 0   x - 1   x + 1   < 0 x  -1, 0   x   0, 1 

      

    So, f ( x ) is decreasing  on ( -1, 0 )  ( 0, 1 )

    Question 416
    CBSEENMA12035894

    Find the volume of the largest cylinder that can be inscribed in a sphere of radius r.

    Solution

    The given sphere is of radius R. Let h be the height and r be the radius of the cylinder inscribed in the sphere.

    Volume of cylinder

    V = πR2h                                           .........(i)

    In right angled triangle OBA

                         

    AB2 + OB2 = OA2R2 + h24 = r2So, R2 = r2 - h24                          .............(ii)

    Putting the value of R2 in equation (i), we get

    V = π  r2 - h24 . hV = π  r2h - h34                    ...............(iii) dVdh =  π  r2 - 3h24          ...............(iv)For stationary point, dVdh = 0 π  r2 - 3h24 = 0r2 = 3h24             h2 = 4r23          h =  2r3Now   d2Vdh2 = π   - 64 h d2Vdh2 at h - 2r3 = π  - 32 . 2r3 < 0

     Volume is maximum at  h = 2r3Maximum volume is = π  r2 x 2r3 - 14 x 8r333  = π  2r33 - 2r333 = π  6r3 - 2r333  = 4πr333 cu. unit

    Question 417
    CBSEENMA12035895

    A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m³. If building of tank costs Rs. 70 per square metre for the base and Rs. 45 per square metre for sides, what is the cost of least expensive tank?

    Solution

    Let l, b, and h denote the length breadth and depth of the open rectangular tank.

    Given h = 2m

    V = 8m3

    i.e. 2 l b= 8

     l b = 4    or     b = 4l

    Surface area, S, of the open rectangular tank of the depth 'h' = l b +  2( l + b ) x h

    In this problem,  b = 4l,    l b = 4 metre,   h = 2 metre

     S = 4 + 2 ( l + 4l) x 2 S = 4 + 4 ( l + 4l)

    For maxima or minima, differentiating with respect to l we get,

    dsdl = 4  1 - 4l2dsdl = 0   l = 2m

    l = 2m for minimum 0r maximum

    Now, d2sdl2 = 48l3 > 0  for all  l So,  l = 2m  is a point of minima and minimum surface area is S = l b + 2 ( l + b ) x h

       = 4 + 2 x 8 = 4 + 16 = 20 square metres

    Base Area = 4 square metres; Lateral surface area = 16 square metres

    Cost = 4 x 70 + 16 x 45

           = 280 + 720

           = Rs. 1000.

    Question 418
    CBSEENMA12035919

    Find the equations of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.

    Solution

    Equation of the curve is  y= x3 + 2x + 6 

    Slope of the normal at point  ( x, y ) = -1dydx

    dydx = 3x2 + 2

    on substitution, we get

    Slope of the normal = -13x2 + 2         ..........(i)

    Normal to the curve  is parallel to the line  x + 14y + 4 = 0,

    i.e. y = -114 x - 414

    So the slope of the line is the slope of the normal.

    Slope of the line is - 114 = -13x2 + 2 3x2 + 2 = 14 3x2 = 12 x2 = 4 x = ± 2

    When  x = 2,  y = 18  and when  x = -2,  y = -6

    Therefore, there are two normals to the curve   y = x3 + 2x + 6.

    Equation of  normal through point ( 2, 18 ) is given by:

    y - 18 = -114  x - 2  14y - 252 = -x + 2 x + 14y - 254 = 0

    Equation of normal through point ( -2, -6 ) is given by:

    y -  - 6  = -114  x -  - 2  14y  + 84 = -x - 2 x + 14y + 86 = 0

    Therefore, the equation of normals to the curve are  x + 14y - 254 = 0  and x + 14y + 86 = 0.

    Question 419
    CBSEENMA12035929

    Find the values of x for which f(x) = [x(x - 2)]2 is an increasing function. Also, find the points on the curve where the tangent is parallel to x-axis.

    Solution

    f ( x ) =  x  x - 2 2 = x2  x2 - 4 x + 4  = x4 - 4 x3 + 4 x2f ( x ) =  4 x3 - 12 x2 + 8 xf ( x ) = 4 x  x2 - 3 x + 2           = 4 x  x - 2   x - 1 f ( x ) = 0    x = 0   or  1,  2

    So, the tangents to curve f ( x ) is parallel to the x-axis if  x = 0,  x = 1  or  x = 2.

    Now points  0, 1  and  2 will divide the number line into 4 disjoint intervals 

     -, 0 ,   0, 1 ,  1, 2 ,  2,  

                      

    Now in the intervals  -, 0   and   1, 2   f ( x ) < 0. So thefunction f ( x ) is strictly decreasing in these intervals.f ( x ) > 0  in interval ( 0, 1 )  and  ( 2,  )So the function f ( x ) is strictly increasing  in intervals  ( 0, 1 ) and ( 2,  )Tangent is parallel to x-axis if  dydx = 0

    Which gives us  x = 0,  1,  2

    Hence,  x = 0,  y = 0

    x = 1,  y = 0

    x = 2,  y = 0

    Required points are ( 0, 0 ),  ( 1, 1 ),  ( 2, 0 ).

    Question 420
    CBSEENMA12035930

    Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.

    Solution

    let  r  and  h  be the radius and height of the right circular cylinder with the open top.

    So surface area of the cylinder S is given by,

    S= π r2 + 2 π r h h = S -  π r22 π r          .........(i)

    Let  V  be the volume, so 

    V = π r2 h = π r2  S -π r2 2 π r = r  S -π r2 2dVdr = S2 - 3π r22       ..........(ii)For maxima or minima  dVdr = 0 S = 3 π r2    or     r = S3 π

    Using this (i)

    h = 2 π r22 π r = rd2Vd r2 = - 3 π r= - 3 π S3 π < 0So,  r =  S3 π  is a point of maxima.

    And in this case radius of base = height.

    Question 421
    CBSEENMA12035949

    Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of t heradius of the base. How fast is the sand cone increasing when the height is 4 cm?

    Solution

    The volume of a cone  with radius  r  and height  h  is given by the formula

    V = 13 π r2 h

    According to the question,

    h = 16 r   r = 6 h

    Substituting in the formula,

     V = 13 π  6 h 2 h = 12 π h3

    The rate of change of the volume with respect to time is

    dvdt = 12 π ddh  h 3 x dhdt        ....... By chain rule       =  12 π   3 h 2 x dhdt      = 36 π h2 x dhdt                   .........( i )Given that  dvdt = 12 cm3 / sSubstituting the values dvdt = 12   and  h = 4  in equation ( i ), we have,12 = 36 π  4 2 x dhdt dhdt = 1236 π  16   dhdt = 148 π Hence, the height of the sand cone is increasing at the rate of  148 π  cm / s.

    Question 422
    CBSEENMA12035950

    Find the points on the curve  x2 + y2 – 2x – 3= 0  at  whichthe tangents are parallel to x-axis.

    Solution

    Let  P ( x, y )  be any point on the given curve  x2 + y2 - 2 x - 3 = 0.

    Tangent to the curve at the point (x, y ) is given by dydx.

    Differentiating the equation of the cueve w.r.t. x we get

    2 x + 2 y dydx - 2 = 0dydx = 2 - 2 x2 y = 1 - xy

    Let P ( x1, y1 ) be the point on the given curve at which the tangents are parallel to the x-axis.

     dydx  x1, y1  = 0 1 - x1y1 = 0 1 - x1 = 0 x1 = 1

    To get the value of  y1  just substitute  x1 = 1  in the equation  x2 + y2 - 2 x - 3 = 0, we get

    ( 1 )2 + ( y1 )2 - 2 x 1 - 3 = 0

      y1 2 - 4 = 0  y1 2 = 4   y1 = ± 2 

    So, the points on the given curve at which the tangents are parallel to the x-axis are  ( 1, 2 )  and  ( 1, - 2 ).

    Question 423
    CBSEENMA12035960

    Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

    Solution

    Let the rectangle of length  l  and breadth  b  be inscribed in circle of radius  a.

                                   

    Then, the diagonal of the rectangle passes through the centre and is of length 2a cm.

    Now, by applying the Pythagoras Theorem, we have:

    ( 2a )2 =  l2 + b2

    ⇒ b2 =  4 a2 -  l2

     b =  4 a2 - l2 Area of rectangle,   A = l   4 a2 - l2 dAdl =   4 a2 - l2  +  l 12   4 a2 - l2   - 2 l  =   4 a2 - l2  -  l2   4 a2 - l2              =  4 a2 - 2 l2 4 a2 - l2dA2dl2 =   4 a2 - l2   - 4 l   -    4 a2 - 2 l2    - 2 l 2  4 a2 - l24 a2 -  l2           = 4 a2 -  l2   - 4 l  + l   4 a2 - 2 l2 4 a2 -  l2 32           =  - 12 a2 l + 2 l34 a2 -  l2 32 =  - 2 l  6 a2 - l2 4 a2 -  l2 32

     

    Now,  dAdl  = 0 gives  4 a2 = 2 l2    l =  2 a                      b = 4 a2 - 2 a2   =   2 a2 =  2 a When  l =  2 a, dA2dl2  = - 2   2 a   6 a2 - 2 a2 2   2 a3 = - 8   2 a32  2 a3 = - 4 < 0

     Thus, frrom the second derivative test, when  l2 a, the area of the rectangle is maximum.

    Since  l = b = 2 a ,  the rectangle is square.

    Hence, of all the rectangles inscribed in the given circle, the square has the maximum area.

    Question 424
    CBSEENMA12036147

    Let y be an implicit function of x defined by x2x – 2xxcoty – 1 = 0. Then y′ (1) equals 

    • -1

    • 1

    • log 2

    • -log 2

    Solution

    A.

    -1

    When x = 1, y=π/2
    =(xx– cot y)2= cosec2y
    xx = cot y + |cosec y|
    when x = 1, y=π/2

    ⇒ xx = cot y + cosec y
    diff. w.r.t. to x
    straight x to the power of straight x space left parenthesis 1 space plus space lnx right parenthesis space equals space left parenthesis negative cosec squared straight y space minus cosecy space cot space straight y right parenthesis space dy over dx
When space straight x space equals 1 space and space straight y space equals straight pi over 2
dy over dx space equals space minus space 1

    Question 425
    CBSEENMA12036149

    Given P(x) = x4+ ax3 + cx + d such that x = 0 is the only real root of P′ (x) = 0. If P(–1) < P(1),then in the interval [–1, 1].

    • P(–1) is the minimum and P(1) is the maximum of P

    • P(–1) is not minimum but P(1) is the maximum of P

    • P(–1) is the minimum but P(1) is not the maximum of P

    • neither P(–1) is the minimum nor P(1) is the maximum of P

    Solution

    B.

    P(–1) is not minimum but P(1) is the maximum of P

    P(x) = x4+ ax3+ bx2+ cx + d
    P′(x) = 4x3+ 3ax2+ 2bx + c
    As P′(x) = 0 has only root x = 0
    ⇒ c = 0
    P′(x) = x(4x2+ 3ax + 2b)
    ⇒ 4x3+ 3ax + 2b = 0 has non real root.
    and 4x2+ 3ax + 2b > 0 ∀ x ∈ [−1, 1].

    As P(−1) < P(1) ⇒ P(1) is the max. of P(x) in [−1, 1]

    Question 429
    CBSEENMA12036257

    If straight x space equals space straight e to the power of straight y plus straight e to the power of straight y plus.... to space infinity end exponent space comma space straight x space greater than thin space 0 comma space then space dy over dx space is

    • x /x+1

    • x-1/x

    • 1/x

    • x+1/x

    Solution

    B.

    x-1/x

    straight x space equals space straight e to the power of straight y plus straight e to the power of straight y plus.... infinity end exponent end exponent
straight x space equals straight e to the power of straight y plus straight x end exponent
Taking space log space on space both space side
log space straight x space equals space straight y plus straight x
Diff. space straight w. straight r. straight t space to space straight x
1 over straight x space equals dy over dx plus 1
rightwards double arrow dy over dx space equals space fraction numerator 1 minus straight x over denominator straight x end fraction
    Question 430
    CBSEENMA12036259

    The normal to the curve x = a(1 + cosθ), y = asinθ at ‘θ’ always passes through the fixed point

    • (a, 0)

    • (0, a)No

    • (0,0)

    • (a,a)

    Solution

    A.

    (a, 0)

    Eliminating θ, we get (x – a)2 + y2 = a2 .
    Hence normal always pass through (a, 0).

    Question 431
    CBSEENMA12036301

    let y = y(x) be the solution of the differential equation sin x dydx + y cos x = 4x, x (0, π). If y = π2 = 0, then yπ6 is equal to:

    • -49π2

    • 493π2

    • -893π2

    • -89π2

    Solution

    C.

    -893π2

    sin x dydx + y cos x = 4 x , x(0,π)dydx + y cot x = 4xsin x I.F = ecot x dx = sin x solution is given byy sin x = 4xsin x . sin x dxy = sin x = 2x2 + CWhen x = π2, y = 0 C = - π22Equation is : y sin x = 2x2 - π22when x = π6 then y.12 = 2.π236-π22therefore, y = - 8π29

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation