Mathematics Chapter 10 Circles
  • Sponsor Area

    NCERT Solution For Class 10 Mathematics

    Circles Here is the CBSE Mathematics Chapter 10 for Class 10 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 10 Mathematics Circles Chapter 10 NCERT Solutions for Class 10 Mathematics Circles Chapter 10 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 10 Mathematics.

    Question 1
    CBSEENMA10008287

    A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11)


    Fig. 9.11

    Solution

    Let AC be the rope whose length is 20 m, and AB be the vertical pole of height h m and the angle of elevation of A at point C on the ground is 30°.


    Fig. 9.11
    i.e.,    ∠ACB = 30°
    In right triangle ABC, we have
    sin space 30 to the power of degree space equals space AB over AC
rightwards double arrow space space space space 1 half space equals space straight h over 20
rightwards double arrow space space space space 2 straight h space equals space 20
rightwards double arrow space space space space space straight h space equals space 10 space straight m
    Hence, the height of the pole is 10 m.

    Question 2
    CBSEENMA10008288

    A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree. 

    Solution

    Let BD be the tree broken at point C such that the broken part CD takes the position CA and strikes the ground at A. It is given that AB = 8 m and ∠BAC = 30°.
    Let BC = x metres and CD = CA = y metres
    In right triangle ABC, we have
    tan space 30 to the power of degree space equals space BC over AB
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight x over 8
rightwards double arrow space space space straight x space equals space fraction numerator 8 over denominator square root of 3 end fraction equals fraction numerator 8 square root of 3 over denominator 3 end fraction
and space cos space 30 to the power of degree space equals space AB over AC
rightwards double arrow space space fraction numerator square root of 3 over denominator 2 end fraction space equals space 8 over AC
rightwards double arrow space space space AC space space equals space fraction numerator 16 over denominator square root of 3 end fraction

    rightwards double arrow space space space space straight y space space space equals space fraction numerator 16 over denominator square root of 3 end fraction equals fraction numerator 16 square root of 3 over denominator 3 end fraction
    Now, height of the tree
    equals space left parenthesis straight x space plus space straight y right parenthesis space space metres
equals open square brackets fraction numerator 8 square root of 3 over denominator 3 end fraction plus fraction numerator 16 square root of 3 over denominator 3 end fraction close square brackets space metres
equals space fraction numerator 24 square root of 3 over denominator 3 end fraction space metres
equals 8 square root of 3 space metres
    Hence, the height of the tree equals space 8 square root of 3 space straight m.

    Question 3
    CBSEENMA10008289

    A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case? 

    Solution

    Case I :

    Calculation of length of the slide below 5 years. Fig. (a)
    Let AC be the slide of length l m and height of the slide AB of height 1.5 m. It is given that slide is inclimed at an angle of 30°.
    i.e.,    ∠ACB = 30°
    In right triangle ABC, we have
    sin space 30 to the power of degree space equals space AB over AC
rightwards double arrow space space 1 half space equals space fraction numerator 1.5 over denominator straight l end fraction
rightwards double arrow space space space space straight l space space equals space space 3 space straight m space

    Hence, the length of the slide for below 5 years is 3 m

    Case II :

    Calculation of the length of slide for elder children. Fig. (b)
    Let DF be the slide of length m metres and DE be the height of the top of slide of height 3 m. It is given that slide is inclined at an angle of 60°.
    i.e.,    ∠DFE = 60°
    In right triangle DEF, we have
    sin space 60 degree space equals space DE over DF
rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction equals 3 over straight m
rightwards double arrow space space space space square root of 3 space straight m space space equals space 6
rightwards double arrow space space space space straight m space space equals space fraction numerator 6 over denominator square root of 3 end fraction
space space space space space space space space space space equals space fraction numerator 6 cross times space square root of 3 over denominator square root of 3 cross times square root of 3 end fraction space equals space 2 square root of 3 space straight m
    Hence, the length of the slide for elder children is 2 square root of 3 space straight m

    Question 4
    CBSEENMA10008290

    The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

    Solution

    Let A be the top and B be the foot of the tower AB, of height h metre. C be the point which is 30 m away from the tower i.e. BC = 30 m.
    Now,
    AB = h m
    BC = 30 m
    and    ∠ACB = 30°
    In right triangle ABC, we have
    tan space 30 degree space equals space AB over BC

    rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over 30
rightwards double arrow space space space square root of 3 straight h end root space equals space 30
rightwards double arrow space space space space straight h space equals space fraction numerator 30 over denominator square root of 3 end fraction
rightwards double arrow space space space space straight h space equals space fraction numerator 30 over denominator square root of 3 end fraction straight X fraction numerator square root of 3 over denominator square root of 3 end fraction
space space space space space space space space space space space equals space fraction numerator 30 square root of 3 over denominator 3 end fraction space equals space 10 square root of 3
    Hence, the height of the tower is 10 square root of 3 space straight m.

    Question 5
    CBSEENMA10008291

    A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

    Solution

    Let BC be the horizontal ground, and let A be the position of the kite which is at a height of 60 m. i.e., AB = 60 m.
    It is given that
    ∠ACB = 60°
    Now, in right triangle ABC, we have
    sin space space 60 degree space space space equals space AB over AC
rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction space equals space 60 over AC
rightwards double arrow space space space space AC space space space equals space fraction numerator 60 space straight X space 2 over denominator square root of 3 end fraction
rightwards double arrow space space space space AC space space space equals space fraction numerator 120 over denominator square root of 3 end fraction space straight X space fraction numerator square root of 3 over denominator square root of 3 end fraction
rightwards double arrow space space space space AC space space space equals space space 40 square root of 3 space space straight m
    Hence, the length of string is 40 square root of 3 space straight m.

    Question 6
    CBSEENMA10008292

    A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° from 60°, as he walks towards the building. Find the distance he walked towards the building.

    Solution
    Let AC be the observer of height 1.5 m and BE be the building of height 30 m. The angle of elevation from the eyes of observer increases from 30° to 60° to the top of the building.

    Fig. 9.8.

    i.e.,    ∠ECD = 30° and ∠EFD = 60°.
    Let CF = x m and FD = y m
    In right triangle EDF, we have
    tan space 60 degree space equals space DE over DF space open square brackets table row cell DE space equals space BE minus BD end cell row cell equals 30 minus 1.5 end cell row cell equals 28.5 space straight m end cell end table close square brackets
rightwards double arrow space space space space space square root of 3 equals fraction numerator 28.5 over denominator straight y end fraction
rightwards double arrow space space space space space space straight y space equals space fraction numerator 28.5 over denominator square root of 3 end fraction equals fraction numerator 28.5 square root of 3 over denominator 3 end fraction space space space space... left parenthesis straight i right parenthesis
    In right triangle EDC, we have
    tan space 30 degree space space equals space space DE over DC
space space space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator 28.5 over denominator DF plus CF end fraction
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator 28.5 over denominator straight y plus straight x end fraction
rightwards double arrow space space straight x plus straight y equals 28.5 square root of 3
rightwards double arrow space space space space space straight y space equals space 28.5 square root of 3 minus straight x space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator 28.5 square root of 3 over denominator 3 end fraction space equals space 28.5 square root of 3 space minus straight x
rightwards double arrow space space straight x space equals space 28.5 square root of 3 minus fraction numerator 28.5 square root of 3 over denominator 3 end fraction
equals space fraction numerator 3 left parenthesis 28.5 square root of 3 right parenthesis minus 28.5 square root of 3 space over denominator 2 end fraction space equals fraction numerator 85.5 square root of 3 minus 28.5 square root of 3 over denominator 3 end fraction
equals fraction numerator 57 square root of 3 over denominator 3 end fraction equals 19 square root of 3 space straight m
    Hence, distance (CF) equals space 19 square root of 3 space straight m

    Question 7
    CBSEENMA10008293

    From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

    Solution

    Let CD be the transmission tower of height h m. fixed on a building of height 20 m.
    i.e.,    CD = h m
    and    BC = 20 m.
    The angles of elevation of the bottom C and top D of the transmission tower are 45° and 60° respectively.
    i.e.,    ∠BAC = 45°
    and    ∠BAD = 60°
    In right triangle ABC, we have

    tan space 45 degree space space equals space BC over AB
rightwards double arrow space space space space 1 space space equals space 20 over AB
rightwards double arrow space space AB space equals space 20 space straight m space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABD, we have
    tan space 60 degree space space equals space BD over AB
rightwards double arrow space space square root of 3 space equals space fraction numerator 20 plus straight h over denominator AB end fraction
rightwards double arrow space space AB space equals space fraction numerator 20 plus straight h over denominator square root of 3 end fraction space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii) we get
    20 space equals space fraction numerator 20 plus straight h over denominator square root of 3 end fraction
rightwards double arrow space 20 square root of 3 space equals space 20 plus straight h
rightwards double arrow space straight h space equals space 20 square root of 3 space minus 20
space space space space space space space space equals space 20 open parentheses square root of 3 minus 1 close parentheses
    Hence, height of the transmission tower is 20 left parenthesis square root of 3 minus 1 right parenthesis end root straight m

    Question 8
    CBSEENMA10008294

    A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

    Solution

    Let height of the pedestal BD be h metres, and angle of elevation of C and D at a point A on the ground be 60° and 45° respectively.
    It is also given that the height of the statue CD be 1.6 m
    i.e.,    ∠CAB = 60°,
    ∠DAB = 45° and CD = 1.6m
    In right triangle ABD, we have
    tan space 45 degree space equals space BD over AB
rightwards double arrow space space space 1 space equals space straight h over AB
rightwards double arrow space space space AB thin space equals space straight h space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABC, we have
    tan space 60 to the power of degree space equals space BC over AB
rightwards double arrow space space square root of 3 space equals space fraction numerator BD plus DC over denominator AB end fraction
rightwards double arrow space space square root of 3 space equals space fraction numerator straight h plus 1.6 over denominator AB end fraction
rightwards double arrow space space AB space equals space fraction numerator straight h plus 1.6 over denominator square root of 3 end fraction space space space space space space space space... left parenthesis ii right parenthesis

    Comparing (i) and (ii), we get
    straight h space equals space fraction numerator straight h space plus 1.6 over denominator square root of 3 end fraction
rightwards double arrow space space space square root of 3 space end root space straight h space equals space straight h space plus space 1.6
rightwards double arrow space space space square root of 3 space straight h space minus space straight h space equals space 1.6
rightwards double arrow space space space straight h left parenthesis square root of 3 minus 1 right parenthesis space equals space 1.6
rightwards double arrow space space space straight h space equals space fraction numerator 1.6 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
rightwards double arrow space space space straight h space equals space fraction numerator 1.6 left parenthesis square root of 3 plus 1 right parenthesis over denominator 3 minus 1 end fraction
rightwards double arrow space space space straight h space equals space 0.8 open parentheses square root of 3 plus 1 close parentheses
    Hence, the height of pedestal 

    Question 9
    CBSEENMA10008295

    The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

    Solution
    Let BC be the height of the building of height h m. and AD be the tower of height 50 m.

    Here, ∠ABD = 60°, and ∠BAC = 30°.
    Now, in right triangle ABC, we have
    tan space 30 degree space equals space BC over AB
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over AB
rightwards double arrow space space space space AB space equals space square root of 3 straight h space space space space space space space space space space space space... left parenthesis i right parenthesis
    In right triangle BAD, we have
    tan space 60 degree space space equals space AD over AB
rightwards double arrow space space space square root of 3 space space equals space 50 over AB
rightwards double arrow space space space AB space equals space fraction numerator 50 over denominator square root of 3 end fraction space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii) we get
    square root of 3 space straight h space space space equals space fraction numerator 50 over denominator square root of 3 end fraction
rightwards double arrow space space space 3 space straight h space equals space 50
rightwards double arrow space space space straight h space equals space 50 over 3
    Hence, the height of the building is  50 over 3 equals 16 2 over 3 straight m.

    Question 10
    CBSEENMA10008296

    Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.

    Solution

    Let AD and BC be two poles of equal height h metres. Let P be a point on the road sucn that AP = x metres. Then BP = (80 - x) metres.
    It is given that ∠APD = 60° and ∠BPC = 30°.
    In right triangle APD, we have
    tan space 60 degree space equals space AD over AP
rightwards double arrow space space space space square root of 3 space equals space straight h over straight x
rightwards double arrow space space space space space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BPC, we have
    tan space 30 degree space space equals space BC over BP
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator straight h over denominator 80 minus straight x end fraction
rightwards double arrow space space space 80 minus straight x space equals space square root of 3 space straight h
rightwards double arrow space space space space straight x space equals space 80 space minus square root of 3 space straight h space space space space.... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator square root of 3 end fraction space equals space 80 space minus square root of 3 space straight h
rightwards double arrow space space straight h space equals space square root of 3 space left parenthesis 80 minus square root of 3 straight h right parenthesis
rightwards double arrow space space straight h space equals space 80 square root of 3 space minus space 3 straight h
rightwards double arrow space space 4 space straight h space equals space 80 square root of 3
rightwards double arrow space space space straight h space equals space 20 square root of 3
    Putting this value in eq. (i), we get
    straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction equals fraction numerator 20 square root of 3 over denominator square root of 3 end fraction equals 20 space straight m
    And,    AP = x = 20 m
    BP = 80 - x = 80 - 20 = 60 mHence, height of the poles equals 20 square root of 3 straight m.

    Question 11
    CBSEENMA10008297

    A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joing this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal.


    Fig. 9.12.

    Solution

    Let AB be the tower of height h metres standing on a bank of a canal. Let C be a point on the opposite bank of a canal, such that BC = x metres.
    Let D be the new position after changing the elevation. It is given that CD = 20 m
    The angle of elevation of the top of the tower at C and D are respectively 60° and 30°.
    i.e.    ∠ACB = 60° and ∠ADB = 30°
    In right triangle ABC, we have
    tan space 60 degree space equals space AB over BC
rightwards double arrow space space space square root of 3 space equals space straight h over straight x
rightwards double arrow space space space space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABD, we have
    tan space 30 degree space space equals space AB over BD
rightwards double arrow space space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator straight h over denominator straight x plus 20 end fraction
rightwards double arrow space space space straight x plus 20 space equals space square root of 3 space straight h
rightwards double arrow space space space straight x space equals space square root of 3 space straight h space
rightwards double arrow space space space straight x space equals space square root of 3 space straight h space minus space 20 space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator square root of 3 end fraction equals square root of 3 straight h end root space minus space 20
rightwards double arrow space space space space straight h space equals space square root of 3 left parenthesis square root of 3 space straight h space minus 20 right parenthesis
rightwards double arrow space space space space straight h space equals space 3 straight h space minus space 20 square root of 3
rightwards double arrow space space space straight k space minus space 3 straight h space equals space minus 20 square root of 3
rightwards double arrow space space space minus 2 straight h space equals space minus 20 square root of 3
rightwards double arrow space space space space space straight h space space space equals space 10 square root of 3
    Putting this value in (i), we get
    straight x equals fraction numerator straight h over denominator square root of 3 end fraction equals fraction numerator 10 square root of 3 over denominator square root of 3 end fraction equals space 10 space straight m
    Hence, the height of tower equals 10 square root of 3 metres and width of the canal = 10 m.

    Question 12
    CBSEENMA10008298

    From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower

    Solution

    Let AC be the building whose height is 7 m and BE be the cable tower.
    It is given that the angle of elevation of the top E of the cable tower from C and the angle of depression of its foot from C be 60° and 45° respectively.
    i.e.,    ∠DCE = 60° and ∠BCD = 45°.
    Also,    AC = BD = 7 m.
    Let    DE = h m
    In right triangle DCE, we have
    tan space 60 degree space equals space DE over CD
rightwards double arrow space space space square root of 3 space equals space straight h over CD
rightwards double arrow space space CD space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    Now, in right triangle BCD, we have
    tan space 45 degree space space equals space BD over CD
rightwards double arrow space space space space 1 space equals space 7 over CD
rightwards double arrow space space space CD space equals space 7 space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator square root of 3 end fraction space equals space 7
straight h space equals space 7 square root of 3 space straight m

    Hence,  Total height of the cable lower (BE)
    equals space BD space plus space DE space equals space 7 space straight m space plus space 7 square root of 3 space straight m space equals space 7 space left parenthesis 1 space plus space square root of 3 right parenthesis space straight m.

    Question 13
    CBSEENMA10008299

    As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

    Solution
    Let CD be the lighthouse whose height is 75 m. Let the two ships be at A and B such that their angles of depression from D are 30° and 45° respectively.

    Let AB = x m and BC = y m
    In right triangle BCD, we have
    tan space 45 degree space equals space CD over BC
rightwards double arrow space space space 1 space equals space 75 over straight y
rightwards double arrow space space space straight y space equals space 75 space straight m space space space space.... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 30 degree space equals space CD over AC
rightwards double arrow space space tan space 30 degree space equals space fraction numerator CD over denominator AB plus BC end fraction
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator 75 over denominator straight x plus straight y end fraction
rightwards double arrow space space space straight x plus straight y space equals space 75 square root of 3
rightwards double arrow space space space straight y space equals space left parenthesis 75 square root of 3 minus straight x right parenthesis space straight m space space space space space.... left parenthesis ii right parenthesis
    Comparing (i) and (ii) we get
    75 space equals space 75 square root of 3 minus straight x
rightwards double arrow space space straight x space equals space 75 square root of 3 minus 75
rightwards double arrow space space space space space equals space 75 space left parenthesis square root of 3 minus 1 right parenthesis space straight m
    Hence, the distane between two ships be  equals space 75 space left parenthesis square root of 3 minus 1 right parenthesis space space straight m.

    Question 15
    CBSEENMA10008301

    A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

    Solution
    Let CD be the tower of height h m. Let A be the initial position of the car and after 6 sec. the car is found to be at B.

    Fig. 

    It is given that the angle of depression at A and B from the top of a tower be 30° and 60° respectively.
    Let the speed of the car be v second per minute. Then
    AB = distance travelled by the car in 6 s.
    = (6 × v) sec. (Dist = speed × time)
    = 6v sec.
    Let the car takes t minutes to reach the tower CD from B.
    Then,
    BC = distance travelled by car in t minutes
    = (v × t) metres = vt sec.
    In right triangle BCD, we have
    tan space 60 degree space equals space CD over BC
rightwards double arrow space space space square root of 3 space equals space straight h over vt
rightwards double arrow space space space straight h space equals space square root of 3 space vt space space space space space space space space.. space left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 30 degree space equals space CD over AC
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals space fraction numerator straight h over denominator 6 straight v space plus vt end fraction
rightwards double arrow space space space 6 straight v space plus space vt space equals space square root of 3 space straight h
rightwards double arrow space space space space straight h space equals space fraction numerator 6 straight v plus vt over denominator square root of 3 end fraction space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    square root of 3 space vt space space space equals space fraction numerator 6 straight v plus vt over denominator square root of 3 end fraction
rightwards double arrow space space square root of 3 space straight x square root of 3 vt space equals space 6 straight v space plus vt
rightwards double arrow space space 3 vt space equals space 6 straight v space plus vt
rightwards double arrow space space 3 vt space minus space vt space equals space 6 straight v
rightwards double arrow space space vt space left parenthesis 3 space minus 1 right parenthesis space equals space 6 straight v
rightwards double arrow space space straight t space straight x space 2 space equals space 6
rightwards double arrow space space straight t space equals space 3 space seconds
    Hence, the time taken by the car to reach the foot of the tower is 3 sec.

    Question 16
    CBSEENMA10008302

    The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

    Solution
    Let AB be the tower of height h metres. Let C and D are two points at a distance 4 m and 9 m respectively from the base of the lower.

    Let ∠BDA = ө, then ∠BCA = (90 - ө)
    In right triangle BCA, we have
    tan space left parenthesis 90 space minus straight theta right parenthesis space equals space AB over BC
rightwards double arrow space space space cot space straight theta space space equals space straight h over 4 space space space space space space space space.... left parenthesis straight i right parenthesis

    In right triangle BDA, we have
    tan space straight theta space equals space straight h over 9 space space space space space space space space space space space space space space space space space.... left parenthesis ii right parenthesis
    Multiplying (i) and (ii) we get
    cot space straight theta space straight x space tan space straight theta space equals space straight h over 4 straight x straight h over 9
rightwards double arrow space space 1 space equals space straight h squared over 36
rightwards double arrow space space space straight h squared equals space 36
rightwards double arrow space space space straight h space space equals space plus-or-minus 6
    Since,            h = -6 is  not possible
    Hence, height of the tower BC is 6 m.

    Question 17
    CBSEENMA10008303

    The height of a tower is 10 m. Calculate the height of its shadow when Sun's altitude is 45°.

    Solution
    In figure, AB is the tower and BC is the length of the shadow when the Sun's altitude is 45°, i.e. the angle of elevation of the top of the tower from the tip of the shadow is 45°.

    In right ∆ABC, we have
    tan space 45 degree space equals space AB over BC
rightwards double arrow space space space space space 1 space equals space 10 over BC rightwards double arrow space BC space equals space 10 space straight m
    Thus, the height of the shadow is 10 m.

    Sponsor Area

    Question 18
    CBSEENMA10008304

    In the following figure, what are the angles of depression from the observing positions O1 and O2 of the object at A?

    Solution
    From O1 and O2 draw the dotted lines parallel to ABC, then the angle of depression from the positions O1 and O2 of the object at A are 30° and 45°, respectively.
    Question 19
    CBSEENMA10008305

    Find the angle of elevation of the Sun's altitude when the height of shadow of a vertical pole is equal to its height.

    Solution

    Let the height of the pole AB = x m.
    ∴ Length of shadow OB ol the pole AB = x m.
    Let the angle of elevation be ө, i.e.
    ∠AOB = ө

    In Right triangle OBA, we have
    tan space straight theta space equals space AB over OB equals straight x over straight x rightwards double arrow space tan space straight theta space equals space 1 space rightwards double arrow straight theta equals 45 degree
    Hence, the angle of elevation of the Sun's altitude is 45°.

    Question 20
    CBSEENMA10008306

    In figure, what are the angles of depression of depression of the top and bottom of h m tall building from the top of multistoryed building.



    Solution
    From P draw a dotted line PQ || BD or AC, then the angles of depression of the top and bottom of a tall building h m from the top P of the multistoryed building are 30° and 45° respectively.
    Question 21
    CBSEENMA10008307

    From a point 20 m away from the foot of a tower, the angle of elevation of the top of the tower is 30°, Find the height of the tower.

    Solution

    Let O be a point be a point 20 m away from the tower AB = hm
    In right triangle OBA, we have

    tan space 30 degree space space equals space AB over OB
rightwards double arrow space space space space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over 20
rightwards double arrow space space space space space space straight h equals fraction numerator 20 over denominator square root of 3 end fraction straight m
    thus, th height of the tower is fraction numerator 20 over denominator square root of 3 end fraction straight m.

    Question 22
    CBSEENMA10008308

    In figure, what are the angles of depression from the positions O1 and O2 of the object at A?


    Solution
    From O1 and O2 draw a dotted lines parallel to ABC, then the angles of depression from the points, O1 and O2 of the object at A are 30° and 45°, respectively. 
    Question 23
    CBSEENMA10008309

    The string of akite is 100 m long and its makes an angle of 60° with the horizontal. Find the height of the kite. Assume that there is no slackness in the string.

    Solution

    Lenght of string OA = 100 m.
    Angle of elevation = 60°. Let the heigth of the kite be AB = h m.

    In right triangle OBA, we have
    sin space 60 degree space equals space AB over OA
rightwards double arrow space space space space fraction numerator square root of 3 over denominator 2 end fraction equals straight h over 100
rightwards double arrow space space space space space space straight h space equals space 50 square root of 3
    Thus, the height of the kite is 50 square root of 3 space straight m.

    Question 24
    CBSEENMA10008310

    In figure, what are the angles of depressions of the top and bottom of a pole from the top of a tower h m high.


    Solution
    From O draw a doted line OQ parallel to AM or BL, then the angles of depression of the top and bottom of a pole from the top O of a tower h m are 45° and 60° respectively.
    Question 25
    CBSEENMA10008311

    A balloon is connected to a meterological ground station by a cable length 215 m inclined at 60° to the horizontal determine the height of the baloon leave the ground. Assume that there is no slack in the cable.

    Solution

    Let AC the cable which is inclined at 60° to the horizontal
    Here, we have
    AC = 215 m and ∠ACB = 60°
    Now, In right triangle ACB.
    Sin space plus 0 space equals space AB over AC
rightwards double arrow fraction numerator square root of 3 over denominator 2 end fraction equals AB over 215
rightwards double arrow space AB space equals fraction numerator 215 cross times square root of 3 over denominator 2 end fraction
rightwards double arrow space AB space equals space fraction numerator 215 cross times 1.732 over denominator 2 end fraction
rightwards double arrow space space space straight h space space equals space 186.19 space straight m

    Question 26
    CBSEENMA10008312

    There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. A and B are points directly opposite to each other on two banks and in line with the tree. If the angles of elevation of the top of the tree from P and Q are respectively 30° and 45°, find the length of the tree.

    Solution

    AQ = x m and BQ = y m and the angle of elevation of the top of the tree P from point A and B are 30° and 45° respectively.
    i.e., ∠PAQ = 30°  and ∠PBQ = 45°


    In right triangle
    AQP, we have
    tan space 30 degree space equals PQ over AQ
rightwards double arrow space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space straight x space equals space square root of 3 space straight h space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BQP, we have
    tan space 45 degree space equals space PQ over BQ
rightwards double arrow space space 1 space equals space straight h over straight y
rightwards double arrow space space space straight y space equals space straight h space space space space space space space space space space space space space space space space.... left parenthesis ii right parenthesis
    Adding (i) and (ii), we get
    straight x plus straight y equals square root of 3 space straight h space plus space straight h
rightwards double arrow space space 100 space equals space straight h left parenthesis square root of 3 space plus space 1 right parenthesis
rightwards double arrow space space space straight h space equals space fraction numerator 100 over denominator square root of 3 plus 1 end fraction straight x fraction numerator square root of 3 minus 1 over denominator square root of 3 minus 1 end fraction
space space space space space space space space space equals space fraction numerator 100 left parenthesis square root of 3 minus 1 right parenthesis over denominator left parenthesis square root of 3 right parenthesis squared minus left parenthesis 1 right parenthesis squared end fraction equals fraction numerator 100 left parenthesis 1.732 minus 1 right parenthesis over denominator 3 minus 1 end fraction
space space space space space space space space space equals space fraction numerator 100 space straight x space 0.732 over denominator 2 end fraction equals 50 space straight x space 0.732
space space space space space space space space space space equals 36.6 space straight m

    Question 27
    CBSEENMA10008313

    The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 15 seconds the angle of elevation changes to 30°. If the jet plane is flying at a constant height of bold 1500 square root of bold 3 bold space bold m find the speed of the jet plane.

    Solution
    Let A be the point of observation, C and E be the two points of the plane. It is given that after 15 seconds angle of elevation changes from 60° to 30°.

    i.e., ∠BAC = 60° and ∠DAE = 30°. It is also given that height of the jet plane is 1500 square root of 3 space straight m
    straight i. straight e. space space space space space space space space space space space space CB space equals space 1500 square root of 3
    [Since jet plane is flying at constant height, therefore, CB = ED = 1500 square root of 3 space straight m right square bracket
    In right triangle ABC, we have
    tan space 60 degree space space equals space BC over AB
rightwards double arrow space square root of 3 space equals space fraction numerator 1500 square root of 3 over denominator AB end fraction
rightwards double arrow AB space equals space fraction numerator 1500 square root of 3 over denominator square root of 3 end fraction
rightwards double arrow space AB space equals space 1500 space straight m space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ADE, we have
    tan space 30 degree space equals space DE over AD
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator DE over denominator AB plus BD end fraction
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator 1500 square root of 3 space over denominator AB plus BD end fraction
rightwards double arrow space AB space plus space BD space equals space 1500 square root of 3 cross times square root of 3
rightwards double arrow space space AB space plus space BD space equals space 4500 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis

    Putting the value of (i) in (ii), we get
    1500 + BD = 4500
    ⇒    BD = 3000
    ∵ Distance travelled in 15 sec
    =  CE = BD = 3000 metres,
    Now, speed of plane (m/s)     =    3000 over 15 equals 200 space straight m divided by straight s
    and speed of plane (km/h)     =   space space 200 over 1000 cross times 3600
                                               =       720 km/hr 


    Question 28
    CBSEENMA10008314

    The angles of elevation of the top of a tower from two points at a distances a and b metres from the base and in the same straight line with it are complementary. Prove that the height of the tower is square root of ab metres.

    Solution

    Let AB be the tower of height h metres, D and C are two points on the horizontal line, which are at distances a and b metres respectively from the base of the tower. It is also given that the angles of elevation of the top of a tower from two points D and C be complementary i.e.,
    ∠ADB = Ս then ∠ACB = (90 -ө)

    In right triangle ADB, we have
    tan space straight theta space equals space AB over BD
rightwards double arrow space space space tan space straight theta space equals space straight h over straight a space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACB, we have
    tan space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space AB over BC
rightwards double arrow space space space space space cot space straight theta space space space space equals space straight h over straight b space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Multiplying (i) and (ii), we get
    tan space straight theta space straight x space cot space equals space straight h over straight a straight x straight h over straight b
rightwards double arrow space space 1 space equals space straight h squared over ab
rightwards double arrow space space space straight h squared space space equals space ab
rightwards double arrow space space space straight h space equals space plus-or-minus space square root of ab
    But height can't be negative.
    apostrophe therefore space space space space space space space space space space space space space space straight h space equals space square root of ab
    Hence the height of the tower is square root of ab space mts.

    Question 29
    CBSEENMA10008315

    An aeroplane at an altitude of 200 metres observes the angles of depression of opposite points on the two banks of a river to be 45° and 60°. Find the width of the river.

    Solution
    Let the position of the aeroplane be A, B and C be two points on the two banks of a river such that the angles of depression at B and C are 45° and 60° respectively. Let BD = x m, y m andAD = 200 m.

    In right triangle ABD, we have
    tan space 45 degree space space equals space AD over BD
rightwards double arrow space space space space 1 space space equals space 200 over straight x
rightwards double arrow space space space space space straight x space equals space 200 space space straight m space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 60 degree space space equals space AD over CD
rightwards double arrow space space space square root of 3 space equals space 200 over straight y
rightwards double arrow space space space space straight y space equals space fraction numerator 200 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Adding (i) and (ii), we get
    space space space space straight x plus straight y space equals space 200 space plus space fraction numerator 200 over denominator square root of 3 end fraction
rightwards double arrow space space space space BC space equals space fraction numerator 200 square root of 3 plus 200 over denominator square root of 3 end fraction space straight m
space space space space space space space space space space space space space space equals space fraction numerator 200 open parentheses square root of 3 plus 1 close parentheses over denominator square root of 3 end fraction space straight m
space space space space space space space space space space space space space space space space equals space 315.4 space straight m
    Hence, the width of the river is 315.4 metres.
    Question 30
    CBSEENMA10008316

    The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60°. At a point Y, 40 m vertically above X, the angle of elevation is 45°. Find the height of the tower PQ and the distance XQ.

    Solution
    Let PQ be the tower and Y is a point vertically above X such that XY = 40 m. The angle of elevation of the top Q from a point X on the ground is 60° and from a point Y vertically above the X be 45° i.e., ∠PXQ = 60° and ∠RYQ = 45°.

    Let    QR = x m
    In right triangle QRY, we have
    tan space 45 degree space equals space QR over YR
rightwards double arrow space space space 1 space equals space straight x over YR
rightwards double arrow space space space YR space equals space straight x space straight m space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle QPX, we have
    tan space 60 degree space space equals space QP over XP
rightwards double arrow space space square root of 3 space equals space fraction numerator QR space plus PR over denominator XP end fraction
rightwards double arrow space space square root of 3 space equals space fraction numerator straight x plus 40 over denominator XP end fraction space space space space space space left square bracket XY equals PR right square bracket
rightwards double arrow space space XP space equals space fraction numerator straight x plus 40 over denominator square root of 3 end fraction
rightwards double arrow space space YR space equals space fraction numerator straight x plus 40 over denominator square root of 3 end fraction space space space left square bracket because space XP space equals space YR right square bracket space space space space.... left parenthesis ii right parenthesis space
    Comparing (i) and (ii), we get
    straight x space equals space fraction numerator straight x plus 40 over denominator square root of 3 end fraction
rightwards double arrow space space square root of 3 straight x end root equals space straight x plus 40
rightwards double arrow space space square root of 3 straight x end root minus straight x equals 40
rightwards double arrow space space straight x left parenthesis square root of 3 minus 1 right parenthesis end root space equals space 40
rightwards double arrow space space space straight x space equals fraction numerator 40 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction equals fraction numerator 40 left parenthesis square root of 3 plus 1 end root right parenthesis over denominator open parentheses square root of 3 close parentheses squared minus left parenthesis 1 right parenthesis squared end fraction
equals fraction numerator 40 open parentheses square root of 3 plus 1 close parentheses over denominator 2 end fraction equals 20 open parentheses square root of 3 plus 1 close parentheses equals 20 left parenthesis 1.732 plus 1 right parenthesis
equals space 20 space straight x space 2.732 space equals space 54.64

    So, height of the tower PQ
    = PR + QR
    = 40 + x
    = 40 + 54.64
    = 94.64 m.
    In right triangle QPX, we have
    sin space 60 degree space equals space PQ over XQ
rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction equals fraction numerator 94.64 over denominator XQ end fraction
rightwards double arrow space space space XQ space equals space fraction numerator 94.64 space straight X space 2 over denominator square root of 3 end fraction
rightwards double arrow space XQ space equals space fraction numerator 94.64 straight x 2 straight x square root of 3 over denominator 3 end fraction
rightwards double arrow space XQ space equals space 109.3 space straight m

    Question 31
    CBSEENMA10008317

    The angles of depression of the top and the bottom of a 9 m high building from the top of a tower are 30° and 60° respectively. Find the height of the tower and the distance between the building and the tower.


    Solution
    Let AB be the building such that AB = 9 m and CD is the tower. The angles of depression of the top and the bottom of the building from the tower are 30° and 60° respectively.
    straight i. straight e comma space space space space space angle CAE space equals space 30 degree
and space space space space space angle CBD space equals space 60 degree
Let space space space space space space CE space space space equals space space straight h
and space space space space space space AE space space space space equals space space BD space equals space straight x
In space increment AEC space equals space an space 30 degree space equals space CE over AE
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space straight x space equals space square root of 3 space straight h space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In In space increment CBD comma space space space space tan space 60 degree space space equals space CD over BD
rightwards double arrow space space space space space space space space square root of 3 space equals space fraction numerator straight h plus 9 over denominator straight x end fraction
rightwards double arrow space space space space space space space square root of 3 space straight x space equals space straight h space plus space 9
rightwards double arrow space space space space space space space space space space straight x space equals space fraction numerator straight h plus 9 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    square root of 3 space straight h space equals space fraction numerator straight h plus 9 over denominator square root of 3 end fraction

    ⇒    3h = h + 9
    ⇒    3h - h = 9
    ⇒    2h = 9
    ⇒    h = 4.5 m
    Now, height of the tower
    = (h + 9) met.
    = (4.5 + 9) met.
    = 13.5 met.
    Difference between the building and tower (x)
    equals space square root of 3 space straight h
equals space square root of 3 space straight x space 4.5
equals space 1.732 space straight x space 4.5
equals space 7.794 space straight m space left parenthesis app right parenthesis.

    Question 32
    CBSEENMA10008318

    From the top of a building 60 m high the angles of depression of the top and the bottom of tower are observed to be 30° and 60°. Find the height of the tower.

    Solution
    Let AC be the tower and BE be the building. Let height of the tower be h m. It is given that the angles of depression of the top C and bottom A of the tower, observed from top of the building be 30° and 60° respectively.

    In right triangle CDE, we have
    tan space 30 degree space space equals space DE over CD
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator 60 minus straight h over denominator CD end fraction space space space space space space space space space space space space left square bracket space DE space equals space BE space minus space BD space equals space BE space minus space AC space right square bracket
rightwards double arrow space space space CD space equals space square root of 3 left parenthesis 60 minus straight h right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABE, we have
    tan space 60 degree space equals space BE over AB
rightwards double arrow space space space space square root of 3 space equals space 60 over CD space space left parenthesis AB space equals space CD right parenthesis
rightwards double arrow space space space space CD space equals space fraction numerator 60 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    square root of 3 left parenthesis 60 minus straight h right parenthesis space equals space fraction numerator 60 over denominator square root of 3 end fraction
rightwards double arrow space space 3 space left parenthesis 60 minus straight h right parenthesis space equals space 60
rightwards double arrow space space 180 minus 3 straight h equals 60
rightwards double arrow space space space 3 straight h space equals space 120
rightwards double arrow space space space space straight h space space equals space 40
    Hence, the height of the tower is 40 m.
    Question 33
    CBSEENMA10008319

    As observed from the top of n lighthouse, 100 m high above sea level, the angle of depression of a ship sailing directly towards it, changes from 30° to 60°. Determine the distance travelled by the ship during the period of observation.

    Solution

    Height of lighthouse = 100 m
    Let distance travelled by the ship, when the angle of depression changes from 60° to 30° (DC) =y m and distance BC = x m Then, in right ∆ABC,
    tan space 60 degree space equals space AB over BC
rightwards double arrow space space space space square root of 3 space space space space equals space space 100 over straight x
rightwards double arrow space space space space straight x square root of 3 equals 100 rightwards double arrow straight x equals fraction numerator 100 over denominator square root of 3 space end fraction space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right incrementABD, tan 30 degree space equals space AB over BD
    rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator 100 over denominator straight x plus straight y end fraction
rightwards double arrow space space space straight x plus straight y equals 100 square root of 3 space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    From (i) and (ii), we get
    fraction numerator 100 over denominator square root of 3 end fraction plus straight y equals 100 square root of 3 space space space space space space space space space space space space space space space space space space space space space
rightwards double arrow space space straight y space equals space 100 square root of 3 minus fraction numerator 100 over denominator square root of 3 end fraction
space space space space equals space fraction numerator 100 straight x 3 minus 100 over denominator square root of 3 end fraction equals fraction numerator 200 over denominator square root of 3 end fraction
rightwards double arrow space space space space straight y equals fraction numerator 200 over denominator 1.732 end fraction equals fraction numerator 200.000 over denominator 1732 end fraction
space space space space space space space space space space space space space equals space 115.473
    Hence, distance travelled by the ship = 115.473 m.

    Tips: -

    left parenthesis Use space square root of 3 equals space 1.732 right parenthesis
    Question 34
    CBSEENMA10008320

    From the top of a hill, the angles of depression of two consecutive kilometre stones due east are found to be 30° and 45° respectively. Find the height of the hill.

    Solution

    Let CD be the hill of height h km. Let A and B be two stones due east of the hill at a distance of 1 km. from each other. It is also given that the angles of depression of. stones A and B from the top of a hill be 30° and 45° respectively.
    Let    BC = x km
    In right triangle BCD, we have
    space space space space tan space 45 degree space space equals space CD over BC
rightwards double arrow space space space space space 1 space equals space straight h over straight x
rightwards double arrow space space space space space space straight x space equals space straight h space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 30 degree space equals space CD over AC
rightwards double arrow space space space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator straight h over denominator 1 plus straight x end fraction
rightwards double arrow space space 1 plus straight x space equals space square root of 3 straight h
rightwards double arrow space space space straight x space equals space square root of 3 straight h space minus space 1 space space equals space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    straight h space equals space square root of 3 space straight h space minus space 1
rightwards double arrow space square root of 3 straight h end root minus straight h space equals space 1
rightwards double arrow space straight h open parentheses square root of 3 minus 1 close parentheses space equals space 1
rightwards double arrow space straight h space equals space fraction numerator 1 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
rightwards double arrow space space straight h space equals space fraction numerator square root of 3 plus 1 over denominator left parenthesis square root of 3 right parenthesis squared minus left parenthesis 1 right parenthesis squared end fraction
rightwards double arrow space space space space equals space space fraction numerator square root of 3 plus 1 over denominator 3 minus 1 end fraction
rightwards double arrow space space space fraction numerator square root of 3 plus 1 over denominator 2 end fraction equals fraction numerator 1.732 plus 1 over denominator 2 end fraction equals fraction numerator 2.732 over denominator 2 end fraction
equals space space 1.365 space km.
    Hence, the height of hill is 1.365.

    Question 35
    CBSEENMA10008321

    An aeroplane when flying at a height of 3000 m from the ground passes vertically above another aeroplane at an instant when the angles of elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplane at that instant.

    Solution

    Let C and D be the position of two aeroplanes. The height of the aeroplane which is at point D be 3000 m and it passes another aeroplane vertically which is at point C. Let BC = x m. It is also given that the angles of elevation of two planes from the point A on the ground is 45° and 60° respectively.
    In right triangle ABC, we have
    tan space 45 degree space equals BC over AB
rightwards double arrow space space space space 1 space equals space straight x over AB
rightwards double arrow space space space space AB space equals space straight x space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABD, we have
    ]
    tan space 60 degree space equals space BD over AB
rightwards double arrow space space square root of 3 equals 3000 over AB
rightwards double arrow space space space AB space equals space fraction numerator 3000 over denominator square root of 3 end fraction space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    straight x space equals space fraction numerator 3000 over denominator square root of 3 end fraction
    Hence, vertical distance between the aeroplane
    = CD = BD - BC
    equals space 3000 space minus space fraction numerator 3000 over denominator square root of 3 end fraction
equals space fraction numerator 3000 square root of 3 minus 3000 over denominator square root of 3 end fraction
equals fraction numerator 3000 left parenthesis square root of 3 minus 1 right parenthesis over denominator square root of 3 end fraction
equals space fraction numerator 3000 cross times 0.732 over denominator 1.732 end fraction equals 1267.898 space straight M.

    Question 36
    CBSEENMA10008322

    A 7 m long flagstaff is fixed on the top of a tower on the horizontal plane. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 45° and 30° respectively. Find the height of the tower.

    Solution

    Let CD be the flagstaff whose height is 7 m, fixed on the tower BC of height h metres. From a point A on the ground the angles of elevation of top and bottom of the flagstaff are 45° and 30° respectively.
    In right triangle ABC, we have
    Tan space 30 degree space equals space BC over AB
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over AB
rightwards double arrow space space space AB space equals space square root of 3 straight h space space space space space space space... left parenthesis straight i right parenthesis

    In right triangle ABD, we have
    tan space 45 degree space space equals space BD over AB
rightwards double arrow space space space 1 space equals space fraction numerator BC plus CD over denominator AB end fraction
rightwards double arrow space space space 1 space equals space fraction numerator straight h plus 7 over denominator AB end fraction
rightwards double arrow space space space AB space equals space straight h space plus space 7 space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    square root of 3 straight h end root equals straight h plus 7
rightwards double arrow space space space square root of 3 straight h minus straight h equals 7
rightwards double arrow space space space straight h left parenthesis square root of 3 minus 1 right parenthesis space equals space 7
rightwards double arrow space space space space straight h space equals space fraction numerator 7 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
space space space space space space space space space space space equals space fraction numerator 7 open parentheses square root of 3 plus 1 close parentheses over denominator 3 minus 1 end fraction equals fraction numerator 7 straight x 2.732 over denominator 2 end fraction
space space space space space space space space space space space space equals space 9.56 space straight m.
    Hence, the height of the tower = 9.56 m.

    Question 37
    CBSEENMA10008323

    A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 metres away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and the width of the river. 

    Solution

    Let CD be the tree of height h m. Let B be the position of a man standing on the opposite bank of the river. After moving 40 m away from point B let new position of man be A i.e., AB = 40 m.
    The angles of elevation of the top of the tree from point A and B are 30° and 60° respectively, i.e., ∠CAD = 30° and ∠CBD = 60°. Let BC = x m.

    In right triangle BCD, we have
    tan space 60 degree space equals space CD over BC
rightwards double arrow space space square root of 3 equals straight h over straight x
rightwards double arrow space space space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 30 degree space space equals space CD over AC
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals space fraction numerator straight h over denominator straight x plus 40 end fraction
rightwards double arrow space space straight x space plus space 40 space equals space square root of 3 straight h
rightwards double arrow space space straight x space equals square root of 3 straight h minus 40 space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator square root of 3 end fraction equals square root of 3 straight h end root minus 40
rightwards double arrow space space straight h space equals space 3 straight h space minus space 40 square root of 3
rightwards double arrow space space minus 2 straight h space equals space minus 40 square root of 3
rightwards double arrow space space space space space space space straight h space equals space 20 space square root of 3
space space space space space space space space space space space space space equals space 20 space straight x space 1.732
space space space space space space space space space space space space space equals 34.64 space metres.
    Hence, the height of the tree is 34.64 metres. Now substituting the value of
    straight h equals space space 20 square root of 3 space space space space in space left parenthesis straight i right parenthesis comma space we space get
straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction
rightwards double arrow space space space straight x space equals space fraction numerator 20 square root of 3 over denominator square root of 3 end fraction
rightwards double arrow space space space straight x space equals space 20 space straight m
    Hence, the width of the river is 20 m.

    Question 38
    CBSEENMA10008324

    From a point 100 m above a lake, the angle of elevation of a stationary helicopter is 30° and the angle of depression of reflection of the helicopter in the lake is 60°. Find the height of the helicopter.

    Solution
    Let AB be the surface of the lake and P be the point of observation such that AP = 100 m. Let C be the position of the helicopter and C' be its reflection in the lake. Then,CB = C'B.

    Let PM be perpendicular from P on CB. Then, ∠CPM = 30° and ∠CPM = 60°.
    Let CM = h. Then, CB = h + 100 and CB = h + 100.
    In right incrementCMP,
    tan space 30 degree space equals space CM over PM rightwards double arrow fraction numerator 1 over denominator square root of 3 end fraction equals straight h over PM rightwards double arrow PM equals square root of 3 straight h space space space... left parenthesis straight i right parenthesis
    In right incrementPMC'
    tan space 60 degree space equals fraction numerator straight C apostrophe straight M over denominator PM end fraction rightwards double arrow square root of 3 equals fraction numerator straight C apostrophe straight B plus BM over denominator PM end fraction
space space space space space space space space space space rightwards double arrow space square root of 3 equals fraction numerator straight h plus 100 plus 100 over denominator PM end fraction
space space space space space space space space space space rightwards double arrow space PM equals fraction numerator straight h plus 200 over denominator square root of 3 end fraction space space space space space space space space space... left parenthesis ii right parenthesis
    From (i) and (ii), we get
    square root of 3 space straight h space equals space fraction numerator straight h plus 200 over denominator square root of 3 end fraction
rightwards double arrow space 3 straight h space equals space straight h plus 200
rightwards double arrow space 2 straight h space equals space 200 space rightwards double arrow space straight h space equals space 100

    Now, CB = CM + MB = h + 100 = 100 + 100 = 200
    Hence, the height of the helicopter from the surface of the lake = 200 m

    Question 39
    CBSEENMA10008325

    A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height y. At a point on the plane, the angles of elevation of the bottom and the top of the flagstaff are a and fi respectively. Prove that the height of the tower is  fraction numerator straight y space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction.

    Solution
    Let BD be the tower of height h m and CD be the flagstaff of height y m. Let A be the point on the plane such that the angles of elevation of the bottom and top of the flagstaff are α and β respectively.

    Let AB = x metres.
    In right triangle ABD, we have
    tan space straight alpha space equals space BD over AB
rightwards double arrow space tan space straight alpha space equals space straight h over straight x
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABC, we have
    tan space straight beta space equals space BC over AC
rightwards double arrow space space space tan space straight beta space equals space fraction numerator BD plus CD over denominator AC end fraction
rightwards double arrow space space space tan space straight beta space equals space fraction numerator straight h plus straight y over denominator straight x end fraction
rightwards double arrow space space space straight x space equals space fraction numerator straight h plus straight y over denominator tan space straight beta end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator tan space straight alpha end fraction space equals space fraction numerator straight h plus straight y over denominator tan space straight beta end fraction
rightwards double arrow space space space space space space space space straight h space tan space straight beta space equals space straight h space tan space straight alpha space plus space straight y space tan space straight alpha
rightwards double arrow space space space space space space space space straight h space tan space straight beta space minus space straight h space tan space straight alpha space equals space straight y space tan space straight alpha
rightwards double arrow space space space space space space space space straight h space left parenthesis tan space straight beta space minus space tan space straight alpha right parenthesis space equals space straight y space tan space straight alpha
rightwards double arrow space space space space space space space space straight h space equals space fraction numerator straight y space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction

    Sponsor Area

    Question 40
    CBSEENMA10008326

    If the angles of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake is β, prove that the height of the cloud is  

    straight h fraction numerator left parenthesis tan space straight beta space plus space tan space straight alpha right parenthesis over denominator tan space straight beta space minus space tan space straight alpha end fraction

    Solution

    Let AB be the surface of the lake and P be the position of the observer h metres above the lake. Let C be the cloud and C be the reflection in the cloud, then CB = C'B. It is also given that the angle of elevation of cloud from a point h m above a lake is α and angle of depression of its reflection is β.

    i.e., ∠CPQ = α
    and ∠QPC' = β.
    Let CQ = x m
    Then
    CB = CQ + BQ
    = CQ + PA
    = x + h

    In right triangle PQC, we have
    tan space straight alpha space equals space CQ over PQ
rightwards double arrow space tan space straight alpha space equals space fraction numerator straight x over denominator space PQ end fraction
rightwards double arrow space PQ space equals space fraction numerator straight x over denominator tan space straight alpha end fraction space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle PQC', we have
    tan space straight beta space space space space space space space space space space space equals space space space fraction numerator QC apostrophe over denominator PQ end fraction
rightwards double arrow space space space space space space tan space straight beta space space equals space fraction numerator BQ plus BC apostrophe over denominator PQ end fraction
rightwards double arrow space space space space space space tan space straight beta space space equals space fraction numerator straight h plus straight x plus straight h over denominator PQ end fraction
rightwards double arrow space space space space space space tan space straight beta space space equals space fraction numerator straight x plus 2 straight h over denominator PQ end fraction
rightwards double arrow space space space space space space PQ space space equals space fraction numerator straight x plus 2 straight h over denominator tan space straight beta end fraction space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight x over denominator tan space straight alpha end fraction space equals space fraction numerator straight x plus 2 straight h over denominator tan space straight beta end fraction
rightwards double arrow space space space space space space space space space space straight x space tan space straight beta space equals space straight x space tan space straight alpha space plus space 2 straight h space tan space straight alpha
rightwards double arrow space space space space space space straight x space tan space straight beta space minus space straight x space tan space straight alpha space equals space 2 straight h space tan space straight alpha
rightwards double arrow space space space space straight x space equals space fraction numerator 2 straight h space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction
    Hence, the height of the cloud
    space space BC space equals space straight x space plus space straight h
space space space space space space space equals space fraction numerator 2 straight h space tan space straight alpha over denominator tan space straight beta space minus tan space straight alpha end fraction plus straight h
equals fraction numerator 2 straight h space tan space straight alpha space plus straight h space left parenthesis tan space straight beta space minus space tan space straight alpha right parenthesis over denominator tan space straight beta space minus space tan space straight alpha end fraction
equals fraction numerator 2 straight h space tan space straight alpha plus straight h space tan space straight beta space minus space straight h space tan space straight alpha over denominator tan space straight beta minus space tan space straight alpha end fraction
equals space fraction numerator straight h space tan space straight beta space plus space straight h space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction
equals space fraction numerator straight h space left parenthesis tan space straight beta space plus space straight h space tan space straight alpha right parenthesis over denominator tan space straight beta space minus space tan space straight alpha end fraction
    Hence, the height of the cloud is
    fraction numerator straight h left parenthesis tan space straight beta space plus space tan space straight alpha right parenthesis over denominator tan space straight beta space minus space tan space straight alpha end fraction space straight m

    Question 41
    CBSEENMA10008327

    A round balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β. Prove that the height of the centre of the balloon is r sin β . cosec α/2.

    Solution
    Let P be the eye of observer. Let PA and PB are tangents to the round balloon.

    PX is the horizontal line and CQ ⊥ PQ. It is given that
    angle APB space equals space straight alpha
therefore space angle CPA space equals space angle CPB space equals space straight alpha over 2
and space angle CPX space equals space straight beta

    Let height of the centre C be h m and CA = CB = r
    In right triangle CBP, we have

    sin space open parentheses straight alpha over 2 close parentheses equals BC over CP
rightwards double arrow space sin space open parentheses straight alpha over 2 close parentheses equals straight r over CP
rightwards double arrow space CP space equals space fraction numerator straight r over denominator sin open parentheses begin display style straight alpha over 2 end style close parentheses end fraction
rightwards double arrow space CP space equals space straight r space cosec space straight alpha over 2
    In right triangle CPQ, we have 
    sin space straight beta space equals space CQ over CP
rightwards double arrow space space CQ space equals space CP space sin space straight beta
rightwards double arrow space space space CQ space equals space straight r space cosec space straight alpha over 2 space sin space straight beta
    Hence, the height of the centre
     

    = r sin straight beta space cosec space straight alpha over 2
    Question 42
    CBSEENMA10008328

    If the angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake be β. Prove that the distance of the cloud from the point of observer is  fraction numerator 2 straight h space sec space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction.

    Solution

    et AB be the surface of the lake and 'P' be the position of the observer h metres above the lake. Let C be the cloud and C' be the reflection in the cloud. Then CB = C'B. It is also given that the angle of elevation of cloud from a point h m above a lake is α and angle of depression of its reflection be β. i.e., ∠CPQ = α and ∠QPC' = β. Let CQ = xm.
    In right triangle PQC, we have

    In right triangle PQC, we have
    sin space straight alpha space equals space CQ over CP
rightwards double arrow space sin space straight alpha space equals space straight x over CP
rightwards double arrow space space space space straight x space equals space CP space sin space straight alpha space space space space space space space space space space space... left parenthesis straight i right parenthesis
and space space space tan space straight alpha space space equals space CP over PQ
rightwards double arrow space space space tan space straight alpha space equals space straight x over PQ
rightwards double arrow space space space PQ space equals space fraction numerator straight x over denominator tan space straight alpha end fraction space space space space space space space space space space space... left parenthesis ii right parenthesis
    In right triangle PQC', we have
    tan space straight beta space space equals space fraction numerator QC apostrophe over denominator PQ end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator BQ space plus space BC apostrophe over denominator PQ end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h plus straight x plus straight h over denominator PQ end fraction
rightwards double arrow space space space PQ space equals space fraction numerator 2 straight h plus straight x over denominator tanβ end fraction space space space space space space space space space space space space space space space... left parenthesis iii right parenthesis
    Comparing (ii) and (iii), we get
    fraction numerator straight x over denominator tan space straight alpha end fraction space equals space fraction numerator 2 straight h plus straight x over denominator tan space straight beta end fraction
straight x space tan space straight beta space equals space 2 straight h space tan space straight alpha space plus straight x space tan space straight alpha
rightwards double arrow space straight x space tan space straight beta space minus space straight x space tan space straight alpha space equals space 2 straight h space tan space straight alpha
rightwards double arrow space straight x left parenthesis tan space straight beta space minus space tan space straight alpha right parenthesis space equals space 2 straight h space tan space straight alpha
rightwards double arrow space straight x space equals space fraction numerator 2 straight h space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction space space space space space space space space space space space space space space... left parenthesis iv right parenthesis
    Comparing (i) and (iv), we get
    CP space sin space straight alpha space equals space fraction numerator 2 straight h space tan space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction
CP space equals space fraction numerator 2 straight h space tan space straight alpha over denominator sin space straight a left parenthesis tan space straight beta space minus space tan space straight alpha right parenthesis end fraction
space space space space space equals space fraction numerator 2 straight h over denominator cos space straight alpha end fraction cross times fraction numerator sin space straight alpha over denominator sin space straight alpha end fraction cross times fraction numerator 1 over denominator left parenthesis tan space straight beta minus tan space straight alpha right parenthesis end fraction
space space space space space equals space fraction numerator 2 straight h space sin space straight alpha over denominator sin space straight alpha space cos space straight alpha end fraction cross times fraction numerator 1 over denominator tan space straight beta space minus space tan space straight alpha end fraction
space space space space space equals space space fraction numerator 2 straight h over denominator cos space straight alpha end fraction cross times fraction numerator 1 over denominator tan space straight beta minus tan space straight alpha end fraction
space space space space space equals space space fraction numerator 2 straight h space sec space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction
    Hence, the distance of the cloud from the point of observer is fraction numerator 2 straight h space sec space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction.

    Question 43
    CBSEENMA10008329

    From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive stones on opposite sides of the aeroplane are observed to be α and β. Show that the height in miles of aeroplane above the road is given by  fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight alpha space plus space tan space straight beta end fraction.

    Solution

    Let D be the vertical position of the aeroplane of height h mile i.e., CD = h miles. Let A and B are the position of two stones on opposite sides of the aeroplane which are at a distances of 1 mile from each other. It is also given that the angles of depression of these stones from the aeroplane are α and β respectively.
    i.e.,    ∠CAD = α and ∠CBD = β
    Let AC = x then BC = 1-x

    In right triangle ACD, we have
    rightwards double arrow space space space space space space space space tan space straight alpha space space space equals space CD over AC
rightwards double arrow space space space space space space space space tan space straight alpha space space space equals space space straight h over straight x
space space space space space space space space space space space space space space space space space space straight x space equals space space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BCD, we have
    tan space straight beta space equals space CD over BC
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator 1 minus straight x end fraction
rightwards double arrow space space space 1 space minus straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space space straight x space equals space 1 minus fraction numerator straight h over denominator tan space straight beta end fraction space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator tan space straight alpha end fraction space equals space 1 space minus space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space fraction numerator straight h over denominator tan space straight alpha end fraction plus fraction numerator straight h over denominator tan space straight beta end fraction equals 1
rightwards double arrow space space space fraction numerator straight h space tan space straight beta space plus space straight h space tan space straight alpha over denominator tan space straight alpha space. space tan space straight beta end fraction equals 1
rightwards double arrow space space space straight h space left parenthesis tan space straight beta space plus space tan space straight alpha right parenthesis space equals space tan space straight alpha space. space tan space straight beta
rightwards double arrow space space space straight h space equals space fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight beta space plus space tan space straight alpha end fraction
    Hence, the height of the aeroplane above the road in miles be fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight beta space plus space tan space straight alpha end fraction.

    Question 44
    CBSEENMA10008330

    From the top of a lighthouse the angle of depression of two ships on the opposite sides of it are observed to be α and β. If the height of the light house be h metres and the line joining the ships passes through the foot of the lighthouse. Show that the distance

     between the ship is fraction numerator straight h left parenthesis tan space straight alpha space plus space tan space straight beta right parenthesis over denominator tan space straight alpha space minus space tan space straight beta end fraction metres.

    Solution
    Let AD be the lighthouse whose height is h metres. 13 and C are the position of two ships which are on opposite sides of lighthouse. The angles of depression of two ships B and C from the top of the lighthouse are α and β respectively.

    i.e.,    ∠ABD = α and ∠ACD = β
    Let    BD = x m and CD = y m
    In right triangle ABD, we jave
    tan space straight alpha space equals space AD over BD
rightwards double arrow space tan space straight alpha space equals space straight h over straight x
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space straight beta space equals space AD over CD
rightwards double arrow space tan space straight beta space equals space straight h over straight y
rightwards double arrow space space straight y space equals space fraction numerator straight h over denominator tan space straight beta end fraction space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Adding (i) and (ii), we get
    straight x plus straight y space equals space fraction numerator straight h over denominator tan space straight alpha end fraction plus fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space space BC space equals space fraction numerator straight h space tan space straight beta space plus space straight h space tan space straight alpha over denominator tan space straight alpha space tan space straight beta end fraction
space space space space space space space space space space space space equals space fraction numerator straight h left parenthesis tan space straight beta space plus space straight h space tan space straight alpha right parenthesis over denominator tan space straight alpha space tan space straight beta end fraction
    Hence, the distance between the ship is fraction numerator straight h left parenthesis tan space straight beta space plus space straight h space tan space straight alpha right parenthesis over denominator tan space straight alpha space tan space straight beta end fraction metres.

    Question 45
    CBSEENMA10008331

    A ladder rests against a wall at an angle α to the horizontal, its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that  straight a over straight b equals fraction numerator cos space straight alpha space minus space cos space straight beta over denominator sin space straight beta space minus space sin space straight alpha end fraction.

    Solution

    Let BC be the ladder which slides down a distance b on the wall.
    In right triangle ABC, we have
    sin space straight alpha space equals space AB over BC equals fraction numerator AE plus EB over denominator BC end fraction
sin space straight alpha space equals space fraction numerator AE plus straight b over denominator BC end fraction
But comma space AE space equals space sin space straight beta space straight x space ED space space space left parenthesis In space increment space AED right parenthesis
    So, replacing AE by ED sin β, we get 
    sin space straight alpha space equals space fraction numerator ED space sin space straight beta space plus space straight b over denominator BC end fraction
rightwards double arrow space space space space space straight b space equals space BC space sin space straight alpha space minus space ED space Sin space straight beta

    As, BC and ED both represent the same ladder.
    BC = ED. (length of ladder does not change)
    ⇒ BC sin α - BC sin β = b
    ⇒ BC (sin α - sin β) = b    ...(i)
    Similarly, in right triangle AED, we have
    cos space straight beta space equals space AD over ED equals fraction numerator AC plus CD over denominator ED end fraction
cos space straight beta space equals space fraction numerator AC plus straight a over denominator ED end fraction
But comma space space space AC space equals space BC space cos space straight alpha space space space left parenthesis In space increment space ABC right parenthesis space
    So, by replacing AC by BC cos α, we get ED cos β = BC cos α + a BC (cos . - cos α) = a [∴ ED = BC] ...(ii) Dividing (ii) by (i), we get
    straight a over straight b equals fraction numerator cos space straight beta space minus space cos space straight alpha over denominator sin space straight alpha minus space sin space straight beta end fraction
straight a over straight b equals fraction numerator cos space straight alpha space minus space cos space straight beta over denominator sin space straight beta space minus space sin space straight alpha end fraction

     

    Question 46
    CBSEENMA10008332

    From a window h metres above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are ө and φ respectively. Show that the height of the opposite house is h ( 1 + tan ө. cot φ).

    Solution
    Let C be the position of a window of house AC which is h metres above the ground, i.e., AC = h m. BE be the house on the opposite side of the street. The angle of elevation and depression of the top and foot of the opposite house from the window C be ө and φ respectively.

    i.e.,    ∠DCE = ө
    and    ∠BCD - φ.
    Let    DE = x m
    In right triangle CDE, we have
    tan space straight theta space equals space DE over CD
rightwards double arrow space space tan space straight theta space equals space straight x over CD
rightwards double arrow space space CD space equals space fraction numerator straight x over denominator tan space straight theta end fraction
rightwards double arrow space space CD space equals space straight x space cot space straight theta space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BCD, we have
    tan space straight phi space equals space BD over CD
rightwards double arrow space CD space equals space fraction numerator Bd over denominator tan space straight phi end fraction
rightwards double arrow space space CD space equals space fraction numerator straight h over denominator tan space straight phi end fraction
rightwards double arrow space space CD space equals space straight h space cot space straight phi space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    straight x space cot space straight theta space equals space straight h space cot space straight phi
rightwards double arrow space space space space space space straight x space equals space fraction numerator straight h space cot space straight phi over denominator cot space straight theta end fraction
rightwards double arrow space space space space space space straight x space equals space straight h space cot space straight phi. space tan space straight theta

    Hence, height of the opposite house (BE)
    = BD + DE
    = h + x
    = h + h cot φ . tan ө
    = h (1 + cot φ . tan ө).

    Question 47
    CBSEENMA10008333

    From the top of a tower the angles of depression of two objects on the same side of the tower are found to be α and β (α > β). If the distance between the objects is p metres,

    show that the height It of the tower is given by h = fraction numerator straight p space tan space straight alpha. space tan space straight beta over denominator tan space straight alpha space minus space tan space straight beta end fraction Also, determine the height of the tower if p = 50 metres, α = 60°, β = 30°.

    Solution
    Case I : Let AB be the tower whose height is h metres. D arid C are the position of two objects which are p metres apart from each other. The angles of depression of two objects D and C from the top of the tower be β and α respectively.

    i.e.,    ∠BDA = β and ∠BCA = α
    In right triangle ABC, we have
    tan space straight alpha space equals space AB over BC
rightwards double arrow space space tan space straight alpha space equals space straight h over straight x
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABD, we have
    tan space straight beta space equals space AB over BD
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator BC plus CD end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator straight x plus straight p end fraction
rightwards double arrow space space straight x plus straight p space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus straight p space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator tan space straight alpha end fraction space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus straight p
rightwards double arrow space straight p space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus fraction numerator straight h over denominator tan space straight alpha end fraction
rightwards double arrow space straight p space equals space fraction numerator straight h space tan space straight alpha space minus space straight h space tan space straight beta over denominator tan space straight beta. space tan space straight alpha end fraction
rightwards double arrow space straight p space tan space straight beta. space tan space straight alpha space equals space straight h space left parenthesis tan space straight alpha space minus space tan space straight beta right parenthesis
rightwards double arrow space space space space space straight h space equals space fraction numerator straight p space tan space straight beta space tan space straight alpha over denominator tan space straight alpha space minus space tan space straight beta end fraction
    Case II : p = 50 m, α = 60°, β = 30°.
    straight h space equals space fraction numerator 50 space tan space 30 degree space tan space 60 degree over denominator tan space 60 degree space minus space tan space 30 degree end fraction
equals space fraction numerator 50 cross times begin display style fraction numerator 1 over denominator square root of 3 end fraction end style square root of 3 over denominator square root of 3 minus begin display style fraction numerator 1 over denominator square root of 3 end fraction end style end fraction
equals fraction numerator 50 over denominator begin display style fraction numerator 3 minus 1 over denominator square root of 3 end fraction end style end fraction equals fraction numerator 50 square root of 3 over denominator 2 end fraction equals 25 square root of 3
    = 20 x 1.732 = 43.25 m.
    Hence, height of the tower is 43.25 m.

    Question 48
    CBSEENMA10008334

    The angle of elevation of a cliff from a fixed point is ө. After going up a distance of K metres towards the top of the cliff at an angle of φ, it is found that the angle of elevation

    is α. Show that the height of the cliff is  fraction numerator straight k left parenthesis cos space straight phi space minus space sin space straight phi. space cot space straight alpha right parenthesis over denominator cot space straight theta space minus space cot space straight alpha end fraction.

    Solution
    Let CE be a cliff of height h m. Angle of elevation of cliff from a fixed point A be ө.

    i.e., ∠CAE = ө. ∠CAF = φ and AF = k metres. From F draw FD and FB perpendiculars on CE and AC respectively. It is also given that ∠DFE = α.
    In right triangle ABF, we have
    cos space straight phi space equals space AB over AF
rightwards double arrow space space space space cos space straight phi space equals space AB over straight K
rightwards double arrow space space space space AB space equals space straight K space cos space straight phi
and space space sin space straight phi space space equals space BF over AF
rightwards double arrow space space space space sin space straight phi space BF over straight K
rightwards double arrow space space space space space BF space equals space straight k space sin space straight phi
    In right triangle ACE, we have
    tan space straight theta space equals space CE over AC
rightwards double arrow space space tan space straight theta space equals space straight h over AC
rightwards double arrow space space AC space equals space fraction numerator straight h over denominator tan space straight theta end fraction space equals space straight h space cot space straight theta
Now comma space space space space DF space equals space BC space equals space AC minus AB
space space space space space space space space space space space space space equals space straight h space cot space straight theta space minus space straight k space cos space straight phi

    And,    DE = CE - CD = CE - BF
    = h - k sin φ.
    In right triangle DFE, we have
    tan space straight alpha space space equals space DE over DF
rightwards double arrow space space space space fraction numerator 1 over denominator cot space straight alpha end fraction equals fraction numerator straight h space minus space straight K space sin space straight phi over denominator straight h space cot space straight theta space minus space straight K space cos space straight phi end fraction
    rightwards double arrow space straight h space cot space straight theta space minus straight K space cos space straight phi space equals space cot space straight alpha space left parenthesis straight h minus straight K space sin space straight phi right parenthesis
rightwards double arrow space straight h space cot space straight theta space minus space straight K space cos space straight phi space equals space space straight h space cot space straight alpha space minus space straight K space sin space straight phi space cot space straight alpha
rightwards double arrow space straight h space cot space straight theta space minus space straight h space cot space straight alpha space equals space space straight k space cos space straight phi space minus space straight k space sin space straight phi space cot space straight alpha
rightwards double arrow space straight h space equals space fraction numerator straight K left parenthesis cos space straight phi space minus space sin space straight phi space cot space straight alpha right parenthesis over denominator cot space straight theta space minus space cot space straight alpha end fraction
    Hence, the height of the cliff is
    fraction numerator straight K open parentheses cos space straight phi space minus space sin space straight phi. space cot space straight alpha close parentheses over denominator cot space straight theta space minus space cot space straight alpha end fraction

    Question 49
    CBSEENMA10008335

    Two stations due south of a leaning tower which leans towards the north are at distances a and b from its foot. If, α, β, are the elevations of the top of the tower from these stations,

    prove that its inclination ө to the horizontal is given by cot  straight theta space equals space fraction numerator straight b space cot space straight phi space minus space straight a space cot space straight beta over denominator straight b space minus straight a space end fraction

    Solution

    Let CE be the leaning tower. Let A and B be two given stations at distances a and b respectively from the foot of the tower.
    Let CD = x and DE = h
    In right triangle CDE, we have
    tan space straight theta space equals space DE over CD
rightwards double arrow space space tan space straight theta space space equals space straight h over straight x

    rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight theta end fraction equals straight h space cot space straight theta space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BDE, we have
    tan space straight alpha space space equals space DE over BD
rightwards double arrow space space tan space straight alpha space equals space fraction numerator DE over denominator BC plus CD end fraction
rightwards double arrow space space tan space straight alpha space equals space space fraction numerator straight h over denominator straight a plus straight x end fraction
rightwards double arrow space space straight a space plus space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction
rightwards double arrow space space space straight a space plus space straight x space equals space straight h space cot space straight alpha
rightwards double arrow space space space space straight x space equals space straight h space cot space straight alpha space minus space straight a space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    In right triangle ADE, we have
    tan space straight beta space equals space DE over AD
rightwards double arrow space tan space straight beta space equals space fraction numerator DE over denominator AC plus CD end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator straight b plus straight x end fraction
rightwards double arrow space space straight b plus straight x equals fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight b plus straight x equals space straight h space cot space straight beta
rightwards double arrow space space straight x space equals space straight h space cot space straight beta space minus space straight b space space space space space space space space space space space... left parenthesis iii right parenthesis
    Comparing (i) and (ii), we get
    straight h space cot space straight theta space equals space straight h space cot space straight alpha space minus space straight a
rightwards double arrow space straight h space cot space straight alpha space minus space straight h space cot space straight theta space equals space straight a
rightwards double arrow space straight h space left parenthesis cot space straight alpha space minus space cot space straight theta right parenthesis space equals space straight a
straight h space equals space fraction numerator straight a over denominator cot space straight alpha space minus space cot space straight theta end fraction space space space space space space space space space space space space space space space space space space space space space... left parenthesis iv right parenthesis
    Comparing (i) and (iii), we get
    straight h space cot space straight theta space equals space straight h space cot space straight beta space minus space straight b
rightwards double arrow space straight h space cot space straight beta space minus space straight h space cot space straight theta space equals space straight b
rightwards double arrow space straight h space left parenthesis cot space straight beta space minus space cot space straight theta right parenthesis space equals space straight b
straight h space equals space fraction numerator straight b over denominator cot space straight beta space minus space cot space straight theta end fraction space space space space space space space space space space space space space space space space space space... left parenthesis straight v right parenthesis
    Comparing (iv) and (v), we get
    fraction numerator straight a over denominator cot space straight alpha space minus space cot space straight theta end fraction space equals space fraction numerator straight b over denominator cot space straight beta minus cot space straight theta end fraction
    rightwards double arrow space space straight a left parenthesis cot space straight beta space minus space cot space straight theta right parenthesis space equals space straight b left parenthesis cot space straight alpha space minus space cot space straight theta right parenthesis
rightwards double arrow space space straight a left parenthesis cot space straight beta space minus space straight a space cot space straight theta right parenthesis space equals space straight b space cot space straight alpha space minus space straight b space cot space straight theta
rightwards double arrow space space straight b space cot space straight theta space minus straight a space cot space straight theta space equals straight b space cot space straight alpha space minus space straight a space cot space straight beta
rightwards double arrow space cot space straight theta space left parenthesis straight b minus straight a right parenthesis space equals space straight b space cot space straight alpha minus space straight a space cot space straight beta
rightwards double arrow space space space space space space space cot space straight theta space equals space fraction numerator straight b space cot space straight alpha space minus space straight a space cot space straight beta over denominator straight b minus straight a end fraction
    Hence, inclination ө to the horizontal is given by cot straight theta space equals space fraction numerator straight b space cot space straight alpha space minus space straight a space cot space straight beta over denominator straight b minus straight a end fraction

    Question 50
    CBSEENMA10008336

    A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point A on the ground is 60° and the angle of depression of the point A from the top of the tower is 45°. Find the height of the tower.

    Solution
    Let BC be the height of the tower and CD be the pole of height 5m fixed on the top of the tower. Let BC = h m.

    The angle of elevation of top of the pole from point A on the ground be 60° and the angle of depression of the point A from the top of the tower be 45°, i.e. ∠ BAD = 60° and ∠ BAC = 45°.
    In right triangle ABC, we have
    tan space 45 degree space equals space BC over AB
rightwards double arrow space space space 1 space space equals space straight h over AB
rightwards double arrow space space space AB space equals space space straight h space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis space space space space space space space space space space space space space space space space space space space space space space

    In right triangle ABD, we have

    tan space 60 degree space equals space space BD over AB
rightwards double arrow space space square root of 3 equals fraction numerator BC plus CD over denominator AB end fraction
rightwards double arrow space space square root of 3 equals fraction numerator straight h plus 5 over denominator AB end fraction
rightwards double arrow space space AB space equals space fraction numerator straight h plus 5 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    rightwards double arrow space space space space space space space space square root of 3 space straight h space minus space straight h space equals space 5
rightwards double arrow space space space space space space space space straight h left parenthesis square root of 3 space minus space 1 right parenthesis space equals space 5
rightwards double arrow space space space space space space straight h space equals space fraction numerator 5 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
rightwards double arrow space space space space space space straight h space equals space fraction numerator 5 left parenthesis square root of 3 plus 1 right parenthesis over denominator open parentheses square root of 3 close parentheses squared minus left parenthesis 1 right parenthesis squared end fraction equals fraction numerator 5 left parenthesis square root of 3 plus 1 right parenthesis over denominator 2 end fraction
straight h space equals space fraction numerator straight h plus 5 over denominator square root of 3 equals end fraction
rightwards double arrow space space space square root of 3 straight h space equals space straight h plus 5 space space space space space equals space fraction numerator 5 straight x 2.732 over denominator 2 end fraction equals 5 straight x 1.366 space equals space 3.83 space straight m
    Hence, height of the tower be 6.83 m.



    Question 51
    CBSEENMA10008337

    Two ships are sailing in the sea on the either side of the lighthouse, the angles of depression of two ships as observed from the top of the lighthouse are 60° and 45° respectively. If the distance between the ships is 200 open parentheses fraction numerator square root of 3 plus 1 over denominator square root of 3 end fraction close parentheses straight m. Find the height of the lighthouse.

    Solution
    Let AD be the lighthouse of height h m B and C are the position of the two ships which are on the either side of the road. The angles of depression of the ships from the top of the light house be 60° and 45°, ie., ∠ABD = 60 and ∠ACD = 45°

    Let BD = x m and CD = y m.
    In right triangle ABD, we have
    tan space 60 degree space equals space AD over BD
rightwards double arrow space space space square root of 3 equals straight h over straight x
rightwards double arrow space space space space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ACD, we have
    tan space 45 degree space space equals space AD over CD
rightwards double arrow space space space space space space space space space space space space space space 1 space equals space straight h over straight y
rightwards double arrow space space space space space space space space space space space space space space space straight y space equals space straight h space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Adding (i) and (ii), we get
    straight x space plus space straight y space equals space fraction numerator straight h over denominator square root of 3 end fraction space plus space straight h
rightwards double arrow space space 200 open parentheses fraction numerator square root of 3 plus 1 over denominator square root of 3 end fraction close parentheses equals fraction numerator straight h plus square root of 3 straight h end root over denominator square root of 3 end fraction
rightwards double arrow space 200 space open parentheses fraction numerator square root of 3 plus 1 over denominator square root of 3 end fraction close parentheses equals fraction numerator straight h left parenthesis 1 plus square root of 3 right parenthesis over denominator square root of 3 end fraction
rightwards double arrow space space space space straight h space equals space 200
    Hence, the height of the light house = 200 m.

    Question 52
    CBSEENMA10008338

    A boy is standing on the ground and flying a kite with a string of length 150 m, at an angle of elevation of 30°. Another boy is standing on the roof of a 25 m high building and is flying his kite at an elevation of 45°. Both the boys are on opposite sides of both the kites. Find the length of the string (in mts), correct to two decimal places, that the second boy must have so that the two kites meet.

    Solution
    Let A be the boy and F is the position of kite. Let BF be vertical height of the kite and AF is the length of the string i.e. AF = 150 m. It is given that ∠BAF = 30°.

    In right triangle ABF, we have
    sin space 30 degree space space equals space BF over AF
rightwards double arrow space space 1 half equals fraction numerator BE plus EF over denominator AF end fraction
rightwards double arrow space space 1 half equals fraction numerator 25 plus EF over denominator 150 end fraction
rightwards double arrow space space space 2 left parenthesis 25 plus EF right parenthesis space equals space 150
rightwards double arrow space space space 50 space plus space 2 EF space equals space 150
rightwards double arrow space space space space space space 2 EF space space space equals space 100
rightwards double arrow space space space space space space space space EF space space equals space 50 space space space space space space

    Let D be the position of second boy and DF be the length of second kite. It is given ∠EDF = 45°.
    In right triangle DEF, we have
    sin space 45 degree space equals space EF over FD
rightwards double arrow space space fraction numerator 1 over denominator square root of 2 end fraction equals 50 over FD
rightwards double arrow space space space FD space space equals space 50 square root of 2
    Hence, the length of the string = 50 square root of 2 space straight m.

    Question 53
    CBSEENMA10008339

    A man is standing on the deck of a ship, which is 10 m above water level. He observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill.

    Solution

    Let C be position of the man. AB be the water level, and BH be the hill. The angles of elevation of the top and depression of foot from the deck of the ship be 60° and 30° respectively.
    i.e., ∠DCH = 60° and ∠BCD = 30°

    Let    HD = x m
    In right triangle CDH, we have
    tan space 60 degree equals HD over CD
rightwards double arrow space space square root of 3 space equals space straight x over CD
rightwards double arrow space space CD space equals space fraction numerator straight x over denominator square root of 3 end fraction space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle CDB, we have
    tan space 30 degree space equals space BD over CD
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals 10 over CD
rightwards double arrow space space space CD space equals space 10 square root of 3 space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Hence, distance of the ship from the hill equals 10 square root of 3 space straight m.
    Comparing (i) and (ii), we get
    fraction numerator straight x over denominator square root of 3 end fraction equals 10 square root of 3 space straight m
rightwards double arrow space space straight x space equals space 10 square root of 3 space straight m space straight x space square root of 3 space equals space 30 space straight m.

    Now, total height of the hill
    = BD + DH = 10 + x
    = 10 + 30 = 40 m
    Hence, height of the hill = 40 m.

     

    Question 54
    CBSEENMA10008340

    At a point on level ground, the angle of elevation of a vertical tower is found to be such that its tangent is 5/12. On walking 192 metres towards the tower, the tangents of the angle is found to be 3/4. Find the height of the tower.

    Solution
    Let AB be the tower of height lim.D and C are points on the level ground such that distance between them are 192 mts. Let the angles of elevation of a vertical tower from points D and C be α and β respectively.

    i.e.,    ∠ACB = β
    and    ∠ADB = α
    Let    BC = x metres
    In right triangle ABC, we have
    tan space straight beta space equals space AB over BC
rightwards double arrow space space space tan space straight beta space equals space straight h over straight x
rightwards double arrow space space space 3 over 4 space equals space straight h over straight x
rightwards double arrow space space space space 3 straight x space equals space 4 straight h
rightwards double arrow space space space space straight x space equals space fraction numerator 4 straight h over denominator 3 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    In right triangle ABD, we have
    tan space straight alpha space equals space AB over BD
rightwards double arrow space space tan space straight alpha space equals space fraction numerator straight h over denominator straight x plus 192 end fraction
rightwards double arrow space space 5 left parenthesis straight x plus 192 right parenthesis space equals space 12 straight h
rightwards double arrow space space 5 straight x space plus space 960 space equals space 12 straight h
rightwards double arrow space space 5 straight x space equals space 12 straight h space minus space 960
rightwards double arrow space space straight x space equals space fraction numerator 12 straight h minus 960 over denominator 5 end fraction space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator 4 straight h over denominator 3 end fraction equals fraction numerator 12 straight h minus 960 over denominator 5 end fraction
rightwards double arrow space space 20 straight h space equals space 3 space left parenthesis 12 straight h space minus space 960 right parenthesis
rightwards double arrow space space 20 straight h space equals space 36 straight h space equals space minus 2880
rightwards double arrow space space minus 16 straight h space equals space minus 2880
rightwards double arrow space space space space space space straight h space equals space 180 space straight m
    Hence, the height of the tower be 180 mts.

    Question 55
    CBSEENMA10008341

    The horizontal distance between two towers is 140 m. The angles of depression of the first tower, when seen from the top of the second tower is 30°. If the height of the first tower is 60 m. Find the height of the second tower.

    Solution

    AD and BE are two towers. The angle of depression of 1st tower (AD), when seen from the top of 2nd tower (BE) is 30°.
    i.e.,    ∠CDE = 30°.
    It is given that
    AD = 60 m
    and    AB = CD = 140 m.

    Let height of 2nd tower BE be h metres.
    In right triangle CDE, we have

    Hence, the height of the second tower is 140.83 m.

    Question 56
    CBSEENMA10008342

    A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing finds the angle of elevation of the same bird to be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.  


    Solution

    Let A be the position of boy D, be the position of girl and F be the position of kite, such that AF - 100 m; CD = 20 m; ∠BAF = 30° and ∠EDF = 45°
    In right triangle ABF, we have
    sin space 30 degree space equals space BF over AF
rightwards double arrow space space 1 half equals fraction numerator BE plus EF over denominator 100 end fraction
rightwards double arrow space space space 1 half equals fraction numerator 20 plus EF over denominator 100 end fraction space space space space left square bracket therefore space BE space equals space CD space equals space 20 straight m right square bracket
    rightwards double arrow space space 2 left parenthesis 20 space plus space EF right parenthesis space equals space 100
rightwards double arrow space space 40 space plus space 2 space EF space equals space 100
rightwards double arrow space space space 2 space EF space equals space 60
rightwards double arrow space space EF space equals space 30 space straight m

    Let DF be the length of the second kite.
    Now, in right triangle DEF, we have
    sin space 45 degree space equals space EF over DF
rightwards double arrow space space fraction numerator 1 over denominator square root of 2 end fraction equals 30 over DF
rightwards double arrow space space space space DF space equals space 30 square root of 2 straight m
    Hence, the length of te string = 30 square root of 2 straight m.
    Hence, the usual speed of the aircraft be x km/hr = 750 km/hr.

    Question 57
    CBSEENMA10008343

    From the top of a building 100 m high, the angles of depression of the top and bottom of a tower are observed to be 45° and 60° respectively. Find the height of the tower. Also find the distance between the foot of the building and bottom of the tower.

    Solution

    Let CD be the building such that CD = 100 m.
    Let AB be the tower of height h metre. It is given that the angles of depression of the top A and the bottom B of the lower AB are 45° and 60° respectively.
    i.e.,    ∠EAC = 45° and ∠DBC = 60°
    Let    BD = AE = x
    In right triangle AEC, we have
    tan space 45 degree space equals space CE over AE
rightwards double arrow space space space space space space 1 space equals space fraction numerator 100 minus straight h over denominator straight x end fraction
rightwards double arrow space space space space space space space straight x equals space 100 space minus space straight h space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle BDC, we have
    tan space 60 degree space equals space CD over BD
rightwards double arrow space space square root of 3 space equals space 100 over straight x
rightwards double arrow space space straight x space equals space fraction numerator 100 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    100 minus straight h space equals space fraction numerator 100 over denominator square root of 3 end fraction
rightwards double arrow space space space square root of 3 left parenthesis 100 minus straight h right parenthesis space equals space 100
rightwards double arrow space space space 100 square root of 3 minus square root of 3 straight h end root space equals space 100
rightwards double arrow space space square root of 3 straight h end root equals space 100 square root of 3 minus 100
rightwards double arrow space straight h space equals space fraction numerator 100 square root of 3 minus 100 over denominator square root of 3 end fraction
rightwards double arrow space space straight h space equals space fraction numerator 100 left parenthesis square root of 3 minus 1 right parenthesis over denominator square root of 3 end fraction
rightwards double arrow space space straight h space equals space fraction numerator 100 left parenthesis 17.32 minus 1 right parenthesis over denominator 1.732 end fraction
space space space space space space space equals space fraction numerator 100 straight x space 0.732 over denominator 1.732 end fraction equals fraction numerator 73.2 over denominator 1.732 end fraction equals 42.26 space straight m
    Hence,Height of tower (AB) = 42.26 m.

    Question 58
    CBSEENMA10008344

    The angles of depression of the top and bottom of an 8 m tall building from the top of a multistoreyed building are 30° and 45° respectively. Find the height of the multistoreyed building and the distance between the two buildings. 

    Solution
    Let PC denote the multistroyed building and AB denotes the 8 m tall building.

    We have ∠PBD = 30° and ∠PAC = 45°
    Let    PD = h and AC = BD = x
    Now, in increment BPD, tan 30PD over BD
    rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space space space straight x space equals space square root of 3 space straight h space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In space increment space DAC comma space tan space 45 degree space equals space PC over AC
rightwards double arrow space space 1 space equals space fraction numerator straight h plus 8 over denominator straight x end fraction
rightwards double arrow space space space straight x space equals space straight h space plus space 8 space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we gel
    square root of 3 straight h space equals space straight h space plus 8
rightwards double arrow space space square root of 3 space straight h space minus straight h space equals space 8
rightwards double arrow space space straight h left parenthesis square root of 3 minus 1 right parenthesis space equals space 8
rightwards double arrow space space straight h space equals space fraction numerator 8 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction equals fraction numerator 8 left parenthesis square root of 3 plus 1 right parenthesis over denominator 3 minus 1 end fraction
equals space fraction numerator 8 open parentheses square root of 3 plus 1 close parentheses over denominator 2 end fraction equals 4 open parentheses square root of 3 plus 1 close parentheses
    Now, total height of mullistroycd building
    equals space straight h space plus space 8 space equals space 4 left parenthesis square root of 3 plus 1 right parenthesis space plus space 8
equals space 4 left square bracket square root of 3 plus 1 plus 2 right square bracket space equals space 4 left square bracket square root of 3 plus 3 right square bracket
    And distance between two buildings(x)
    equals space straight h plus 8 equals 4 open parentheses square root of 3 plus 1 close parentheses space plus 8
equals 4 open parentheses square root of 3 plus 1 plus 2 close parentheses equals 4 left parenthesis 3 plus square root of 3 right parenthesis space met.

    Question 59
    CBSEENMA10008345

    There are two poles, one each on cither bank of a river, just opposite to each other. One pole is 60 m high. From the top of this pole, the angles of depression of the top and the foot of the other pole are 30° and 60° respectively. Find the width of the river and the height of the other pole. 

    Solution

     Let AB be the first pole such that AB = 60 m. Let the weight of the second pole be n metre. It is given that the angles of depression of the top A and the bottom B of the pole AB are 30° and 60° respectively.
    ∴ ∠ACE = 30° and ∠ADB = 60°
    Let    BD = EC = x
    Now, in right triangle ACE, we have
    tan space 30 degree space space equals space AD over CD
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator 60 minus straight h over denominator straight x end fraction
rightwards double arrow space space straight x space equals space square root of 3 left parenthesis 60 minus straight h right parenthesis space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ADB, we have
    tan space 60 degree space equals space AB over BD
rightwards double arrow space space space square root of 3 space equals space 60 over straight x
rightwards double arrow space space straight x space equals space fraction numerator 60 over denominator square root of 3 end fraction space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
straight x equals fraction numerator 60 square root of 3 over denominator 3 end fraction equals 20 square root of 3

    ⇒    x = 20 × 1.732 = 34.64 m
    Hence, width of the river = 34.64 m.
    Comparing (i) and (ii), we gel
    square root of 3 left parenthesis 60 minus straight h right parenthesis space equals space fraction numerator 60 over denominator square root of 3 end fraction
rightwards double arrow space 3 left parenthesis 60 minus straight h right parenthesis space equals space 60
rightwards double arrow space 180 minus 3 straight h space equals space 60
rightwards double arrow space 3 straight h space equals space 120
rightwards double arrow space space straight h space equals space 40 space straight m
    Hence,height of other pole = 40 m.

    Question 60
    CBSEENMA10008346

    From the top and foot of a tower 40 m high, the angle of elevation of the top of a light house is found to be 30° and 60° respectively. Find the height of the lighthouse. Also find the distance of the top of the lighthouse from the foot of the tower.

    Solution

    Let AC be the Tower such that AC = 40 m and BE be tine light house. Let CD be the horizontal from C. It is given that angles of elevation of the top of the light house from top and foot of the tower be 30° and 60° respectively.
    i.e., ∠DCE = 30° and ∠BAE = 60°
    Let AB = CD = x m and DE = x m
    Now, in right triangle CDE, we have tan 30°
    equals space DE over CD
rightwards double arrow space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space space straight x space equals space square root of 3 straight h end root space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABE, we have
    tan space 60 degree space equals space BE over AB
rightwards double arrow space space space space square root of 3 space equals space fraction numerator straight h plus 40 over denominator straight x end fraction
rightwards double arrow space space space space straight x space equals space fraction numerator straight h plus 40 over denominator square root of 3 end fraction space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we gel
    square root of 3 straight h end root space equals space fraction numerator straight h plus 40 over denominator square root of 3 end fraction
rightwards double arrow space space space 3 straight h space equals space straight h space plus space 40
rightwards double arrow space space space 2 straight h space equals space 40
rightwards double arrow space space straight h space equals space 20 space straight m
    Hence,heighl of light house = BD + DE = 40 + 20 = 60 m.
    In right triangle ABE, we have sin 60  equals BE over AE
    rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction equals 60 over AE
rightwards double arrow space space space space AE space equals space fraction numerator 120 over denominator square root of 3 end fraction
rightwards double arrow space space space space AE space equals space fraction numerator 120 over denominator square root of 3 end fraction straight x fraction numerator square root of 3 over denominator square root of 3 end fraction equals 40 square root of 3 straight m

    Hence, the distance of the top of the light house from the foot of the tower is 40 square root of 3 space straight m

    Question 61
    CBSEENMA10008347

    A statue 1.46 m. tall stands on the top of a pedestal. From a point on the ground the angle of elevation of the top of statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45° find the height of the pedestal.

    Solution

    Let hetght of the pedestal BD be h metres, and angle of elevation of C and D at a point A on the ground be 60° and 45° respectively.

    It is also given that the height of tine statue CD be 1.6 m
    i.e.,    ∠CAB = 60°,
    ∠DAB = 45° and CD = 1.6m
    In right triangle ABD, we have
    tan space 45 degree space equals space BD over AB
rightwards double arrow space space 1 space equals space straight h over AB
rightwards double arrow space space space space AB space equals space straight h space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ABC, we have

    tan space 60 degree space equals space BC over AB
rightwards double arrow space space space square root of 3 space equals space fraction numerator BD plus DC over denominator AB end fraction
rightwards double arrow space space space square root of 3 equals fraction numerator straight h plus 1.46 over denominator AB end fraction
rightwards double arrow space space space Ab space equals space fraction numerator straight h plus 1.46 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space.... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    straight h equals space fraction numerator straight h plus 1.46 over denominator square root of 3 end fraction
rightwards double arrow space space space square root of 3 space straight h space equals space straight h plus 1.46
rightwards double arrow space space space straight h left parenthesis square root of 3 minus 1 right parenthesis space equals space 1.46
rightwards double arrow space space space space straight h space equals space fraction numerator 1.46 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
rightwards double arrow space space space space straight h space equals space fraction numerator 1.46 open parentheses square root of 3 plus 1 close parentheses over denominator 3 minus 1 end fraction
rightwards double arrow space space space space straight h space equals space 0.73 space open parentheses square root of 3 plus 1 close parentheses

    Hence, the height of pedestal
    = 0.73 (1.73 + 1) = 0.73 × 2.73
    = 1.929 m. = 2 m. (approx)

    Question 62
    CBSEENMA10008348

    The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the jet is flying at a speed of 720 km/hour, find the constant height at which the jet is flying. 

    Solution
    Let A be the point of observation, C and E be the two points of the plane. It is given that after 15 seconds angle of elevation changes from 60° to 30°.

    i.e., ∠BAC = 60° and ∠DAE = 30°. It is also given that height of the jet plane is  1500 square root of 3 straight m.
    straight i. straight e. space CB space equals space 1500 square root of 3
    [Sincc jet plane is flying at constant height, Let, CB = ED = h km]
    In right triangle ABC, we have
    tan space 60 degree space equals space BC over AB
rightwards double arrow space space square root of 3 space equals space straight h over AB
rightwards double arrow space space space AB space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
    In right triangle ADL, we have 
    tan space 30 degree space equals space DE over AD
rightwards double arrow space fraction numerator 1 over denominator square root of 3 end fraction equals space fraction numerator DE over denominator AB plus BD end fraction
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator straight h over denominator AB plus BD end fraction
rightwards double arrow space space space AB plus BD space equals space square root of 3 straight h
rightwards double arrow space space space AB space equals square root of 3 straight h space minus space BD space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii) we get,
    fraction numerator straight h over denominator square root of 3 end fraction equals square root of 3 straight h minus BD
rightwards double arrow space space BD space equals space square root of 3 straight h space minus fraction numerator straight h over denominator square root of 3 end fraction
rightwards double arrow space space 3 space equals space fraction numerator 3 straight h minus straight h over denominator square root of 3 end fraction
rightwards double arrow space space space 3 square root of 3 equals 2 straight h
    [Hence, constant height at which the jet is flying = 2.6 km (app)]
    BD space equals space 720 space straight x space fraction numerator 15 over denominator space 3600 end fraction equals 3 right square bracket
rightwards double arrow space straight h space equals space fraction numerator 3 square root of 3 over denominator 2 end fraction
rightwards double arrow space space straight h space equals space fraction numerator 3 cross times 1.732 over denominator 2 end fraction equals 2.598
rightwards double arrow space straight h space equals space 2.6 space km space left parenthesis approx right parenthesis

    Tips: -

    left square bracket space Use space square root of 3 equals space 1.732 right square bracket
    Question 63
    CBSEENMA10008349

    A man on the deck of a ship 14 m above water level, observes that the angle of elevation of the top of a cliff is 60° and the angle of depression of the base of the cliff is 30°. Calculate the distance of the cliff from the ship and the height of the cliff. 

    Solution
    Let D be the position of the man and AB be the water level and AB be the cliff. The angles of elevation of the top and depression of the base is 60° and 30.

    straight i. straight e. space space space space space angle BDE space space space space equals space 60 degree space and space angle DEA space equals space 30 degree
Let space space space space space space space space space BE space space space space space space equals space straight h space and space AC space space DE space equals straight x
Now comma space space In space increment space BDE space tan space 60 degree space equals space BE over DE
rightwards double arrow space space space space space space space space space space square root of 3 space space space space equals space space straight h over straight x
rightwards double arrow space space space space space space space space space space space straight x space space space space equals space space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In space increment ADE comma space tan space 30 degree space equals space AE over DE
rightwards double arrow space space space space space space space space space fraction numerator 1 over denominator square root of 3 end fraction equals 14 over straight x
rightwards double arrow space space space space space space space space space space space straight x space space equals space 14 square root of 3 space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
    Comparing (i) and (ii), we get
    fraction numerator straight h over denominator square root of 3 end fraction equals 14 square root of 3
rightwards double arrow space space space straight h space equals space 14 square root of 3 plus square root of 3 equals 42 space straight m
    Hence, Height of the cliff.
    = h + 14 = 42 + 14 = 56 m
    And space distance space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 42 over denominator square root of 3 end fraction equals fraction numerator 14 square root of 3 cross times square root of 3 over denominator square root of 3 end fraction
space space space space space space space space space space space space space space space space space space space space space equals space 14 square root of 3 equals 14 space straight x space 1.732
space space space space space space space space space space space space space space space space space space space space space equals space 24.25 space straight m

    Tips: -

    open square brackets bold Take bold space square root of bold 3 bold equals bold 1 bold. bold 732 close square brackets
    Question 64
    CBSEENMA10008350

    The height of a tower is 10 m. Calculate the height of its shadow when Sun's altitude is 45°. 

    Solution
    In figure, AB is the tower and BC is the length of the shadow when the Sun's altitude is 45°, i.e. the angle of elevation of the top of the tower from the tip of the shadow is 45

    In right ∆ABC, we have
    tan space 45 degree space equals space AB over BC
rightwards double arrow space space space space 1 space equals space 10 over BC rightwards double arrow BC space equals space 10 space straight m.
    Thus, the height of the shadow is 10 m.
    Question 65
    CBSEENMA10008351

    In the following figure, what are the angles of depression from the observing positions O1 and O2 of the object at A?


    Solution
    From O1 and O2 draw the dotted lines parallel to ABC, then the angle of depression from the positions O1 and O2 of the object at A are 30° and 45°, respectively.
    Question 66
    CBSEENMA10008352

    Find the angle of elevation of the Sun's altitude when the height of shadow of a vertical pole is equal to its height.

    Solution

    Let the height of the pole AB = x m.
    ∴ Length of shadow OB ol the pole AB = x m.
    Let the angle of elevation be ө, i.e.
    ∠AOB = ө

    In Right triangle OBA, we have
    tan space straight theta space equals space AB over OB equals straight x over straight x rightwards double arrow tan space straight theta space space equals space 0 space rightwards double arrow space straight theta space equals space 45 degree
    Hence, the angle of elevation of the Sun's altitude is 45°.

    Question 67
    CBSEENMA10008353

    In figure, what are the angles of depression of depression of the top and bottom of h m tall building from the top of multistoryed building.


    Solution
    From P draw a dotted line PQ || BD or AC, then the angles of depression of the top and bottom of a tall building h m from the top P of the multistoryed building are 30° and 45° respectively.
    Question 68
    CBSEENMA10008354

    From a point 20 m away from the foot of a tower, the angle of elevation of the top of the tower is 30°, Find the height of the tower.

    Solution

    Let O be a point be a point 20 m away from the tower AB = hm
    In right triangle OBA, we have

    tan space 30 degree space equals space AB over OB
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over 20
rightwards double arrow space space space straight h space equals space fraction numerator 20 over denominator square root of 3 end fraction straight m
    thus, th height of the tower is fraction numerator 20 over denominator square root of 3 end fraction straight m.

    Question 69
    CBSEENMA10008355

    In figure, what are the angles of depression from the positions O1 and O2 of the object at A?


    Solution
    From O1 and O2 draw a dotted lines parallel to ABC, then the angles of depression from the points, O1 and O2 of the object at A are 30° and 45°, respectively.
    Question 70
    CBSEENMA10008356

    The string of akite is 100 m long and its makes an angle of 60° with the horizontal. Find the height of the kite. Assume that there is no slackness in the string.

    Solution

    Lenght of string OA = 100 m.
    Angle of elevation = 60°. Let the heigth of the kite be AB = h m.

    In right triangle OBA, we have
    sin space 60 degree space equals space AB over OA
rightwards double arrow space space space space fraction numerator square root of 3 over denominator 2 end fraction equals straight h over 100
rightwards double arrow space space space space straight h space equals space 50 square root of 3
    Thus, the height of the kite is 50 square root of 3 space straight m.

    Question 71
    CBSEENMA10008357

    In figure, what are the angles of depressions of the top and bottom of a pole from the top of a tower h m high.


    Solution
    From O draw a doted line OQ parallel to AM or BL, then the angles of depression of the top and bottom of a pole from the top O of a tower h m are 45° and 60° respectively.
    Question 72
    CBSEENMA10008358

    A balloon is connected to a meterological ground station by a cable length 215 m inclined at 60° to the horizontal determine the height of the baloon leave the ground. Assume that there is no slack in the cable.


    Solution

    Let AC the cable which is inclined at 60° to the horizontal
    Here, we have
    AC = 215 m and ∠ACB = 60°
    Now, In right triangle ACB.
    Sin space 60 space equals space AB over AC
rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction equals AB over 215
rightwards double arrow space space space space space AB thin space equals space fraction numerator 215 cross times square root of 3 over denominator 2 end fraction
rightwards double arrow space space space space space AB space space equals space fraction numerator 215 cross times 1.732 over denominator 2 end fraction
rightwards double arrow space space space space space space straight h space space space equals space 186.19 space straight m

    Question 73
    CBSEENMA10008359

    In figure, what are the angles of depression from the observing point O of the objects at P and?


    Solution
    Solution not provided
    Ans.  α and 90°-β 
    Question 74
    CBSEENMA10008360
    Question 75
    CBSEENMA10008361
    Question 76
    CBSEENMA10008362
    Question 78
    CBSEENMA10008364
    Question 79
    CBSEENMA10008365

    Sponsor Area

    Sponsor Area

    Question 170
    CBSEENMA10009585

    A ladder leaning against a wall makes an angle of 60° with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.

    Solution

    Let AB be the ladder and CA be the wall.

    The ladder makes an angle of 60o with the horizontal.
    ∴ ΔABC is a 30o-60o-90o, right triangle.


    Given: BC = 2.5 m, ∠ABC = 60°
    AB = 5 cm and ∠BAC = 30°


    From Pythagoras Theorem, we have
    AB2 = BC2 + CA2
    52 = (2.5)2 + (CA)2
    (CA)2 = 25 – 6.25 = 18.75 m
    Hence, length of the ladder is  square root of 18.75 end root space almost equal to 4.33 straight m

    Question 171
    CBSEENMA10009601

    A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of a hill as 30°. Find the distance of the hill from the ship and the height of the hill.

    Solution

    Let CD be the hill and suppose the man is standing on the deck of a ship at point A.

    The angle of depression of the base C of the hill CD observed from A is 30° and the angle of elevation of the top D of the hill CD observed from A is 60°.
    therefore angle EAD space equals space 60 degree space and space angle BCA space equals 30 degree
In space increment AED comma
tan space 60 degree space equals DE over EA
therefore square root of 3 space equals straight h over straight x
therefore space straight h equals square root of 3 straight x space space... space left parenthesis 1 right parenthesis
In space increment ABC comma
tan space 30 degree space equals space AB over BC
therefore space fraction numerator 1 over denominator square root of 3 end fraction equals 10 over straight x
therefore space straight x equals 10 square root of 3 space in space equation space left parenthesis 1 right parenthesis comma space we space get
straight h equals square root of 3 space straight x 10 square root of 3 space equals space 10 straight x 3 space equals 30
therefore space DE space equals space 30 space straight m
therefore space CD equals CE plus ED space equals 10 plus 30 space equals space 40 space straight m
Thus comma space the space distance space of space the space hill space from space the space ship space is space 10 square root of 3 space straight m space and space
the space height space of space the space hill space is space 40 space straight m.
    Question 172
    CBSEENMA10009608

    The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60o. From a point Y, 40 m vertically above X, the angle of elevation of the top Q of the tower is 45o. Find the height of the tower PQ and the distance PX.  Use square root of 3 space equals 1.73

    Solution

    Given the angle of elevation of the top Q of a vertical tower from the PQ from a point X on the ground is 60o.
    From a point Y, 40 m vertically above X, the angle of elevation of the top Q of the tower is 45o.

    MP space equals space XY space equals space 40 space straight m
therefore space QM equals straight h minus 40
In space right space angled space increment QMY comma
tan space 45 degree equals QM over MY equals 1 space equals fraction numerator straight h minus 40 over denominator PX end fraction space.... space left parenthesis MY equals PX right parenthesis
therefore PX space equals straight h minus 40 space space space space left parenthesis straight I right parenthesis
tan space 60 degree space equals QP over PX equals
space square root of 3 equals QP over PX
therefore space PX space equals fraction numerator straight h over denominator square root of 3 end fraction space space space space.. space left parenthesis II right parenthesis
From space left parenthesis straight l right parenthesis space and space left parenthesis ll right parenthesis space comma straight h minus 40 space equals fraction numerator straight h over denominator square root of 3 end fraction
therefore square root of 3 straight h end root minus 40 square root of 3 equals straight h
therefore square root of 3 straight h end root minus straight h space equals 40 square root of 3
therefore 1.73 straight h minus straight h space equals 40 left parenthesis 1.73 right parenthesis
straight h equals 94.79 straight m
Thus comma space PQ space is space 94.79 space straight m
    Question 173
    CBSEENMA10009615
    Question 174
    CBSEENMA10009626

    The angle of elevation of an aeroplane from a point A on the ground 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of 1500 space square root of 3 space end root space straight m, find the speed of the plane in km/hr.

    Solution


    Let P and Q be the two positions of the plane and A be the point of observation. Let ABC be the horizontal line through A. It is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30°, respectively.

    ∴ ∠PAB = 60o and ∠QAC = 30o
    Also comma space PB space equals space QC space equals space 1500 square root of 3 space straight m

In space increment ABP comma space we space have

tan space 60 degree space equals space BP over AB

rightwards double arrow space square root of 3 space equals space fraction numerator 1500 square root of 3 over denominator AB end fraction

rightwards double arrow space AB space equals space 1500 space straight m

In space increment ACQ comma space we space have space

tan space 30 degree space equals space QC over AC
rightwards double arrow space fraction numerator 1 over denominator square root of 3 end fraction space equals space fraction numerator 1500 square root of 3 over denominator AB end fraction

rightwards double arrow space AC space equals space 1500 space straight x space 3 space equals space 4500 space straight m

therefore space BC space equals space AC space minus space AB space equals space 4500 space straight m space minus space 1500 space straight m space equals space 3000 space straight m

Thus comma space the space plane space travels space 3000 space meters space in space 15 space second.

therefore space Speed space space of space the space plane

equals space 3000 over 15

equals space 20 space straight m divided by straight s
space
equals space fraction numerator 200 space straight x space 60 space straight x space 60 space over denominator 1000 end fraction

equals 720 space km divided by straight h

Hence comma space the space speed space of space the space plane space is space 720 space km divided by straight h.
    Question 175
    CBSEENMA10009640

    At a point A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30°. The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.

    Solution

    Let BE be the surface of the lake. Suppose C be the position of the cloud and C' be its reflection in the lake.
    Then, AB = 20 m
    Let CD = x m. Then,
    CE =C'E = ( x + 20)
    In ΔACD,
    tan space 30 degree space equals space CD over AD
rightwards double arrow space fraction numerator 1 over denominator square root of 3 space end fraction space equals space straight x over AD

rightwards double arrow AD space equals space straight x square root of 3 space space.. space left parenthesis straight i right parenthesis

Also comma

sin space 30 degree space equals space CD over AC

rightwards double arrow space 1 half space equals space straight x over AC
rightwards double arrow space AC space equals 2 straight x space.... space left parenthesis ii right parenthesis

Now comma space in space ΔADC apostrophe comma
tan space 60 degree space equals space fraction numerator straight C apostrophe straight D over denominator AD end fraction
rightwards double arrow space square root of 3 space equals space fraction numerator left parenthesis straight x space plus 20 right parenthesis space plus space 20 over denominator AD end fraction
rightwards double arrow space AD space equals space fraction numerator left parenthesis straight x space plus 40 right parenthesis over denominator square root of 3 end fraction space... space left parenthesis iii right parenthesis
From space left parenthesis straight i right parenthesis space and space left parenthesis iii right parenthesis comma space we space get
straight x square root of 3 space equals space fraction numerator left parenthesis straight x space plus space 40 right parenthesis over denominator square root of 3 end fraction
rightwards double arrow space 3 straight x space equals space straight x space plus 40
rightwards double arrow space 2 straight x space equals space 40
rightwards double arrow space straight x space equals space 20
    Question 176
    CBSEENMA10009650

    Prove that tangents drawn at the ends of a diameter of a circle are parallel to each other.

    Solution

    Let AB be the diameter of a circle, with centre O. The tangents PQ and RS are drawn at points A and B, respectively.

    We know that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
    ∴ OA ⊥ PQ and OB ⊥ RS
    ⇒ ∠OBR = 90°
    ∠OBS = 90°
    ∠OAP = 90°
    ∠OAQ = 90°
    We can observe the following:
    ∠OBR = ∠OAQ and ∠OBS = ∠OAP
    Also, these are the pair of alternate interior angles.
    Since alternate interior angles are equal, the lines PQ and RS are parallel to each other.
    Hence, proved.

    Question 177
    CBSEENMA10009653

    In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.

    Solution

    Given: PA and PB are the tangents to the circle.
    PA = 12 cm
    QC = QD = 3 cm

    To find: PC + PD

    PA = PB = 12 cm
    (The lengths of tangents drawn from an external point to a circle are equal)
    Similarly, QC = AC = 3 cm
    and QD = BD = 3 cm.

    Now, PC = PA − AC = 12 − 3 = 9 cm
    Similarly, PD = PB − BD = 12 − 3 = 9 cm

    Hence, PC + PD = 9 + 9 = 18 cm.

    Question 178
    CBSEENMA10009660

    Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that ∠PTQ = 2 ∠OPQ.

    Solution


    Given: TP and TQ are two tangents of a circle with centre O and P and Q are points of contact
    To prove: ∠PTQ=2∠OPQ
    Suppose ∠PTQ=θ.
    Now by theorem, "The lengths of tangents drawn from an external point to a circle are equal".
    So, TPQ is an isosceles triangle.
    Therefore, ∠TPQ=∠TQP= 1 half left parenthesis 180 to the power of straight o minus straight theta right parenthesis equals space 90 to the power of straight o space minus straight theta over 2 space
    Also by theorem "The tangents at any point of a circle is perpendicular to the radius through the point of contact" ∠OPT=90°.
    Therefore,
    ∠OPQ=∠OPT−∠TPQ
    equals 90 to the power of straight o space minus open parentheses 90 to the power of straight o space minus 1 half straight theta close parentheses
space equals space 1 half straight theta
space equals space 1 half angle PTQ
    Hence, ∠PTQ=2∠OPQ.

    Question 179
    CBSEENMA10009666

    Prove that the lengths of tangents drawn from an external point to a circle are equal. 

    Solution


    Proof: We know that a tangent to the circle is perpendicular to the radius through the point of contact.
    ∴ ∠OPT = ∠OQT = 90°
    In ΔOPT and ΔOQT,
    OT = OT (Common)
    OP = OQ (Radius of the circle)
    ∠OPT = ∠OQT (90°)
    ∴ ΔOPT ≅ ΔOQT (RHS congruence criterion)
    ⇒ TP = TQ (CPCT)
    Hence, the lengths of the tangents drawn from an external point to a circle are equal.

    Question 180
    CBSEENMA10009673

    A chord PQ of a circle of radius 10 cm subtends an angle of 60° at the centre of the circle. Find the area of major and minor segments of the circle. 

    Solution


    Radius of the circle, r = 10 cm
    Area of sector OPRQ
    space equals space 60 to the power of 0 over 360 to the power of 0 space straight x space πr squared
space equals space 1 over 6 space straight x space 3.14 space straight x space left parenthesis 10 right parenthesis squared
space equals 52.33 space cm squared

    In ΔOPQ,
    ∠OPQ = ∠OQP (As OP = OQ)
    ∠OPQ + ∠OQP + ∠POQ = 180°
    2∠OPQ = 120°
    ∠OPQ = 60°
    ΔOPQ is an equilateral triangle.
    So, area of ΔOPQ
    space equals fraction numerator square root of 3 over denominator 4 end fraction space straight x space left parenthesis side right parenthesis squared
space equals space fraction numerator square root of 3 over denominator 4 end fraction space straight x space left parenthesis 10 right parenthesis squared
space equals space fraction numerator 100 space square root of 3 over denominator 4 end fraction space cm squared
space equals space 43.30 space cm squared

    Area of minor segment PRQ
    = Area of sector OPRQ − Area of ΔOPQ
    = 52.33 − 43.30
    = 9.03 cm2
    Area of major segment PSQ
    = Area of circle − Area of minor segment PRQ
    =π(10)2−9.03=314−9.03=304.97 cm2

    Question 181
    CBSEENMA10009693

    Prove that the lengths of tangents drawn from an external point to a circle are equal.

    Solution

    Construction: Draw a circle centred at O.

    Prove that the lengths of tangents drawn from an external point to a c
    Let PR and QR are tangent drawn from an external point R to the circle
    touching at points P and Q respectively.
    Join OR.
    Proof:
    In ΔOPR and ΔOQR,
    OP=OQ     (Radii of the same circle)
    ∠OPR =∠OQR  (Since PR and QR are tangents to the circle)
    OR=OR    (Common side)
    OPR  OQR (By R.H.S) PR = QR (C.P.C.T)
    Thus, tangent drawn from an external point to a circle are equal

    Question 182
    CBSEENMA10009717

    If the difference between the circumference and the radius of a circle is 37cm, then using π = 227 , the circumference (in cm) of the circle is:

    • 154

    • 44

    • 14

    • 7

    Solution

    B.

    44

    Let r be the radius of the circle,

    From the given information, we have

    2πr - r =37 cm r ( 2π - 1 ) = 37 cm r  2 x 227 - 1 = 37 cm   r x 377 = 37 cm r = 7 cm Circumference of the circle = 2πr = 2 x 227 x 7 cm = 44 cm

    Question 183
    CBSEENMA10009722

     In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre.Find: (i) the length of the arc (ii) area of the sector formed by the arc.
      Use π = 227 

    Solution

    The arc subtends an angle of  60°

    60° at the centre.(i)  l = θ360 x 2πr = 60°360 x  2 x 227  x  21 = 22cm.(ii)area of the sector =   θ360 x πr2 =  60°360 x 227 x 21 x 21 cm2                                     = 231 cm2

    Question 184
    CBSEENMA10009733

    In fig., a circle with centre O is inscribed in a quadrilateral ABCD such that, it touches the sides BC, AB, AD and CD at points P, Q, R and S respectively, If AB = 29 cm, AD = 23 cm, B = 90o and DS = 5 cm, then the radius of thecircle (in cm) is 

    • 11

    • 18

    • 6

    • 15

    Solution

    A.

    11

    Given: Ab, BC,CD,and AD tangents to the circle with centre O at

    Q,P,S and R respectively.

    AB=29 cm, AD=23 cm, DS=5 cm and B=900

    Construction: Join PQ.

    We know that, the lengths of the tangents drawn from an external

    point to a circle are equal.

    DS=DR=5 cm

    AR= AD - DR= 23 cm- 5 cm= 18 cm 

    AQ=AR= 18 cm

     QB = AB - AQ = 29 cm - 18 cm= 11 cm

    QB = BP = 11 cm

    In InPQBPQ2 = QB2 +BP2 =(11 cm)2 +(11 cm)2 = 2x(11 cm)2PQ=112 cm    ..........(1)INOPQ,PQ2 = OQ2 +OP2 = r2 +r2 = 2r2  (112)2 = 2r2 121 = r2r = 11 cmThus, the radius of the circleis 11 cm.

    Question 185
    CBSEENMA10009734

    In fig., PA and PB are two tangents drawn from an external point P to a circlewith centre C and radius 4 cm. If PA PB, then the length of each tangent is

    • 3

    • 4

    • 5

    • 6

    Solution

    B.

    4

    AP PB      (Given)CAAP,  CB  BP  (Since radius is perpendicular to tangent)AC= CB= radius of the circle
    Therefore, APBC is a square having side equal to 4 cm.
    Therefore, length of each tangent is 4 cm.

    Question 186
    CBSEENMA10009736

    Prove that the parallelogram circumscribing a circle is a rhombus.

    Solution

    Given: ABCD be a parallelogram circumscribing a circle with centre O.To prove: ABCD is a rhombus.We know that the tangents drawn to a circle from an exterior point are equal in lengthTherefore,  AP=AS,  BP=BQ,  CR= CQ,  and  DR=DS.Adding the above equations,AP+BP+CR+DR = AS+BQ+CQ+DS( AP+BP ) + ( CR+DR )  = ( AS+DS ) + ( BQ +CQ )AB+CD = AD+BC2AB = 2BC( Since, ABCD is a parallelogram so AB= DC  and  AD = BC )AB = BCTherefore,   AB = BC = DC = ADHence,  ABCD  is a rhombus.

    Question 187
    CBSEENMA10009737

    Two circular pieces of equal radii and maximum area, touching each otherare cut out from a rectangular card board of dimensions 14 cm x 7 cm. Find the area of the remaining card board.

    Use π = 227

    Solution

    Dimensions of the rectangle card board = 14 cm x 7 cm

    Since, two circular pieces of equal radii and maximum area touching each other are cut from the rectangular card board, therefore, the diameter oa each of each  circular pieces  is 142 = 7cm 

                           

    Radius of each circular piece = 72 cm. Sum of area of two circular pieces = 2 x π 72 2 = 2 x 227 x 494 = 77 cm2Area of the remaining card board= Area of the card board - Area of the two circular pieces= 14 cm x 7 cm - 77 cm2= 98 cm2 - 77 cm2 =21 cm2

    Question 188
    CBSEENMA10009738

    In fig., a circle is inscribed in triangle ABC touches its sides AB, BC and ACat points D, E and F respectively. If AB = 12 cm, BC = 8 cm and AC = 10cm, then find the length of AD, BE and CF.

    Solution

    Given: AB=12 cm, BC= 8 cm,  and  AC= 10 cm.Let,  AD= AF = x  cm,   BD = BE = y cm,  and  CE=CF= z cm.(Tangents drwan from an external point to the circle are equal in length) 2(x+y+z)= AB+BC+AC=AD+ DB+BE+EC+AF+FC= 30 cm. x+y+z=15 cm.    AB= AD+DB =x+y= 12 cm z= CF =15-12 =3 cm  AC=AF+FC= x+z = 10 cm y= BE= 15-10 = 5 cm  x=AD=x+y+z-z-y= 15-3-5=7 cm.

    Question 189
    CBSEENMA10009745

    In fig., l and m are two parallel tangents to a circle with centre O,touching the circle at A and B respectively. Another tangent at C intersects the line l at D and m at E. Prove that   DOE = 900

    Solution

    Given:  l and m are two parallel tangents to the circle with centre O touching the circle at A and B respectively. DE is a tangent at the point C, which intersect  l at  D  and  m at  E.To prove:  DOE = 90°Contruction: Join OC.Proof:                     

    In ODA and ODC,OA = OC     ( Radii of the same circle )AD = DC      (Length of tangents drawn from an external point to a circle                            are equal )DO = OD       ( Commmon side ) ODA  ODC,         (SSS congruence criterion) DOA = COD          ..........(1)Similarly, OEB OECEOB = COE           ...........(2)Now, AOB is a diameter of the circle. Hence, it is a straight line.DOA +COD + COE + EOB =180°From (1) and (2), we have:2COD + 2COE = 180°COD + COE = 90°DOE = 90°Hence, proved.

    Question 190
    CBSEENMA10009746

    Prove that the tangent at any point of a circle is perpendicular to theradius through the point of contact.

    Solution

    Given: A circle with centre O  and a tangent XYto the circle at a point  PTo prove: OP is perpendicular to XY.Construction:Take a point Q on XY other than P and join OQ.

    Proof:  Here the point Q must lie outside the circle asif it lies inside the tangent  XY will become secant to the circle.Therefore,  OQ is longer thanthe radius OPof the circle, That is,  OQ> OP.This happens for every point on the line  XY  expect the point  P.So  OP is the shortest of all the distance of the point O to the points on  XY.And hence  OP is  perpendicular to XY.Hence, proved.

    Question 191
    CBSEENMA10009749

    Two circles touch each other externally at P. AB is a common tangent to the circlestouching them at A and B. The value of  APB is

    • 30°

    • 45°

    • 60°

    • 90°

    Solution

    D.

    90°

    TA=TPTPA = TPATB= TPTBP=TPBTAP+TBP=TPA+TPB = APBTAP+TBP+APB = 180°   [Sum of ...180°]APB+APB=180°2APB=180°APB=90°

    Question 192
    CBSEENMA10009752

    A chord of a circle of radius 10 cm subtends a right angleat its centre. The length of the chord (in cm) is

    • 52

    • 102

    • 52

    • 103

    Solution

    B.

    102

    Given:  AOB is given as 90°AOB is an isosceles trianglesince OA=OBTherefore OAB= OBA= 45°Thus AOP=45° and BOP= 45°Hence AOP and BOP also are isosceles trianglesThus let AP=PB=OP=xUsing pythagoras theoremx2 + x2 = 102Thus 2x2 = 100x=52Hence length of chord AB = 2x = 102

    Question 193
    CBSEENMA10009754

    The incircle of an isosceles triangle ABC, in which AB = AC, touches the sides BC, CA and AB at D, E and F respectively. Prove that BD = DC.

    Solution

    Given: ABC is an isosceles triangle with a circle inscribed in the triangle.

    To prove: BD=DC

    Proof: 

    AF and AE are tangents drawn to the circle from point A.

    Since two tangents drwan to a circle from the same exterior point are equal.

    AF=AE=a

    Similarly  BF=BD=b  and  CD=CE=c

    We also know that ABC is an isosceles triangle

    Thus AB=AC

    a+b=a+c

    Thus b=c

    Therefore, BD=DC

    Hence proved.

    Question 194
    CBSEENMA10009767

    Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

    Solution

    Given: A circle C ( 0, r ) and a tangent l at point A.

    To prove: OA  l

                                      

     

    Construction: Take a point B, other than A, on the tangent l. Join OB. Suppose OB meets the circle in C.

    Proof: We know that, among all line segment joining the point O to a point on l, the perpendicular is shortest to l.

    OA = OC  (Radius of the same circle)

    Now, OB = OC + BC.

     OB>OC OB>OA OA<OB     ( OC = OA = radius) 

    But among all the line segments, joining the point O to a point on AB, the shortest one is the perpendicular from O on AB.

    Hence OA is perpendicular to l.

            

    Question 195
    CBSEENMA10009776

    Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

    Solution

                          

    Let ABCD be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point  P, Q, R, S.

    Let us join the vertices of the quadrilateral ABCD to the center of the circle.

    Consider OAP and OAS, 

    AP = AS  (Tangents from the same point)

    OP = OS  (Radii of the same circle)

    OA = OA  ( common side )

    OAP  OAS     ( SSS congruence criterion )Therefore, AA, PS, OOAnd thus, POA = AOS1 = 8Similarly,2 = 34 = 56 = 71 + 2 + 3 + 4 + 5 + 6 + 7 + 8 =360°1 + 8   + 2 + 3  + 4 + 5  + 6 + 7  = 360°21 + 22 + 25 + 26 = 360°21 + 2  + 25 + 6 = 360°1 + 2 + 5 + 6 = 180°AOB + COD = 180°Similarly, we can prove that  BOC + DOA = 180° 

    Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

    Question 196
    CBSEENMA10009781

    If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°, then find the length of OP.

    Solution

                      

    In the figure, PA and PB are two tangents from an external point P to a circle with centre O and radius = a

    APB = 60°    ( given )APQ = 30°   ( tangents are equally inclined to the line                                  joining the point and the centre. )Now, OA  APIn right angled triangle OAP,sin 30° = OAOP 12 = aOPOP = 2a

    Question 197
    CBSEENMA10009783

    A circle touches all the four sides of a quadrilateral ABCD. Prove that 

    AB + CD = BC + DA

    Solution

                           

     

    Since tangents drawn from an external point to a circle are equal in length, we have

    AP = AS    ........(i)

    BP = BQ   ........(ii)

    CR = CQ   ........(iii)

    DR = DS   ........(iv)

    Adding (i), (ii), (iii), (iv), we get 

     

        AP + BP + CR + DR = AS + BQ + CQ + DS

     

      ( AP + BP ) + ( CR + DR ) = ( AS + DS ) + ( BQ + CQ )

     

    ⇒  AB + CD = AD + BC

     

    ⇒  AB + CD = BC + DA

    Question 198
    CBSEENMA10009784

    Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

    Solution

                          

     

    Let AB be a chord of circle with centre O.

    Let AP and BP be two tangents at A and B respectively.

    Suppose the tangents meet at point P. Join OP.

    Suppose OP meets AB at C.

       Now in, PCA and PCB,PA = PB      .............(Tangents from an external point are equal)APC = BPC      ........(PA and PB are equally inclined to OP)PC = PC          ..........( common)Hence, PAC  PBC       ......( by SAS congruence  criterion) PAC = PBC

    Question 199
    CBSEENMA10009801

    In the given figure, XY and X’Y’ are two parallel tangents to a circle with centre O and another tangents AB with point of contact C, is intersecting XY at A and X’Y’ at B. Prove that ∠AOB = 90°.

                      

    Solution

                     

    Since tangents drawn from an external point to a circle are equal.

    Therefore,  AP = AC.

    Thus, in triangles AOP and AOC, we have 

    AP = AC

    AO = AO   ..........[Common side]

    OP = OC   ..........[ Radii of the same circle ]

    So, by SSS- criterion of congruence,

    We have,

    AOP  AOCPAO = CAOPAC = 2CAO    .........(i)    

    Similarly, we can prove that QBO = CBO

     CBQ = 2CBOnOW,  PAC +CBQ =180°   ............(ii)   [ Sum of the interior angle                                on the same side of transvarsal is 180° ]2CAO + 2CBO = 180°    .......[Using (i) and (ii)]CAO + CBO = 90°  180° - AOB = 90°  .......[Since CAO, CBO and  AOB are angles of a triangle, CAO + CBO + AOB = 180° ]AOB = 90°                

    Question 200
    CBSEENMA10009803

    Prove that the lengths of two tangents drawn from an external point to a circle are equal.

    Solution

    Given: AP and AQ are two tangents from a point  A to a circle c(0,r)

     

    To prove: AP = AQ

    construction: Join OP, OQ and OA.

     

    Proof:                         

                                                  

    In OPA  and  OQA,OPA = OQA = 90° .......(Tangent at any point of a circle is perpendicular                                                    to the radius through the point of contact)OP = OQ               .........( Radii of a circle)OA = OA               .........(Common )

    Hence, by RHS- criterion of congruence, e have

    OPA  OQA AP = AQ   ........(c.p.c.t.)

    Question 201
    CBSEENMA10009815

    In Fig., the sides AB, BC and CA of a triangle ABC, touch a circle at P, Q and R respectively. If PA = 4 cm, BP = 3 cm and AC = 11 cm, then the length of BC (in cm) is

                            

    • 11

    • 10

    • 14

    • 15

    Solution

    B.

    10

    it is know that the lengths of tangents drwan from a point outside a circle

    are equal in length.

    Therefore, we have;

    AP = AR     ........(1)  (Tangents drawn from point A)

    BP = BQ    .........(2)  (Tangents drawn from point B)

    CQ = CR   ..........(3)   (Tangents drawn from point C)

    Using the above equations,

    AR = 4 cm          ( AP = 4 cm,  given)

    BQ = 3 cm         ( BP = 3 cm,  given)

    AC = 11 cm  RC = 11 cm - 4 cm = 7 cm

     ⇒ CQ = 7 cm

    Hence, BC = BQ + CQ = 3 CM + 7 CM = 10 cm.

    Question 202
    CBSEENMA10009816

    In Fig., a circle touches the side DF of EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of EDF (in cm) is:

                                

    • 18

    • 13.5

    • 12

    • 9

    Solution

    A.

    18

    It is known that the tangents from an external point to the circle are equal.

     EK = EM,  DK = DH  and FM = FH     .....(1)

    Perimeter  of EDF = ED + DF + FE

                                 = (EK - DK) + (DH + HF) + EM - FM)

                                 = (EK - DH) + (DH + HF) + (EM - FH)         [Using (1)]

                                 = EK + EM

                                 = 2EK = 2(9 CM) = 18 CM

    Hence, the perimeter of EDF is 18 cm.

    Question 203
    CBSEENMA10009820

    Tangents PA and PB are drawn from an external point P to two concentric circle with centre O and radii 8 cm and 5 cm respectively, as shown in Fig., If AP = 15 cm, then find the length of BP.

                               

    Solution

                               

    Given: Tangents PA and PB are drwan from an external point P to two

              concentric circles with centre O and radii OA = 8 cm,  OB = 5 cm

              respectively. Also, AP = 15 cm.

     

    Construction: We join the points O and P.

     

    Proof:  OA  AP     ;    OB  BP

             [ Using the property that radius is perpendicular to the tangent at the 

                 point of contact of a circle.]

     

    In right angled triangle  OAP,

    OP2 = OA2 + AP2       [ Using pythagoras theorem ]

     

          = (8)2 + ( 15 )2 = 64 + 225 = 289

     OP = 17 cm 

    In right angled triangled OBP,

    OP2 = OB2 + BP2

     BP2 = OP2 - OB2 

     (17)2 - (5)2 

     289 - 25

    = 264

      BP = 265 = 266 cm.

     

    Question 204
    CBSEENMA10009821

    In fig., an isosceles triangle ABC, with AB =AB, circumscribes a circle. Prove that the point of contact P bisects the base BC.

                                

                                                OR

    In fig., the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that AC = CB.

                                       

    Solution

    Given: ABC is an isosceles triangle, where AB = AC, circumscribing a circle. 

     

    To prove: The point of contact P bisects the base BC, i.e. BP = PC

     

    Proof: It can be observe that

    BP and BR;  CP and CQ;  AR and AQ; are pairs of tangents drawn to the circle

    from the external points B,  C, and A respectively.

    Since the tangents drawn from an external point to a circle, then

                              BP = BR        ............(i)

                              CP = CQ        ............(ii)

                              AR = AQ        ............(iii)

    Given that  AB = AC

     AR + BR = AQ + CQ

     BR = CQ             .........[ From (iii) ]

     BP = CP              .........[From (i) and (ii) ]

      P bisects BC.

     

                                         OR  

     

                       

    Given: The chord AB of the larger of the two concentric circles, with centre O,

    touches the smaller circle ar C.

     

    To prove: AC = CB

     

    Construction: Let us join OC.

     

    Proof: In the smaller circle, AB is a tangent to the circle at the point of contact C.

     OC  AB        .....................(i)

    ( Using the property that the radius of a circle is perpendicular to the tangent at the point of contact )

     

    For the larger circle, AB is a chord and from (i) we have OCAB 

     OC bisects AB

    ( Using the property that the perpendicular drawn from the centre to a chord  of  a circle bisects the chord.)

     AC = CB.

                                      

    Question 205
    CBSEENMA10009827

    Prove that the parallelogram circumscribing a circle is a rhombus.


                                           OR


    Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

    Solution

    Let ABCD be a parallelogram such that its sides touching a circle with centre O.

    We know that the tangents to a circle from an exterior point are equal in length.

                      

     AP = AS      .......[Tangnts  from point A]    .......(i)

        BP = BQ      .......[Tangents from point B]   .......(ii)

        CR = CQ      .......[Tangents from point C]   .......(iii)

    and, DR = DS   .......[Tangents from point D]  ........(iv)

     

    Adding (i), (ii), (iii), and (iv), we get

    AP + BP + CR + DR = AS + BQ + CQ + DS

     

    (AP + BP) + (CR + DR) = ( AS + DS) + (BQ + CQ)

    AB + CD = AD + BC

     

     2AB = 2BC         [ ABCD is a parallelogram  AB = CD and BC = AD]

     

    AB = BC

     

    Thus, AB = BC = CD = AD

     

    Hence, ABCD is a rhombus.

     

                                             OR

     

    A circle with centre O touches the sides  AB, BC, CD and DA  of a quadrilateral

    ABCD at the points  P, Q, R and R respectively.

     

    To prove:  AOB + COD = 180°  and,   AOD + BOC = 180°

                          

     Construction: Join OP, OQ, OR and OS.

     

    Proof: Since the two tangents drawn from a external point to a circle

    subtend equal angles at the centre.

     1 = 2,   3 = 4,    5 = 6  and 7 = 8Now,   1 + 2 +  3 + 4 + 5 +  6  + 7 + 8 = 360°                      [Sum of all the angles subtended at a point is 360°]2 ( 2 +  3 + 6  + 7) = 360°  and   2 (1 + 4 + 5 +  8) = 360° ( 2 +  3 ) + (6  + 7) = 180°   and  (1 +8) +( 4 + 5) = 180°         2 +  3 =AOB,     6  + 7 = COD   1 +8 =AOD    and    4 + 5 =BOC                    AOB  + COD = 180°  and AOD + BOC = 180°                                   

    Hence proved.

     

     

     

    Question 206
    CBSEENMA10009837

    Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.


                                       OR


    A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.

    Solution

                       

    Given: AB is tangent to a circle with centre O.

     

    To prove: OP is perpendicular to AB.

     

    Constructions: Take a point Q on AB and join OQ.

     

    Proof: Since Q is a point on the tangent AB, other than the point of contact P, so Q will be outside the circle.

    Let OQ intersect the circle at R.

    Now OQ = OR + RQ

     OQ> OR  OQ > OP      .......[as   OR = OP] OP < OQ

    Thus OP is shorter than any other segment among all and the shortest length is the perpendicular from O on AB.

     OP  AB. Hence proved.

     

                                                 OR

     

                                     

    Let ABCD be a quadrilateral, circumscribing a circle.

    Since the tangents drawn to the circle from an external point are equal,

    we have,   

    AP = AS       ..........(1)

    BP = BQ       ..........(2)

    RC = QC       ..........(3)

    DR = DS       ..........(4)

    Adding, (1), (2), (3) and (4), we get

    AP + PB + RC + DR = AS + BQ + QC + DS

    (AP + PB ) + (RC + DR ) = (AS + DS ) + (BQ + QC)

    AB + CD = AD + BC.

     

                    

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation