Sponsor Area

Application Of Derivatives

Question
CBSEENMA12034966

The cost function C(x), in rupees, of producing x items (x ≥ 15) in a certain factory is given by straight C left parenthesis straight x right parenthesis space equals space 20 plus 10 straight x squared plus 15 over straight x.  Determine the marginal cost function and the marginal cost of producing 100 items. 

Solution

Here,   straight C left parenthesis straight x right parenthesis space equals space 20 plus 10 straight x squared plus 15 over straight x space space space space rightwards double arrow space space space space space space straight C space equals space 20 plus 10 straight x squared plus 15 straight x to the power of negative 1 end exponent
Marginal cost function equals space dC over dx space equals space 0 plus 20 straight x minus 15 straight x to the power of negative 2 end exponent space equals space 20 straight x minus space 15 over straight x squared
When x = 100,  marginal cost  = 20 (100)  - fraction numerator 15 over denominator left parenthesis 100 right parenthesis squared end fraction
                                            WiredFaculty